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Abstract

In this paper, we introduce a new traveling wave with a buffer zone,

which is approached by an asymmetric credit migration model with

fixed migration boundary. The asymptotic behavior of the solution

of the model is discussed. By constructing two sets of sub and super

solutions sequences, it is proved that the solution of the credit rating

migration model approaches the new traveling wave with buffer zone

as time goes to infinite in a direction. Additionally, some numerical

results are presented.
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1 Introduction

With the rapid development of credit products, such as defaultable bonds and

credit derivatives, more accurate risk management and valuation methods
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are needed. In addition to the default risk, the credit migration risk caused

by credit quality transformation is also considered in a relatively complete

credit model. In recent years, the structural approach for measuring the

credit migration risk have become popular. Compared with the traditional

reduced-form model (e.g., Jarrow, Lando and Turnbull ( [6], 1997), Arvanitis,

Gregory and Laurent ( [1], 1999), Hurd and Kuznetsov ( [5], 2007)), the

structural model is more essential since it directly links the credit ratings

with firm’s assets and debts.

Liang and Zeng ( [7], 2015) built the first structural model for measuring

credit migration risk, who took the asset value as the determinant of the

credit grade migration. A fixed credit migration boundary divides asset

value into high and low rating regions, where the value subjects to geometric

Brownian motion with different volatility. Further, Hu, Liang and Wu ( [4],

2015) turned to considering the liability-asset ratio as a driving factor for

the credit rating migration, and deduced the migration boundary as a free

boundary. With further research, the extensions of the structural model to

more general cases are discussed and more theoretical and empirical results

are obtained (see [10,12,15–17]).

A significant improvement has occurred in this kind of models. Liang and

Lin ( [8]) and Chen and Liang ( [2], 2021) replaced the one critical threshold

for migration by two fixed and free asymmetry thresholds, respectively. That

is, they set one threshold for upgrades and the other slight lower threshold

for downgrades, to generate a buffer zone, where the credit rating has not

changed; i.e., low ratings remain low and high ratings remain high. The intro-

duction of the buffer area avoids the high frequent changes of credit ratings,

which may appear in the previous models due to the assumption that the

asset value follows geometric Brownian motion. The existence and unique-

ness of the solution has been obtained in both cases. Indeed, the asymmetry

models can describe not only the buffer zone in credit rating migration, but

also the deadband in automatic control, backlash-like hysteresis, etc. Further

research on this kind of models in theory would benefit the related fields in

both finance and engineering.

A traveling wave is a kind of solution of partial differential equation prob-

lems that move forward in a particular direction with a constant speed, while
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preserving its pattern. It is a common phenomenon in many fields, such as

in physics, chemistry and biology etc., see [11, 13, 14]. Except for the areas

of natural science, there are also traveling waves in finance. Liang, Wu and

Hu ( [9], 2016) found an asymptotic traveling wave solution in credit mi-

gration model with single free boundary. The discounted value solution of

a debt with credit migration risk approaches the traveling wave in a certain

direction.

Asymptotic behavior of a solution is always an interest problem, especial-

ly for a new model. As a credit rating migration model with single migration

boundary approaches a traveling wave ( [9]), and a traveling wave always con-

sists a lot of information, we wonder if the new asymmetric credit migration

model has a similar behavior as time goes large. Also, if the traveling wave

has an explicit expression, and our model’s solution converges it in some di-

rection, it will be greatly helpful for us to understand our asymmetric credit

rating migration model when time is large.

This article attempts to respond to this concern on the model with fixed

migration boundary ( [8]). At first, we find a traveling wave solution and solve

it explicitly, though this traveling wave does not fit the traditional shape, but

has a buffer zone. Next, we establish monotonic and convergent sequences as

sub and super solutions of our model. The difficulty here is that we should

arrange the sequences properly such that they are monotone and converging.

In detail, we establish two sets of sub and super solution sequences, one for

our credit rating model, the other for the new traveling wave. Define a de-

creasing sequence, by using a supersolution sequence of the model’s solution

minus a subsolution sequence of the traveling wave, and define an increasing

sequence in a symmetric manner. By analyzing the asymptotic behavior of

each element in these sequences, we finally obtain that the discounted pricing

solution converges to the traveling wave along a particular direction. More-

over, we show the approaching process through numerical simulation. As far

as we know, it is the first time that the asymptotic traveling wave with buffer

zone has been studied in an asymmetric credit migration problem with fixed

boundary.

The paper is organized as follows. In Section 2, the asymmetric fixed

migration model is expressed. The existence and uniqueness of the solution
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obtained in [8] is presented in Section 3. Traveling wave solution is discussed

in Section 4. In Section 5, we prove that the bond value function is convergent

to the traveling wave by constructing monotonic sequences. Section 6 shows

the numerical results. Section 7 is a summary of this paper.

2 Model

2.1 Assumption

Let (Ω,F , P ) be a complete probability space. We assume that the firm

issues one corporate bond, which is a contingent claim of its asset value on

the space F .

