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Abstract

Large areas of forests are annually damaged or destroyed by outbreaking insect pests. Understanding
the factors that trigger and terminate such population eruptions has become crucially important, as
plants, plant-feeding insects, and their natural enemies may respond differentially to the ongoing
changes in the global climate. In northernmost Europe, climate-driven range expansions of the
geometrid moths Epirrita autumnata and Operophtera brumata have resulted in overlapping and
increasingly severe outbreaks. Delayed density-dependent responses of parasitoids are a plausible
explanation for the ten-year population cycles of these moth species, but the impact of parasitoids on
geometrid outbreak dynamics is unclear due to a lack of knowledge on the host ranges and prevalences
of parasitoids attacking the moths in nature. To overcome these problems, we reviewed the literature
on parasitism in the focal geometrid species in their outbreak range, and then constructed a DNA
barcode reference library for all relevant parasitoid species based on reared specimens and sequences
obtained from public databases. The combined parasitoid community of E. autumnata and O. brumata
consists of 32 hymenopteran species, all of which can be reliably identified based on their barcode
sequences. The curated barcode library presented here opens up new opportunities for estimating the
abundance and community composition of parasitoids across populations and ecosystems based on
mass barcoding and metabarcoding approaches. Such information can be used for elucidating the role
of parasitoids in moth population control, possibly also for devising methods for reducing the extent,

intensity, and duration of outbreaks.
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Introduction

Population outbreaks of plant-feeding insects cause disturbances on ecosystems worldwide through
destroying diversity and structure of plants that constitute the food and habitat of other animals and
humans (Ayres and Lombardero, 2000; Eveleigh et al., 2007). Outbreak systems are highly
heterogeneous, and span a wide variety of different plant and insect species around the world (Ayres
and Lombardero, 2000; Canelles et al., 2021). Because trophic (plant—insect—enemy) interactions and
other potential regulatory mechanisms stabilizing insect population dynamics may be disrupted due to
the rapidly-changing global climate (Dyer et al., 2013; Romero et al., 2018), understanding the abiotic
and biotic drivers and consequences of insect outbreaks has become crucially important (Lehmann et
al., 2020; Moller et al., 2017; Pureswaran et al., 2018). Thus far, however, lack of knowledge on biotic
interactions between plant-feeding insects and their natural enemies limits our understanding of the

mechanisms underlying insect outbreaks.

Large-scale population eruptions by geometrid moths in northern Europe constitute one of the most
dramatic and thoroughly studied outbreak systems globally (Jepsen et al., 2016; Klemola et al., 2006;
Tenow, 1972). Periodic outbreaks of the autumnal moth (Epirrita autumnata (Borkhausen)) are a
naturally-occurring phenomenon in the mountain birch (Betula pubescens var. pumila (L.) Govaerts)
forests that form the northern and alpine treeline in Norway, Sweden, and Finland (Haukioja et al.,
1998; Ruohomaiki et al., 2000; Tenow and Bylund, 2000). The warming climate has, however, led to
range expansion of another geometrid species, the winter moth (Operophtera brumata (L.)), into areas
that historically experienced outbreaks of autumnal moth only (Ammunét et al., 2010; Jepsen et al.,
2013, 2008; Vindstad et al., 2022). The now-sympatric outbreak ranges of these species are likely to
increase the frequency, intensity, and duration of forest defoliation in northern Europe (Neuvonen and
Viiri, 2017; Vindstad et al., 2019a). Indeed, population peaks of winter moth often lag one to two
years behind those of the autumnal moth (Klemola et al., 2008; Tenow et al., 2007), and severe
defoliation exceeding three years from such combined outbreaks has resulted in forest dieback over
large areas (Vindstad et al., 2019a). Even sub-lethal outbreaks fundamentally change local

environments, as spillover herbivory and the sudden increase in light and nutrients cascade into shifts
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in communities of understory plants (Karlsen et al., 2013), root-associated fungi (Saravesi et al.,
2015), and soil invertebrates and microbes (Calderon-Sanou et al., 2021). As shown by Heliasz et al.

(2011), outbreaks also reduce sequestration of atmospheric carbon by mountain birch forests.

Due to the dramatic impacts that geometrid outbreaks have on subarctic treeline forest ecosystems, the
factors that initiate and terminate outbreaks have been the focus of intensive research. Winter
temperatures below —32°C reduce survival of overwintering moth eggs (Ammunét et al., 2012), and
weather effects are discernible both in the spatial limits of local outbreaks (Hagen et al., 2007;
Vindstad et al., 2019b) as well as in the temporal outbreak dynamics (Karvinen, 2021). Repeated
defoliation also lowers foliage quality for larvae (Kaitaniemi et al., 1999), and moth body size and
fecundity are further suppressed as a result of resource depletion and feeding on non-host plants in
outbreak areas (Ammunét et al., 2010; Kaitaniemi et al., 1999; Klemola et al., 2008; Yang et al.,

2008).

However, abiotic and resource-related factors are likely to be either independent of moth density or to
have an immediate (direct) impact, while the approximately 10-year population cycles exhibited by
both moth species rather point to the involvement of biotic factors operating in a delayed density-
dependent manner (Klemola et al., 2008; Ruohomaiki et al., 2000). This suggests a role for top—down
regulation by natural enemies such as predators and parasitoids (Berryman, 1996; Klemola et al.,
2002), which theoretically also have the potential to synchronize population dynamics of different host
species (Klemola et al., 2009; Raimondo et al., 2004). An effect of natural enemies was indeed
demonstrated in an experiment by Klemola et al. (2010), who found that multi-year exclusion of

parasitoids led to higher densities of autumnal moth larvae in experimental cages.

Connecting parasitoid abundance to changes in moth densities has, however, proven difficult in
natural settings (Hagen et al., 2010; Schott et al., 2012, 2010; Vindstad et al., 2010). A major
challenge is lack of detailed knowledge on the host preferences and prevalences of particular
parasitoid species in different areas and phases of moth population cycles (Klemola et al., 2014, 2008;
Ruohoméki et al., 2000; Tenow, 1972; Vindstad, 2014). In this regard, the first methodological

complication arises from difficulties in identifying parasitoids in multi-species communities, which



101 frequently include cryptic species that are difficult or impossible to separate based on morphological
102 traits (Lue et al., 2021; Sigut et al., 2017). The parasitoid communities of autumnal and winter moths
103 are species-rich and ecologically diverse, involving species from at least 19 genera in five families

104 (Klemola et al., 2014, 2007; Vindstad, 2014; Vindstad et al., 2010). However, identifications of

105  species are known to be unreliable and naming schemes inconsistent across studies (Bylund, 1997,
106  Klemola et al., 2007; Vindstad et al., 2011), which over time has led to perpetuation and amplification
107  of errors (see discussion in Vindstad, 2014). Second, estimating species-specific rates of parasitism in
108  nature is difficult with traditional rearing methods, because such approaches are sensitive to the timing
109 of sampling (Ruohoméki, 1994; Schott et al., 2010; Vindstad et al., 2011) and differential mortality

110  during rearing (Ashfaq et al., 2004; Rott and Godfray, 2000; Sow et al., 2019).

111 Our goal here was to overcome these methodological challenges by developing molecular-genetic
112 resources enabling inference of parasitoid communities at both individual and ecosystem levels in the
113 outbreak range of E. autumnata and O. brumata in northernmost Europe. Techniques based on DNA
114 barcoding and genome-level markers can effectively resolve complexes of cryptic or near-cryptic
115  species, but of the natural enemies of the focal moths, only the microgastrine genera Protapanteles
116  and Cotesia have hitherto been investigated using molecular tools (Ruohomaéki et al., 2013).

117  Barcoding and metabarcoding approaches also allow obtaining data directly from herbivore larvae,
118  without a need to rear hosts and parasitoids to adults (Kitson et al., 2019; Miller et al., 2021a, 2021b;
119  Nakadai and Kawakita, 2017; Sow et al., 2019; Volf et al., 2017). Furthermore, when a reference
120 barcode library for relevant parasitoids is available, their local community structures and abundances
121  can be estimated based on large-scale material obtained through, for example, Malaise trapping

122 (Barsoum et al., 2019; DeWaard et al., 2019; Lue et al., 2021; Roslin et al., 2022).

123 To this aim, we reviewed the available literature on the natural enemies of E. autumnata and O.

124 brumata in their outbreak range, and constructed a reference DNA barcode library for the parasitoids
125  based on material reared through a period of 15 years from eggs, larvae, and pupae collected from
126  Norway, Finland, and Sweden. The barcode library presented here includes data from 132 reared

127  parasitoid specimens and an additional 66 reference sequences obtained from public databases,
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together representing all of the 32 hymenopteran parasitoid species known to attack the focal moth
species in their combined outbreak range. Our barcode library constitutes a resource that will in the
future allow molecular identification of single parasitoid eggs, larvae, pupae, or adults, and will
significantly expand possibilities for qualitative and quantitative molecular-genetic assessment of
parasitoid communities in populations of northern outbreaking moth species either from mass

sampling of moth larvae or field trapping of adult parasitoids.

Materials and methods

Literature review of parasitoid communities

We assessed the completeness of our barcode library by reviewing the existing literature on parasitism
on the focal geometrids in Finland, Norway, and Sweden, which encompass the main areas of their
native outbreak range (Jepsen et al., 2008; Klemola et al., 2006). Because literature records of host—
parasitoid associations are often plagued by misidentifications of parasitoids, hosts, or both (Noyes,
1994; Shaw, 2017, 1994), limiting our focus to these countries ensured a higher reliability of recorded
associations as well as a closer connection of recorded associations to outbreak dynamics of the focal
geometrids. After this spatial delimitation, we inferred probable synonymies across parasitoid names
in different sources, and excluded records that apparently represented misidentifications. We included
all published parasitoid species names in our curated community table (Supporting Information Table

S1), but separately annotated records that in our view are unreliable or incorrect.