Assumption 2.1 (Firm’s asset with credit rating migration) Let St
denote the firm’s asset value in the risk neutral world. It satisfies

dSt =

{
rStdt+ σHStdWt, in the high rating region,

rStdt+ σLStdWt, in the low rating region,

where r is the risk-free interest rate, and

σH < σL (2.1)

represent volatilities of the firm under the high and low credit grades re-

spectively. They are assumed to be positive constants. Wt is the standard

Brownian motion which generates the filtration {Ft}.

Assumption 2.2 (Debt obligation) The bond issued by the company is

zero-coupon and has a face value of F. On the maturity time T , the bond

value is ΦT = min{ST , F}.

Assumption 2.3 (Risk discount rate) We introduce a nonnegative con-

stant δ,

r − 1

2
σ2
L < δ < r − 1

2
σ2
H , (2.2)

which represents the risk discount rate on the threshold of the credit migra-

tion.
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Assumption 2.4 (Credit rating migration) High and low rating regions

are determined by the firm’s asset value. Let SH , SL represent the downgrade

threshold and the upgrade threshold respectively and

F < SH < SL. (2.3)

At time t, if the asset value rises to SLe−δ(T−t), the firm goes from a low

credit rating to a high credit rating; if the asset value drops to SHe−δ(T−t),

the firm goes from a high credit rating to a low credit rating.

Remark 2.1 In [8], we assume that risk discount rate δ = 0.

2.2 Cash Flow

Starting from time t and a high credit rating, the first credit downgrade time

is

τd = inf{τ > t|Sτ < SHe−δ(T−τ), St > SHe−δ(T−t)}. (2.4)

Starting from time t and a low credit rating, the first credit upgrade time is

τu = inf{τ > t|Sτ > SLe−δ(T−τ), St 6 SLe−δ(T−t)}. (2.5)

When the company is in the high credit rating, the bond has two possible

benefits in the future. The first is the principal income, the second is a

virtual benefit: the bond value after the credit rating migration. Therefore,

the value of the debt in high grades, ΦH(s, t), is an conditional expectation

as follows:

ΦH(s, t) =E[e−r(T−t) min{ST , F} · 1{τd>T}.
+ e−r(τd−t)ΦL(Sτd , τd) · 1{τd<T}|St = s > SHe−δ(T−t)]. (2.6)

We can write out the value of debt with the low credit rating in the same

way:

ΦL(s, t) =E[e−r(T−t) min{ST , F} · 1{τu>T}
+ e−r(τu−t)ΦH(Sτu , τu) · 1{τu<T}|St = s 6 SLe−δ(T−t)]. (2.7)
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2.3 PDE problem

By Feynman-Kac formula (see e.g. [3]), it is not difficult to drive the partial

differential equations that ΦH and ΦL satisfy in their respective regions:

∂ΦH

∂t
+

1

2
σ2
HS

2∂
2ΦH

∂S2
+ rS

∂ΦH

∂S
− rΦH = 0, for S > SHe−δ(T−t), 0 < t < T,

∂ΦL

∂t
+

1

2
σ2
LS

2∂
2ΦL

∂S2
+ rS

∂ΦL

∂S
− rΦL = 0, for 0 < S < SLe−δ(T−t), 0 < t < T,

with the terminal condition:

ΦH(S, T ) = ΦL(S, T ) = min{S, F}.

The formulas (2.6) and (2.7) imply that the value of the bond is contin-

uous when it passes the rating thresholds, i.e.,

ΦH(SHe−δ(T−t), t) = ΦL(SHe−δ(T−t), t),

ΦL(SLe−δ(T−t), t) = ΦH(SLe−δ(T−t), t).

The above is a complete PDE problem. Without losing generality, we as-

sume F = 1. Using the standard change of variables x = logS and renaming

T − t as t, and defining

φi(x, t) = Φi(ex, T − t), i = H,L,

we can derive the following equations and conditions:



∂φH

∂t
− 1

2
σ2
H

∂2φH

∂x2
− (r − 1

2
σ2
H)
∂φH

∂x
+ rφH = 0, for x > XH − δt, t > 0,

φH(x, 0) = min{ex, 1}, for x > XH − δt,
φH(XH − δt, t) = φL(XH − δt, t), for t > 0,

∂φL

∂t
− 1

2
σ2
L

∂2φL

∂x2
− (r − 1

2
σ2
L)
∂φL

∂x
+ rφL = 0, for x < XL − δt, t > 0,

φL(x, 0) = min{ex, 1}, for ξ < XL − δt,
φL(XL − δt, t) = φH(XL − δt, t), for t > 0.

(2.8)
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where XL = logSL and XH = logSH .

However, as we shall establish convergence to a traveling wave solution,

it will be more convenient for us to work on

ui(ξ, t) = ertφi(x, t), ξ = x+ ct, i = H,L,

where c = δ. Then equations (2.8) become

∂uH

∂t
− 1

2
σ2
H

∂2uH

∂ξ2
− (r − δ − 1

2
σ2
H)
∂uH

∂ξ
= 0, for ξ > ξH , t > 0,

uH(ξ, 0) = min{eξ, 1}, for ξ > ξH ,

uH(ξH , t) = uL(ξH , t), for t > 0,

∂uL

∂t
− 1

2
σ2
L

∂2uL

∂ξ2
− (r − δ − 1

2
σ2
L)
∂uL

∂ξ
= 0, for ξ < ξL, t > 0,

uL(ξ, 0) = min{eξ, 1}, for ξ < ξL,

uL(ξL, t) = uH(ξL, t), for t > 0,

(2.9)

where ξH = XH and ξL = XL.