In addition to species composition, we compiled information on the ecology of the parasitoid species
(Supporting Information Table S1). The associated parasitoids can be divided into distinct ecological
guilds based on the developmental stage that they attack and/or kill and emerge from (eggs, larvae,
prepupae, or pupae) (Kenis et al., 2005; Klemola et al., 2014, 2007; Mills, 1994). The larval
parasitoids can be further divided into those that develop inside or outside the larvae (endo- and
ectoparasitoids, respectively), and into those that paralyze their host or allow it to continue

development (idio- and koinobionts, respectively) (Mills, 2009, 1994).



153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

Sample collection, rearing, and morphological pre-identification

We obtained parasitoid reference specimens from field-collected larvae or from laboratory-reared trap
eggs, larvae, and pupae exposed in the field at 16 locations in Finland, Norway and Sweden between
2004 and 2018 (Supporting Information Table S2). Larvae were collected when the majority had
moulted to their penultimate (fourth) or ultimate (fifth) instar, and reared on fresh birch foliage until
pupation (Ruohomaéki, 1994). Egg and pupal parasitoids were obtained by exposing sedentary life
stages under field conditions in Hana, Norway (Klemola et al., 2014). Emerging specimens were

stored in 1.5-ml Eppendorf tubes in ethanol at +5°C or —20°C.

During the study years, over 3000 adult parasitoid wasps were reared from the moth hosts in focus.
The specimens to be barcoded were selected based on morphological pre-identifications done mostly
to the species or genus level (Supporting Information Table S2). To evaluate intraspecific sequence
variation and to facilitate detection of potential cryptic taxa within presumed species or species-
groups, we barcoded 2—23 individuals of all morphospecies for which multiple individuals were

available (Supporting Information Table S2).

DNA extraction, sequencing, and alignment

DNA was extracted using DNeasy Blood and Tissue Kits (Qiagen) following the manufacturer’s
protocol with slight modifications. All samples were lysed overnight in a thermomixer at 55°C
between steps 2 and 3 in the manufacturer’s protocol. At step 3, buffer AL was heated to 50°C before
addition, and in step 7 buffer AE was warmed to 70°C before addition. After pipetting buffer AE onto
the spin column filter, the columns were incubated for up to 15 min at room temperature. The final
elution was done twice into the same collection tube, leading to a total extract volume of 100 pl.
Extract DNA concentrations were measured with a Qubit fluorometer using the Qubit 1X dsDNA HS

Assay Kit (Invitrogen) following the manufacturer’s protocol.

The standard barcode of the mitochondrial COI gene was PCR amplified with the universal primers
LCO1490 and HCO2198 (Folmer et al., 1994). PCR reactions were carried out in volumes of 25 pl,

including 2 pl template DNA, 0.5 uM of each primer, 1 U of Taq polymerase (Invitrogen), 0.2 pM of
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each ANTP, 1X Mg-free PCR buffer, and 1.5 uM MgCl,. Thermal cycling conditions included initial
denaturation at 94 °C for 3 min, followed by 30 cycles of 94 °C for 45 sec, 50 °C for 30 sec, 72 °C for
90 sec, and a final extension at 72 °C for 10 min. PCR products were checked through electrophoresis
on 1.5% agarose gels stained with Ethidium bromide. Whenever multiple bands were present in the
gels, we performed a new PCR reaction with Q5 High-Fidelity 2X Mastermix (New England BioLabs
Inc.), in a total reaction volume of 25 ul, including 2ul template DNA and 0.5 uM of each primer.
These reactions were run with an initial denaturation at 98 °C for 30 sec, then 30 cycles of 98 °C for 10

sec, 50 °C for 30 sec, and 72 °C for 30 sec, followed by a final extension step at 72 °C for 2 min.

Successfully amplified products were purified enzymatically from unincorporated nucleotides and
primers before sequencing. For this, 15 pl of PCR product was mixed with 30 U Exonuclease I and 3
U FastAP Thermosensitive Alkaline Phosphatase (PCR clean-up prior to sequencing, Thermo
Scientific), then incubated at 37 °C for 15 min, followed by 85 °C for 15 min to stop the reaction. The
products were Sanger sequenced in both directions using the amplification primers at Macrogen Inc.,

The Netherlands.