3 Existence and uniqueness

[8] established the existence and uniqueness of the solution for this kind of

problem.

Theorem 3.1 (Existence) The problem (2.9) admits a solution (uL, uH)

that satisfies

uL(ξ, t) ∈ C∞(QL\(0, 0)), uH(ξ, t) ∈ C∞(QH). (3.1)

Theorem 3.2 (Uniqueness) The solution of problem (2.9) is unique.

Theorem 3.2 is proved by establishing a special comparison principle.

And the main idea of proving Theorem 3.1 is to establish a supersolution

sequence by monotonic iteration and take the limit as a solution. For the

later application in demonstrating the solution’s asymptotic behavior in this

paper, we still explain these super and sub solution sequence.
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Define Li = ∂
∂t
− 1

2
σi

2 ∂2

∂ξ2
− (r − δ − 1

2
σi

2) ∂
∂ξ

, i = H,L; QL = (−∞, ξL)×
(0,+∞) and QH = (ξH ,∞)× (0,+∞). Suppose k > 0 is an integer.

Starting from uL0 (ξL, t) ≡ 1, we define successively a sequence of superso-

lutions {ūHk , ūLk }∞k=0 which satisfy

LHuHk = 0 in QH , LLuLk = 0 in QL,

with the initial value min{eξ, 1}. By the induction assumption uHk (ξH , t) =

uLk (ξH , t) and uLk+1(ξ
L, t) = uHk (ξL, t), we have completed the definition of

the sequence. If we start from uL0 (ξL, t) ≡ 0, a sequence of subsolutions

{uHk , uLk }∞k=0 can be defined in the same manner.

Proposition 1 The sequence {ūHk , ūLk }∞k=0 is bounded and monotonically de-

creasing in k in the sense that for each k > 0,

0 6 ūHk+1 6 ūHk 6 1, in QH ,

0 6 ūLk+1 6 ūLk 6 1, in QL.

Consequently, for each (ξ, t) ∈ QH or (ξ, t) ∈ QL there is the limit

uH(ξ, t) = lim
k→∞

ūHk (ξ, t), uL(ξ, t) = lim
k→∞

ūLk (ξ, t), (3.2)

where (uH(ξ, t), uL(ξ, t)) is a solution of the problem (2.9).

Proposition 2 The sequence {uHk , uLk }∞k=0 is bounded and monotonically in-

creasing in k in the sense that for each k > 0,

0 6 uHk 6 uHk+1 6 1, in QH ,

0 6 uLk 6 uLk+1 6 1, in QL.

Consequently, for each (ξ, t) ∈ QH or (ξ, t) ∈ QL there is the limit

uH(ξ, t) = lim
k→∞

uHk (ξ, t), uL(ξ, t) = lim
k→∞

uLk (ξ, t), (3.3)

where (uH(ξ, t), uL(ξ, t)) is a solution of the problem (2.9).

The proof of Proposition 1 can be found in [8] and we also put it in the

Appendix 7. Proposition 2 can be proved in a similar way.
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4 Traveling wave solution

Let Li0 = 1
2
σi

2 ∂2

∂ξ2
+ (r − δ − 1

2
σi

2) ∂
∂ξ

, i = H,L.

Lemma 4.1 For any given δ satisfying (2.2), the problem

LH0 UH = 0, for ξ > ξH ,

UH(+∞) = 1,

UH(ξH) = UL(ξH),

LL0UL = 0, for ξ < ξL,

UL(−∞) = 0,

UL(ξL) = UH(ξL).

(4.1)

admits a unique solution,

UH =
b− d
ad− cb

e
(1− 2(r−δ)

σ2
H

)ξ
+ 1, ξ > ξH ,

UL =
a− c
ad− cb

e
(1− 2(r−δ)

σ2
L

)ξ
, ξ < ξL,

where

a = e
(1− 2(r−δ)

σ2
H

)ξH

, b = e
(1− 2(r−δ)

σ2
L

)ξH

,

c = e
(1− 2(r−δ)

σ2
H

)ξL

, d = e
(1− 2(r−δ)

σ2
L

)ξL

.

Proof. It is easy to obtain the general solution of the ODE problem

UH = C1e
(1− 2(r−δ)

σ2
H

)ξ
+ C2, ξ > ξH ,

UL = C3e
(1− 2(r−δ)

σ2
L

)ξ
+ C4, ξ < ξL.

(4.2)

Substituting (4.2) into (4.1) yields that C1, C2, C3, C4 are uniquely deter-

mined, therefore the unique solution of the problem is obtained.

This traveling wave is different from traditional one, as it has a “bulge”

which is buffer zone, see Figure 1.
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Figure 1. Traveling wave solution. The lines plot the traveling wave

solution, in which the left shows the overview and the right highlights the

buffer area. It is assumed that the risk-free interest rate r = 3.5%, the risk

discount rate δ = 0.5%, the asset volatility in the low rating σL = 30%

and in the high rating σH = 20%, and the migration boundary for upgrades

ξL = 0.6 and for downgrades ξH = 0.1.
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Even though the problem (4.1) has explicit solutions, in order to anal-

ysis the asymptotic behavior, we still need to construct sub-super solution

sequences which converge to (UH(ξ), UL(ξ)) by monotonic iteration.

Starting from ŪL
0 (ξL) = 1, we first construct a sequence of supersolutions

{ŪL
k (ξ), ŪH

k (ξ)}∞k=0 which satisfy

LL0 ŪL
k = 0, for ξ < ξL, LH0 ŪH

k = 0, for ξ > ξH ,

ŪL
k (−∞) = 0, ŪH

k (∞) = 1.

By the induction assumption ŪH
k (ξH) = ŪL

k (ξH) and ŪL
k+1(ξ

L) = ŪH
k (ξL), we

have completed the definition of the sequence. The sequence is decreasing

with k, thus we can get the limit as a solution of problem (4.1). The proof

is similar to the one of Proposition 1.

Lemma 4.2 The sequence {ŪH
k (ξ), ŪL

k (ξ)}∞k=0 is bounded and monotonically

decreasing in k in the sense that for each k > 0,

0 6 ŪH
k+1(ξ) 6 ŪH

k (ξ) 6 1, ∀ξ ∈ [ξH ,∞),

0 6 ŪL
k+1(ξ) 6 ŪL

k (ξ) 6 1, ∀ξ ∈ (−∞, ξL].

Consequently, for each ξ ∈ [ξH ,∞) or ξ ∈ (−∞, ξL] there is the limit

UH(ξ) = lim
k→∞

ŪH
k (ξ), UL(ξ) = lim

k→∞
ŪL
k (ξ), (4.3)

where (UH(ξ), UL(ξ)) is the solution of the problem (4.1).

Proof. First, we show ŪL
1 < ŪL

0 for ξ ∈ (−∞, ξL). Since ŪL
0 (ξL) = 1, the

maximum principle gives

ŪL
0 (ξ) < 1, ∀ξ ∈ (−∞, ξL).

Thus, ŪH
0 (ξH) = ŪL

0 (ξH) < 1. By maximum principle, we get

ŪH
0 (ξ) < 1, ∀ξ ∈ (ξH ,∞).

Therefore, ŪL
1 (ξL) = ŪH

0 (ξL) < 1 . And this implies ŪL
1 (ξL) < ŪL

0 (ξL).

Using the comparison principle, we find

ŪL
1 (ξ) < ŪL

0 (ξ), ∀ξ ∈ (−∞, ξL). (4.4)
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Then we make an inductive assumption that ŪL
k < ŪL

k−1 for ξ ∈ (−∞, ξL),

k > 1. According to the iterative relationship ŪH
k (ξH) = ŪL

k (ξH), ŪH
k−1(ξ

H) =

ŪL
k−1(ξ

H), we get ŪH
k (ξH) < ŪH

k−1(ξ
H). By the comparison principle, it fol-

lows that

ŪH
k (ξ) < ŪH

k−1(ξ), ∀ξ ∈ (ξH ,∞). (4.5)

Also the iterative condition ŪL
k+1(ξ

L) = ŪH
k (ξL), ŪL

k (ξL) = ŪH
k−1(ξ

L) implies

ŪL
k+1(ξ

L) < ŪL
k (ξL). And using the comparison principle shows that

ŪL
k+1(ξ) < ŪL

k (ξ), ∀ξ ∈ (−∞, ξL). (4.6)

This completes the induction argument for the monotonicity of the sequence.

Similarly, by the extremum principle, we derive that for each integer

k > 0, 0 < ŪH
k < 1 for ξ ∈ (ξH ,∞) and 0 < ŪL

k < 1 for ξ ∈ (−∞, ξL).

Thus, we can have a limit in (4.3), and check that it is a solution of the

problem (4.1).

We also start from UL
0 (ξL) = 0 to construct successively a sequence of

subsolutions {UH
k (ξ), UL

k (ξ)}∞k=0 in the same manner.

Lemma 4.3 The sequence {UH
k (ξ), UL

k (ξ)}∞k=0 is bounded and monotonically

increasing in k in the sense that for each k > 0,

0 6 UH
k+1(ξ) 6 UH

k (ξ) 6 1, ∀ξ ∈ [ξH ,∞),

0 6 UL
k+1(ξ) 6 UL

k (ξ) 6 1, ∀ξ ∈ (−∞, ξL].

Consequently, for each ξ ∈ [ξH ,∞) or ξ ∈ (−∞, ξL] there is the limit

UH(ξ) = lim
k→∞

UH
k (ξ), UL(ξ) = lim

k→∞
UL
k (ξ), (4.7)

where (UH(ξ), UL(ξ)) is the solution of the problem (4.1).