Resultant sequences were edited and aligned using Geneious Prime 2020.1 software (Biomatters Ltd).
Final sample sequences were aligned with each other using the MAFFT multiple sequence alignment
algorithm (Katoh and Standley, 2013) implemented within Geneious. We constructed two different
barcode sequence alignments for the subsequent analyses: (1) an alignment including only the 132
samples analyzed in this study and (2) an expanded alignment including a further 66 reference
sequences retrieved from the GenBank and BOLD databases (Supporting Information Table S2 and
Data S1). The reference barcode sequences for the latter dataset were selected to represent (i)
identified reference individuals that constituted close hits for our own barcodes; (i) identified
specimens of species that our literature review indicated as parasitoids of the focal geometrids, but that
were not obtained from our own rearings; and (iii) representative congeners of parasitoids that are

known to parasitize the focal moth species.
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Phylogeny reconstruction and species delimitation analyses

For the alignment of our own 132 barcode sequences, we first estimated a midpoint-rooted Neighbor-
joining (NJ) based on Kimura 2-parameter (K2P) distances in Mega X (Kumar et al., 2018), and used
1000 bootstrap resamplings of the data matrix to estimate clade support. Mega X was also used for

calculating K2P distances among sequences within and between inferred species.

Next, we conducted a maximum-likelihood (ML) analysis using RAXML v. 8 within Geneious Prime
v 2020.1 (Stamatakis, 2014). In this case, we implemented a GTR+G substitution model but separated
codon positions 1 and 2 from 3, following the two-partition scheme suggested by PartitionFinder
(Lanfear et al., 2017). Statistical support for groupings was evaluated with 1000 rapid bootstrap
resamplings. A corresponding ML analysis was performed based on the 198-sequence dataset
containing the reference barcodes from GenBank and BOLD. Both ML trees were manually rooted
between Platygastroidea+Chalcidoidea and the Ichneumonoidea following results of the phylogenomic

analyses of Peters et al. (2017) and Branstetter et al. (2017).

We inferred limits among species by performing species delimitation analyses with the Bayesian
implementation of the Poisson tree processes method of Zhang et al. (2013), which is available on the
bPTP server (https://species.h-its.org/ptp/). The method applies a single-locus phylogenetic tree as
input data to fit exponential distributions for the numbers of substitutions between within- and among-
species branching events on the tree, and delimits species under the assumption that branches will on
average be shorter within than among species. We used the ML tree estimated on the basis of our own
barcode dataset as a guide tree, and conducted MCMC sampling using a flat prior for all possible

delimitations for 500,000 generations, with a burnin of 0.1 and the thinning parameter set to 100.

Results

Literature review

Based on our review of 31 articles, 28 hymenopteran parasitoid species attack E. autumnata and 16
species O. brumata in northern Fennoscandia. Of these, 12 occur on both moth species, so their

collective parasitoid community consists of 32 hymenopteran species belonging to the families

9
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Platygastridae, Encyrtidae, Eulophidae, Braconidae, and Ichneumonidae (Supporting Information
Table S1). We excluded a further nine names as probable synonyms, misidentifications, or rearing
contaminants (see below). All of the hymenopteran species considered to represent real associates of
the focal moth species are present in our barcode dataset, which also includes all of the likely but as
yet unconfirmed associates (Supporting Information Table S1). Besides hymenopterans, Lypha dubia
(Diptera: Tachinidae) infrequently attacks both moth species in the study area (K. Ruohomaki, pers.
obs.); public barcode sequences for L. dubia species are available in BOLD (Supporting Information

Table S1).

Barcode data and trees

We obtained barcode sequences for 132 reared parasitoid specimens. The full dataset including also
representative reference sequences from GenBank and BOLD was composed of 198 sequences. Both
alignments were 658 bp in length, but species-specific barcodes were either 640, 643, 652, or 658 bp
long, with differences being due to internal deletions of whole codon triplets (Supporting Information

Data S1). The shortest barcodes were found in two Telenomus sequences downloaded from GenBank.

The NJ and ML trees based on our own dataset differed in deep internal structure, but grouped the
barcodes into corresponding clusters with 1-14 specimens in each (Supporting Information Fig. S1,
Data S2). The composition of these shallow clusters was identical across the trees, despite the fact that
the backbone structure of the NJ tree is in clear conflict with the hymenopteran overall phylogeny

(e.g., polyphyletic ChalcidoideatPlatygastroidea and Braconidae).

The ML solution of the bPTP species delimitation analysis based on the ML tree favored splitting the
clusters into 22 species, with strong Bayesian support (>0.9) for many delimitations (Supporting
Information Fig. S2). However, the exact placement of some species limits remained uncertain.
Surprisingly, many of the low Bayesian support values for alternative delimitations were found at or
near the base of very tight barcode clusters, which were as such clearly distinct on the tree (e.g.,
Telenomus sp. 2, Zele deceptor, Cratichneumon viator, and Phobocampe tempestiva). When defining

species based on the delimitation analysis, the mean within-species K2P distance for species with

10
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more than one individual was 0.003 (range of mean =0 — 0.012, s.e.m. = 0.0009), while the full range
of intraspecific inter-individual K2P distances was from 0 to 0.027. Mean K2P distances among
individuals belonging to different sister species ranged from 0.025 to 0.261, and the mean interspecific

distance among all species was 0.260 (range = 0.025 — 0.414, s.e.m. = 0.005).