5 Asymptotic behavior

We want to show that ui(ξ, t) tends to U i(ξ) as t → ∞ for i = H,L. If we

define vi(ξ, t) = ui(ξ, t)− U i(ξ), i = H,L, we only need to show that vi(ξ, t)

converges to zero as t → ∞. The difficulty of this argument is that the

behavior of vi(ξ, t) on the asymmetric boundary is unknown. Therefore, we
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construct monotonic sequences which converge to vL(ξ, t) and vH(ξ, t). The

asymptotic behavior of vi(ξ, t) can be obtained by analyzing the asymptotic-

ity of each subsolution or supersolution in the sequences.

5.1 An asymptotic lemma

As a preparatory work, we first introduce an asymptotic lemma for ordinary

semi-unbounded problems, of which values on the boundary are explicit and

converge with respect to t.

Lemma 5.1 1) Suppose uL∗ (ξ, t) is a solution of
LLuL∗ (ξ, t) = 0, for x < ξL, t > 0,

uL∗ (ξ, 0) = fL(ξ), for x < ξL,

uL∗ (ξL, t) = gL(t), for t > 0.

Assume that limξ→−∞ f
L(ξ) = fL, and limt→∞ g

L(t) = gL, then

lim
t→∞

uL∗ (ξ, t) = UL
∗ (ξ), uniformly for ξ ∈ (−∞, ξL],

and UL
∗ (ξ) is the solution of{

LL0UL
∗ (ξ) = 0, for x < ξL,

UL
∗ (−∞) = fL, UL

∗ (ξL) = gL.

2) Suppose uH∗ (ξ, t) is a solution of
LHuH∗ = 0, for x > ξH , t > 0,

uH∗ (ξ, 0) = fH(ξ), for x > ξH ,

uH∗ (ξL, t) = gH(t), for t > 0.

Assume that limξ→∞ f
H(ξ) = fH , and limt→∞ g

H(t) = gH , then

lim
t→∞

uH∗ (ξ, t) = UH
∗ (ξ), uniformly for ξ ∈ [ξH ,∞),

and UH
∗ (ξ) is the solution of{

LH0 UH
∗ (ξ) = 0, for x > ξH ,

UH
∗ (∞) = fH , UH

∗ (ξH) = gH .
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Proof. Define vi∗(ξ, t) = ui∗(ξ, t)− U i
∗(ξ), i = H,L. We only need to prove

lim
t→∞

vL∗ (ξ, t) = 0, uniformly for ξ ∈ (−∞, ξL], (5.1)

and

lim
t→∞

vH∗ (ξ, t) = 0, uniformly for ξ ∈ [ξH ,∞). (5.2)

1) Let α and β be positive numbers to be determined later. Define

w(ξ, t) = eαξ−βt,

then

LLw = (−1

2
σ2
Lα

2 − (r − δ − 1

2
σ2
L)α− β)eαξ−βt,

Since (2.2), it is easy to choose α to be sufficiently small so that

−1

2
σ2
Lα

2 − (r − δ − 1

2
σ2
L)α > 0.

Next we choose β small enough such that LLw > 0.

We introduce the function

z±(ξ, t) = Mw(ξ, t) + ε± vL∗ (ξ, t),

where M be a positive number to be determined later. Obviously, LLz± > 0.

Now let ε be an arbitrary positive number. Using limξ→−∞v
L
∗ (ξ, 0) = 0 it

follows that we can choose N(ε) > 0 such that vL∗ (ξ, 0) 6 ε when ξ 6 −N .

Next, we choose M = M1 sufficiently large so that vL∗ (ξ, 0) 6 M1e
−αN for

−N 6 ξ 6 ξL. We conclude that

z±(ξ, 0) > 0 for ξ 6 ξL.

Since limt→∞ v
L
∗ (ξL, t) = 0, we can choose τ(ε) such that vL∗ (ξL, t) 6 ε for

t > τ . Next, we reselect M = M2(M2 > M1) sufficiently large so that

vL∗ (ξL, t) 6M2e
αξL−βτ when 0 6 t 6 τ . We obtain

z±(ξL, t) > 0 for t > 0.

Applying the maximum principle, we get

z±(ξ, t) > 0, for all ξ 6 ξL, t > 0,

14
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that is

|vL∗ (ξ, t)| 6M2w(ξ, t) + ε.

Since ε is arbitrary, it is easy to get (5.1) holds.

2) A slight change in the proof above shows that (5.2) holds. Actually,

we only need to redefine

w(ξ, t) = e−αξ−βt.

5.2 A sequence of supersolutions

We now carry out the construction of a sequence of supersolution-

s {v̄Hk (ξ, t), v̄Lk (ξ, t)}∞k=0 by defining v̄Hk (ξ, t) = ūHk (ξ, t) − UH
k (ξ) and

v̄Lk (ξ, t) = ūLk (ξ, t) − UL
k (ξ), since ūik(ξ, t) decreases and U i

k(ξ) increases

with respect to k for i = H,L.

Lemma 5.2 The sequence {v̄Hk (ξ, t), v̄Lk (ξ, t)}∞k=0 is decreasing with k and

converges to (vH(ξ, t), vL(ξ, t)).