The superfamily- and family-level structure of the full 198-sequence ML tree (Supporting Information
Fig. S3, Data S2) corresponded with well-established phylogenetic relationships among the main
parasitoid taxa, although bootstrap support was low for most deep branching events. Inclusion of
closely-matching reference sequences from public databases confirmed our morphological
identifications, and allowed identification of most of the remaining taxa. Well-separated single
sequences or clearly delimited barcode clusters of associated parasitoids were present for two species
in the Platygastroidea and four in the Chalcidoidea (Fig. 2); three of these could not be identified to
species level based on morphology or reference sequences obtained from barcode libraries. Within the
Braconidae (Fig. 3), barcodes of nine known or likely associate species were generally well-defined in
relation to each other, but maximum intraspecific K2P distances were comparatively long within the
Aleiodes gastritor (0.022) and Cotesia salebrosa (0.014) clusters, and mean distances among
individuals across species pairs were short within the Cotesia clade (0.025 — 0.039). All 17 known or
likely parasitoids in the Ichneumonidae were similarly well-separated and identifiable based on their
barcode sequences (Fig. 4). Within-species divergences in Ichneumonidae were very low, with the
exception of the Agrypon flaveolatum cluster, which contained a relatively deep split (maximum K2P

distance 0.027).

Discussion

DNA barcode reference libraries constitute a central resource for ecological research based on
molecular-genetic approaches (Moriniére et al., 2019; Wirta et al., 2016). However, the extreme
diversity of insects means that even the most comprehensive global or regional barcode libraries will
at best contain only a subset of all species present in nature (Ratnasingham and Hebert, 2007; Roslin et

al., 2022), and large-scale databases also frequently include barcodes of misidentified individuals

11



282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

(Meiklejohn et al., 2019). Curated taxon- or system-specific barcode libraries are therefore in many
cases necessary for targeting relevant research questions and hypotheses (Lee et al., 2019; Lue et al.,
2021; Nisole et al., 2020). Here, by drawing on the combined expertise of taxonomists, ecologists, and
geneticists, we constructed a comprehensive DNA barcode library for parasitoids that attack the
immature stages of the geometrid moths E. autumnata and O. brumata in their main outbreak range in
northern Europe. A large body of literature exists on parasitism in these ecologically central moths,
but, like for most other plant-feeding insect groups, inferences have been hampered by
misidentifications and inconsistent nomenclature (Klemola et al., 2007; Ruohoméki et al., 2013;
Vindstad, 2014). By relying on vetted literature records and reared parasitoid specimens, we ensured
that the associations are correct, and well-documented reference barcodes for the few remaining
species could be obtained from public databases. Our results show that all relevant parasitoids can be
confidently identified to species level based on barcode sequences, but also reveal the presence of
several new associates and putative cryptic species within the natural enemy community. Below, we
first discuss the results and remaining taxonomic issues within each parasitoid superfamily, and then
outline ways for utilizing our barcode library in ecological and applied research on the drivers of

population cycles in northern outbreaking geometrid moths.

Platygastroidea and Chalcidoidea

The hyperdiverse superfamilies Platygastroidea and Chalcidoidea globally contain thousands of
species (Aguiar et al., 2013; Noyes, 2022; Rasplus et al., 2020) that, due to their typically minute size,
are particularly challenging for morphological identification. Within Platygastridae, our barcodes
revealed the existence of two species of Telenomus egg parasitoids separated by a K2P distance of
0.144. Neither of these matched reference sequences in GenBank or BOLD, but one or other of the
species evidently represents “Telenomus cf. laeviceps,” which has previously been listed as an
associate of E. autumnata (Ammunét et al., 2012; Klemola et al., 2009, 2014). Further work is
required to pinpoint the exact taxonomic status of the two barcoded species, but we note that they are
unlikely to represent the true 7. laeviceps (reference GMGMP2796-18), which is very distant from our

barcode clusters on the ML phylogeny (Fig. 2). In contrast to the inference of Barloggio (2018), the

12
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true T. laeviceps may therefore be associated exclusively with noctuid moths. Estimating rates of egg
parasitism in the focal moths has proven challenging during years with low moth population densities,
but attack rates are known to be high during and after outbreaks, making egg parasitoids likely

candidates for population control in the outbreak range (Klemola et al., 2014).

A different situation is present in the Encyrtidae, in which our samples identified by an experienced
specialist (Veli Vikberg) as Copidosoma chalconotum are likely to represent the correct name. Our
barcodes produced a 99% hit to an unpublished C. chalconotum sequence from Norway on BOLD, so
we consider the “C. chalconotum™ GenBank reference sequence KF850101 (= BOLD GBAH8995-14)
to originate from a misidentification (Fig. 2). The reference specimen was collected in China from an
unnamed host species (Yu et al., 2014). C. chalconotum is a generalist attacking many moth families
(Noyes, 2022), but is thought to be predominantly associated with geometrids in the subfamily
Larentiinae (Guerrieri and Noyes, 2005; Yu et al., 2014), to which both of our focal moth species
belong. C. chalconotum has been listed as an infrequent polyembryonic egg—larval or egg—prepupal
endoparasitoid of E. autumnata in Finland (Teder et al., 2000) and Norway (Klemola et al., 2014), but

also in the Alps (Kenis et al., 2005).

The Eulophidae are represented in our study by three well-separated barcode clusters (Fig. 2).
Previously, only Eulophus ramicornis (listed as E. larvarum in earlier studies; see revision by
Graham, 1988) has been known as a common gregarious larval ectoparasitoid of the focal moth
species in northern Fennoscandia (Supporting Information Table S1). “E. larvarum” auctt (now E.
ramicornis) is considered a wide generalist, but it is also the only chalcidoid parasitoid listed for F.
autumnata in the Universal Chalcidoidea Database of Noyes (2022). Notably, the same database lists
twelve further chalcidoid associates for O. brumata from outside our focal region. Despite being a
widespread and common genus with over 70 described species, Fulophus is poorly represented in
public databases, with few species-level reference sequences available (BOLD Systems, 2022).
Therefore, pinpointing the identity of our unidentified Eulophus sp. cluster will require further work.
The cluster is 97.9% identical with unidentified Canadian Eulophidae barcodes in BOLD, but is

clearly divergent from the real E. ramicornis (mean interspecific K2P distance = 0.123), indicating

13



336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

that the two groups likely represent distinct species (Fig. 3). In a blind test, representative sibling
vouchers of our barcoded individuals were identified as E. ramicornis by an experienced specialist
(Richard Askew), so morphological differences between the species are evidently small or
nonexistent. Our Miotropis unipuncta record (Fig. 2) is based on a single individual, and is therefore a
possible rearing contaminant requiring further validation. M. unipuncta is generally considered a
specialist parasitoid of Coleophora and other microlepidopterans (Noyes, 2022). However, the species
is morphologically very variable, and may represent a complex of multiple species (R. Askew, pers.

comm.).

Ichneumonoidea: Braconidae

The braconid wasp community associated with the focal moths is composed of nine confirmed or
likely species, many of which are common larval or larval-prepupal endoparasitoids (Supporting
Information Table S1). Within the family, Zele deceptor, Protapanteles anchisiades, P. immunis, and
Aleiodes gastritor formed distinct barcode clusters that also match publicly available reference
sequences (Fig. 3). However, the A. gastritor barcode cluster contains a substantial amount of
heterogeneity, with a maximum within-cluster K2P distance of 0.022. “A. gastritor” is a frequent
parasitoid of many arboreal geometrid host species, but the name most likely encompasses a complex
of several species with differing host preferences and overlapping intra- and interspecific variation in
morphological traits and barcode sequences (M. R. Shaw, pers. obs.). All of our specimens originated
from E. autumnata, which is also the only host listed for A. gastritor in previous studies on moth
parasitism in our focal region (Supporting Information Table S1). However, O. brumata is attacked by
a morphologically close but most likely different representative of the 4. gastritor complex in the U.K.

(M. R. Shaw, pers. obs.).

Cotesia is the taxonomically most complex genus in our focal host—parasitoid system (Fig. 3). The
genus is widespread and comprises over 300 species that are often very difficult to identify
morphologically (Fernandez-Triana et al., 2020). In the focal community, Ruohomaéki et al. (2013)
showed that barcodes can be used for separating C. salebrosa and C. autumnatae, and for

distinguishing both from C. jucunda, which is known to parasitize O. brumata in Britain (M. R. Shaw,
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pers. obs.). The name “C. jucunda” is used in many of the studies included in our review (Supporting
Information Table S1), but neither our results nor those of Ruohoméki et al. (2013) point towards an

association of C. jucunda with outbreaking geometrids in northern Fennoscandia.

Our results support the notions of Klemola et al. (2012) and Ruohoméki et al. (2013) that Cotesia
species exhibit differing preferences with regard to the two focal geometrid species. Of the four
species observed here, only C. salebrosa has been listed as an associate of both O. brumata and E.
autumnata (Supporting Information Table S1), even though all of our specimens were from the latter.
C. autumnatae is apparently a strict specialist on E. autumnata, but sample sizes remain small due to
the apparent rarity and southern distribution of the species (Ruohomadki et al., 2013). Of our specimens
reared from O. brumata, five individuals pre-identified as C. eulipis by M. R. Shaw formed a tight
cluster with a C. eulipis reference barcode from Canada (MG444249). However, specimen EK08S5,
likewise from O. brumata but lacking a species-level pre-identification, grouped with C. sericea
reference BCHYM7193-15 from the Czech Republic. As C. sericea has not previously been reported
from Fennoscandia (Fernandez-Triana et al., 2020), we re-examined 96 Cofesia specimens reared from
O. brumata in two locations in Norway and Finland, and found 51 C. sericea individuals in material
collected through 2008-2010 (det. M. R. Shaw). Nixon (1974) listed the species (as Apanteles
praepotens) as a regular parasitoid of O. brumata in the U.K. (also M. R. Shaw, pers. obs.), so it is
likely that C. sericea is a recent addition to the parasitoid fauna of northern Europe that has gone

unnoticed until now.