Proof. Noting by Proposition 1 that {ūHk (ξ, t), ūLk (ξ, t)}∞k=0 converges to

(uH(ξ, t), uL(ξ, t)) and by Lemma 4.3 that {UH
k (ξ), UL

k (ξ)}∞k=0 converges to

(UH(ξ), UL(ξ)), we can obtain the result of this lemma at once.

For later analysis, we also establish a sequence {V̄ H
k (ξ), V̄ L

k (ξ)}∞k=0 in the

method of monotonic iteration, which satisfies

LL0 V̄ L
k = 0, for ξ < ξL, LH0 V̄ H

k = 0, for ξ > ξH ,

V̄ L
k (−∞) = 0, V̄ H

k (∞) = 0.

The sequence is defined by the induction assumption V̄ H
k (ξH) = V̄ L

k (ξH) and

V̄ L
k+1(ξ

L) = V̄ H
k (ξL), starting from V̄ L

0 (ξL) = 1.

Lemma 5.3 V̄ H
k (ξ) converges to zero uniformly for ξ ∈ [ξH ,∞), and V̄ L

k (ξ)

converges to zero uniformly for ξ ∈ (−∞, ξL], as k →∞.
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Proof. By the same method as in the proof of Lemma 4.2, we can ob-

tain that the sequence {V̄ H
k (ξ), V̄ L

k (ξ)}∞k=0 decreasing with k and tends to

(V H(ξ), V L(ξ)), which is the solution of the equations

LH0 V H = 0, for ξ > ξH ,

V H(+∞) = 0,

V H(ξH) = V L(ξH),

LL0V L = 0, for ξ < ξL,

V L(−∞) = 0,

V L(ξL) = V H(ξL).

(5.3)

This problem (5.3) admits a unique solution 0. Actually, the ODE problem

has a general solution in the same form as the formula (4.2). Substituting

it into (5.3) gives that C1 = C2 = C3 = C4 = 0. Thus, {V̄ H
k (ξ), V̄ L

k (ξ)}∞k=0

tends to zero uniformly on any compact set of [XH ,∞) and (−∞, XL] ,

respectively.

Combining this with the estimates for each k > 0,

0 6 V̄ H
k 6 e

(1− 2(r−δ)
σ2
H

)(ξ−ξH)
, ∀ξ ∈ [ξH ,∞),

0 6 V̄ L
k 6 e

(1− 2(r−δ)
σ2
L

)(ξ−ξL)
, ∀ξ ∈ (−∞, ξL],

we find that the convergence is uniform for ξ ∈ (−∞, ξL] and ξ ∈ [ξH ,∞),

respectively.

We now discuss the asymptotic behavior of v̄ik(ξ, t), i = H,L for each k >
0. Lemma 5.1 presents an asymptotic result for ordinary semi-unbounded

problems and it will be used here.

Lemma 5.4 For all k > 0, v̄Hk (ξ, t) tends to V̄ H
k (ξ) uniformly for ξ ∈

[ξH ,∞) and v̄Lk (ξ, t) tends to V̄ L
k (ξ) uniformly for ξ ∈ (−∞, ξL], as t→∞.

Proof. First observe that for all k > 0, v̄ik(ξ, 0) = ūik(ξ, 0)−U i
k(ξ), i = H,L.

Since ūLk (ξ, 0) = min{eξ, 1} and UL
k (−∞) = 0, we obtain

lim
ξ→−∞

v̄Lk (ξ, 0) = 0. (5.4)
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Since ūHk (ξ, 0) = 1 and UH
k (∞) = 1, we have

lim
ξ→∞

v̄Hk (ξ, 0) = 0. (5.5)

We now proceed by induction. When k = 0, by ūL0 (ξL, t) = 1 and

UL
0 (ξL) = 0, it is obvious that limt→∞ v̄

L
0 (ξL, t) = 1. Combined with (5.4)

and by Lemma 5.1, it is sufficient to show

lim
t→∞

v̄L0 (ξ, t) = V̄ L
0 (ξ), uniformly for ξ ∈ (−∞, ξL]. (5.6)

Assume the convergence holds for v̄Lk (ξ, t); we get v̄Lk (ξH , t) tends to V̄ L
k (ξH).

Hence v̄Hk (ξH , t) tends to V̄ H
k (ξH). Combined with (5.5) and applying Lemma

5.1, we get

lim
t→∞

v̄Hk (ξ, t) = V̄ H
k (ξ), uniformly for ξ ∈ [ξH ,∞).

Then, v̄Hk (ξH , t) tends to V̄ H
k (ξH). It follows that v̄Lk+1(ξ

H , t) tends to

V̄ L
k+1(ξ

H). Combined with (5.4) and using Lemma 5.1, we conclude that

lim
t→∞

v̄Lk+1(ξ, t) = V̄ L
k+1(ξ), uniformly for ξ ∈ (−∞, ξL].

Lemma 5.5 For any given ε > 0, there exists t1 > 0 such that when t > t1,

vL(ξ, t) 6 ε holds uniformly for ξ ∈ (−∞, ξL]; there exists t2 > 0 such that

when t > t2, vH(ξ, t) 6 ε holds uniformly for ξ ∈ [ξH ,∞).

Proof. For any given ε > 0, from Lemma 5.3 we conclude that there exits

a integer K such that

V̄ L
K (ξ) <

1

2
ε for ξ ∈ (−∞, ξL]. (5.7)

The Lemma 5.4 implies that there exits a number t1 such that

v̄LK(ξ, t)− V̄ L
K (ξ) <

1

2
ε for t > t1 and ξ ∈ (−∞, ξL]. (5.8)

Noting by Lemma 5.2 that vL(ξ, t) 6 v̄Lk (ξ, t) in QL, we obtain that

vL(ξ, t) 6 v̄LK(ξ, t) <
1

2
ε+

1

2
ε = ε (5.9)
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holds for all ξ ∈ (−∞, ξL], t > t1.

Similarly, we can obtain that there exits a number t2 such that

vH(ξ, t) < ε (5.10)

holds for all ξ ∈ [ξH ,∞), t > t2.

5.3 A sequence of subsolutions

We can also construct a sequence of subsolutions {vHk (ξ, t), vLk (ξ, t)}∞k=0 by

defining vHk (ξ, t) = uHk (ξ, t) − ŪH
k (ξ) and vLk (ξ, t) = uLk (ξ, t) − ŪL

k (ξ), since

uik(ξ, t) increases and ŪL
k (ξ) decreases with respect to k for i = H,L.

Lemma 5.6 The sequence {vHk (ξ, t), vLk (ξ, t)}∞k=0 is increasing with k and

converges to (vH(ξ, t), vL(ξ, t)).

We also establish a sequence {V H
k (ξ), V L

k (ξ)}∞k=0 starting from V L
0 (ξ) =

−1, by the same method as in the construction of {V̄ H
k (ξ), V̄ L

k (ξ)}∞k=0.

Lemma 5.7 V H
k (ξ) converges to zero uniformly for ξ ∈ [ξH ,∞) and V L

k (ξ)

converges to zero uniformly for ξ ∈ (−∞, ξL], as k →∞.

We now discuss the asymptotic behavior of vik(ξ, t), i = H,L for each

k > 0.

Lemma 5.8 For all k > 0, vHk (ξ, t) tends to V H
k (ξ) uniformly for ξ ∈

[ξH ,∞) and vLk (ξ, t) tends to V L
k (ξ) uniformly for ξ ∈ (−∞, ξL], as t→∞.

Lemma 5.9 For any given ε > 0, there exists t1 > 0 such that when t > t1,

vL(ξ, t) > −ε holds uniformly for ξ ∈ (−∞, ξL]; there exists t2 > 0 such that

when t > t2, v
L(ξ, t) > −ε holds uniformly for ξ ∈ [ξH ,∞).

Proof. For any given ε > 0, from Lemma 5.7 we conclude that there exits

a integer K such that

V L
K(ξ) > −1

2
ε for ξ ∈ (−∞, ξL]. (5.11)
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And the Lemma 5.8 implies that there exits a number t1 such that

vLK(ξ, t)− V L
K(ξ) > −1

2
ε for t > t1 and ξ ∈ (−∞, ξL]. (5.12)

Noting by Lemma 5.6 that vL(ξ, t) > vLk (ξ, t) in QL, we obtain that

vL(ξ, t) > vLK(ξ, t) > −1

2
ε− 1

2
ε = −ε (5.13)

holds for all ξ ∈ (−∞, ξL], t > t1.

Similarly, we can obtain that there exits a number t2 such that

vH(ξ, t) > −ε (5.14)

holds for all ξ ∈ [ξH ,∞), t > t2.

5.4 Main result

Combining Lemma (5.5) and (5.9) gives the following asymptotic behavior.

Theorem 5.1 (Main theorem) The solution of the problem (2.9) con-

verges the corresponding branch of the solution of traveling wave with buffer

zone (4.1) in their region. That is, in the low rating, the backwards discount-

ed pricing solution of a corporate debt with asymmetric credit migration risk

ertφL(x, t) tends uniformly to the traveling wave UL(ξ) on (−∞, ξL]; in the

high rating, the backwards discounted pricing solution of a corporate debt with

asymmetric credit migration risk ertφH(x, t) tends uniformly to the traveling

wave UH(ξ) on [ξH ,∞). Wherein, ξ = x+ δt with δ satisfying (2.2).

6 Numerical results

Figure 2 presents the numerical results about the traveling wave solution. It

can be seen that the backwards discounted bond value function approaches

the traveling wave solution as T goes larger. Besides, we can find from Figure

2(a) that in the low rating, when ξ is smaller, the bond value uL(ξ, T ) rises

as the time to maturity T becomes longer; when ξ is larger, the situation is
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Figure 2. Asymptotic behavior of bond pricing solution in different

rating areas. The lines plot the backwards discounted bond pricing solution

at different time to maturity and the traveling wave solution. It is assumed

that the parameters are the same as in Figure 1.
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just the opposite. From Figure 2(b), uH(ξ, T ) decreases as T grows in the

high rating. Figure 2(c) shows the overall trend of the value function across

the entire region. Noting from Figure 2(d) that in the buffer area, the value

of high-grade bonds is always greater than that of low-grade bonds, and the

gap seems to narrow with the increase of T .