Ichneumonoidea: Ichneumonidae

The ichneumonid wasp community was found to be composed of 17 species that are larval, larval—
prepupal, larval-pupal, or pupal parasitoids (Supporting Information Table S1). In our barcode tree, all
ichneumonid species are well separated from each other, have low within-cluster distances, and match
publicly available reference sequences (Fig. 4). The only exception to this general pattern is the deep
split within the Agrypon flaveolatum barcode cluster. Our bPTP analysis placed the species limit at the
base of the cluster with high support (Supporting Information Fig. S2), but the maximum within-

cluster K2P distance is 0.027, which is close to the traditional yet arbitrary “species limit” of 2%
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sequence divergence applied in many barcoding studies (Hubert and Hanner, 2015). As pointed out by
Vindstad (2014), the presence of two cryptic species cannot be excluded: Vindstad et al. (2013, 2010)
found A. flaveolatum to parasitize both E. autumnata and O. brumata in several sites in the vicinity of
Tromse, Norway, while in a study by Klemola et al. (2009) from northernmost Finland, the species
was absent from O. brumata larvae, and females refused to oviposit on this host in laboratory
experiments despite high rates of attack on E. autumnata. The gap is not readily explained by hosts
(all of our barcodes originated from individuals reared from E. autumnata) or geography (both clusters
included samples from southern and northern Finland). Based on this, we consider the barcode cluster

to represent a single species.

For the Ichneumonidae, past literature records contained a high number of cases that we consider
unreliable (Supporting Information Table S1). For example, previous studies have listed at least five
different species names within Phobocampe, but three of these represent apparent misidentifications or
synonyms. Phobocampe species are morphologically very variable and available keys (e.g., Sedivy,
2004) can be considered unreliable. Furthermore, while we consider the pupal parasitoid Pimpla
sodalis a likely associate of at least E. autumnata, the original record is based on indirect inference by
Jussila and Nuorteva (1968): along with another ichneumonid, Cryptus armator, the species became
very abundant through a population outbreak—collapse cycle of E. autumnata in Finnish Lapland in

1965—66, after having been absent in preceding years with ‘normal’ moth densities.

Enytus apostatus is a new record for the parasitoid community of E. autumnata (Supporting
Information Table S1). We only observed a single specimen and, as a broad generalist (Shaw et al.,
2016), E. apostatus is likely to be neither common on the focal geometrids nor particularly relevant for
their population dynamics. Nevertheless, the observation provides an illuminating example of the
complexities of inferring parasitoid communities. Specimen RN120 was pre-identified as “Sinophorus
sp.,” but the barcode sequence confidently clustered with E. apostatus references from Norway and
Germany (Fig. 4). However, the BOLD database also includes more than a hundred predominantly
North American barcodes under the name “Enytus apostata”, all of which are very distant from

sequences of our specimen RN120 as well as available reference sequences of E. apostatus and the
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related E. montanus (Fig. 4). Voucher photographs of “E. apostata” on BOLD do not seem to
represent Enytus, and European sequences belonging to the same barcode index number (BIN) are
identical to two Norwegian barcodes of Hyposoter brischkei (COLHH1404-18 and COLHH1406-18).
Therefore, we consider the “E. apostata” barcode BIN in BOLD to represent a case in which the
barcode of an originally misidentified H. brischkei specimen has been used to repeatedly (mis)label

subsequent sequences added into the database.

Future prospects

Our curated DNA barcode reference library for the parasitoids of E. autumnata and O. brumata opens
up attractive opportunities for elucidating the role of parasitoids in the eruptive population dynamics
of geometrid moths in northern Europe. Rates of parasitism in insect herbivores are often very high,
and delayed density-dependent responses of parasitoids have frequently been implicated as a driver of
host population cycles (Klemola et al., 2010, 2014; Miinster-Swendsen and Berryman, 2005; Mutanen
et al., 2020; Myers, 2018; Turchin et al., 2003). However, inferences on whether—or which—
parasitoids control outbreaking moth populations have been hampered by difficulties in species
identification, inconsistent nomenclature, and differential rearing mortality (Vindstad, 2014). While
the absolute and relative prevalences of particular parasitoid species vary through time and space
(Ruohomaéki, 1994; Teder et al., 2000; Tenow, 1972; Vindstad et al., 2010), we estimate that the 32
species included in our barcode library are responsible for nearly all of the total parasitoid-inflicted
mortality in the two moth species in the focal outbreak region. Importantly, our linking of barcodes to
taxonomic names enables connecting genetic identifications to previously-accumulated information on
parasitoid ecology and life-history traits (Supporting Information Table S1). This connection will
allow tests of the relevance of species-level biological traits, including host stage attacked and diet

breadth, for parasitoid abundance and ecological impact.