7 Conclusion

In this article, we analyzes a traveling wave with a buffer zone, which is

approached by the solution of an asymmetric credit migration model when

time goes larger.

We first introduce and solve a new traveling wave with a buffer zone, if

and only if the risk discount rate is in a specific range determined by the

volatilities and risk-free interest rate. Then, it is proved that the solution

of the asymmetric credit migration model converges to the traveling wave

as time goes larger in a particular direction, which is the main result of

this article. The main technique is to construct two sets of sub and super

solution sequences by monotonic iteration. As the traveling wave has an

explicit solution, we can use it to approximate the bond value when time is

long enough before the maturity.

The asymmetric models with a buffer are also seen in other financial stud-

ies, such as the high frequency trades with different bid and ask prices, and

even in the area of engineering, e.g., the temperature control of thermostats.

This study about the traveling wave with a buffer may help us to under-

stand the widespread hysteresis phenomenon, especially in steady state, and

further refine the mathematical foundation of the asymmetric models.
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Appendix A. A proof of Proposition 1

We prove the sequence is monotonic in k by induction. First, we claim that

uL1 < uL0 in QL. By the definition of uL0 and the maximum principle, it is

obvious that

uL0 (ξ, t) < max{uL0 (ξ, 0), uL0 (ξL, t)} = 1, ∀(ξ, t) ∈ QL.

Thus, uH0 (ξH , t) = uL0 (ξH , t) < 1 for t > 0. By the definition of uH0 and the

maximum principle, we get

uH0 (ξ, t) < max{uH0 (ξ, 0), uH0 (ξH , t)} = 1, ∀(ξ, t) ∈ QH .

Therefore, uL1 (ξL, t) = uH0 (ξL, t) < 1 for t > 0. And this implies uL1 (ξL, t) <

uL0 (ξL, t) for t > 0. Using the comparison principle, we find

uL1 (ξ, t) < uL0 (ξ, t), ∀(ξ, t) ∈ QL.

Then we make an inductive assumption that uLk < uLk−1 in QL, k > 1.

According to the iterative relationship uHk (ξH , t) = uLk (ξH , t), uHk−1(ξ
H , t) =

uLk−1(ξ
H , t), we get uHk (ξH , t) < uHk−1(ξ

H , t). By the comparison principle,

uHk (ξ, t) < uHk−1(ξ, t), ∀(ξ, t) ∈ QH .

Also the iterative condition uLk+1(ξ
L, t) = uHk (ξL, t), uLk (ξL, t) = uHk−1(ξ

L, t)

implies uLk+1(ξ
L, t) < uLk (ξL, t). And the comparison principle shows that

uLk+1(ξ, t) < uLk (ξ, t), ∀(ξ, t) ∈ QL.

This completes the induction argument for the monotonicity of the sequences.

Similarly, by the minimum principle, we derive that for each integer k > 0,

uHk > 0 in QH and uLk > 0 in QL. Thus, for each (ξ, t) ∈ QH or (ξ, t) ∈ QL,

the limit in 3.2 exits. One can check that the limit is a solution of the problem

(2.9):

i) LHuH = 0 in QH and LLuL = 0 in QL.

For any given (ξ0, t0) ∈ QH , there is a neighborhood qT = (ξ0 − η, ξ0 +

η)× (0, T ) in QH , such that (ξ0, t0) ∈ qT . ∀ϕ(ξ, t) ∈ C∞0 (qT ),∫
qT

(LHuHk )ϕdξdt = 0.
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Integration by parts gives∫
qT

(LHuHk )ϕdξdt

=

∫ ξ0+η

ξ0−η
uHk (ξ, T )ϕ(ξ, T )− uHk (ξ, 0)ϕ(ξ, 0)dξ −

∫
qT

uHk ϕtdξdt

− 1

2
σ2
H

∫
qT

uHk ϕξξdξdt− (r − δ − 1

2
σ2
H)

∫
qT

uHk ϕξdξdt.

Sending k →∞, we get∫ ξ0+η

ξ0−η
uH(ξ, T )ϕ(ξ, T )− uH(ξ, 0)ϕ(ξ, 0)dξ −

∫
qT

uHϕtdξdt

− 1

2
σ2
H

∫
qT

uHϕξξdξdt− (r − δ − 1

2
σ2
H)

∫
qT

uHϕξdξdt

Since for any k > 0, uHk satisfy the same equation with constant coefficients,

by interior estimates in PDE theory, uHk has uniform bounded estimates for

any finite derivatives in the given interior region qT . Then it is easy to obtain

that the limit uH is smooth enough in qT . Thus, we have∫
qT

(LHuH)ϕdξdt = 0.

From the arbitraryness of ϕ and (ξ0, t0), it follows that LHuH = 0 in QH .

Similarly, we derive that LLuL = 0 in QL.

ii) uH and uL satisfy the initial and boundary conditions.
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