The reference library presented here enables research implementing barcoding or metabarcoding
approaches at the level of individuals, populations, and ecosystems. At the individual level, field-
collected parasitoid eggs, larvae, pupae, and adults can be readily identified based on barcode

sequences, and rates of parasitism by externally inconspicuous endoparasitoids can be estimated using
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metabarcoding of DNA extracted from single host larvae (cf. Kitson et al., 2019; Miller et al., 2021b).
For the latter type of studies, the availability of a parasitoid barcode reference library facilitates in
silico validation of mini-barcode amplification primers, as well as design of blocking oligomers
suppressing simultaneous amplification of host DNA (Nakadai and Kawakita, 2017). At the
population and ecosystem levels, parasitoid community composition can be estimated through
metabarcoding of bulk Malaise trap catches (cf. Kirse et al., 2022; Sire et al., 2022). With appropriate
trapping designs, parasitoid community structures can then be contrasted with spatial variation and
multi-year trajectories in host densities. What is more, the increasing output quality and decreasing
cost of long-read sequencing technologies means that truly quantitative community-level mass

barcoding approaches have become feasible (Hebert et al., 2018; Srivathsan et al., 2021).

Like other arctic and subarctic ecosystems, the mountain birch forests of northern Europe are subject
to rapid climatically-induced changes (Pureswaran et al., 2018; Rees et al., 2020; Skre et al., 2017).
Manifestations of these changes are already seen as shifts in the distributions of the focal moth species
(Ammunét et al., 2010; Jepsen et al., 2013) and the extent of their outbreaks (Jepsen et al., 2008;
Vindstad et al., 2022). With a warmer climate, additional geometrid birch defoliators are entering the
region, potentially with cumulative impacts on subarctic treeline forests (Jepsen et al., 2011).
However, parallel changes in parasitoid communities, host—parasitoid associations, and parasite-
mediated indirect interactions among moth species are expected, but are difficult to document
(Kankaanpéa et al., 2020; Vindstad et al., 2013). A substantial ‘reservoir’ of additional geometrid
moth parasitoids is known to exist further south in Europe, where moth population eruptions are less
dramatic (Elkinton et al., 2021; Friih, 2014; Kenis et al., 2005; Noyes, 2022; Tikkanen et al., 1998;
Vindstad et al., 2013; Wylie, 1960). Our curated moth parasitoid DNA barcode library integrating
taxonomic, ecological, and molecular data therefore constitutes a reference point for monitoring
changes in moth—parasitoid networks and their effects on moth population dynamics. As shown by the
findings of Elkinton et al. (2021), a deeper understanding of the factors driving moth population
dynamics may eventually provide tools for reducing the frequency and severity of geometrid

outbreaks also in the treeline forests of northern Europe.
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Fig. 1. (A) Map of locations in Norway, Sweden, and Finland from which larvae of E. autumnata
(blue dots) or both E. autumnata and O. brumata (red dots) were collected for rearing of parasitoid
reference specimens (see legend). Names and coordinates of the study sites are given in Supporting
Information Table S2. (B—F) Examples of larval and adult parasitoids attacking the two focal
outbreaking geometrid species: (B) Gregarious ectoparasitic Eulophus sp. larvae feeding on a larva
of E. autumnata, (C) An endoparasitic Cotesia or Protapanteles sp. larva exiting a larva of E.
autumnata, (D) Adult female of Zele deceptor, (E) Adult female of Phobocampe tempestiva, and
(F) Female of Agrypon flaveolatum next to an E. autumnata larva. Photo credits: (B—C, F) Tero
Klemola, (D—E) Anu Veijalainen (Zoological Museum, Univ. Turku, Finland).
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Fig. 2. The Platygastroidea + Chalcidoidea clade of the full ML tree based on COI barcodes. The
location of the clade in the full ML barcode tree (Supporting Information Fig. S3) is indicated by

the square in the inset figure. Specimens reared from E. autumnata and O. brumata are in colored

fonts that correspond to different inferred species, reference specimens from GenBank and BOLD
are in bold black font. Moth host species are indicated by symbols, and reference barcodes of

species known or suspected to attack the focal moth species are indicated by arrows after names

see legends). Numbers above branches are bootstrap proportions (only values >70% shown).
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Fig. 4. The Ichneumonidae clade of the full ML tree based on COI barcodes. The location of the
clade in the full ML barcode tree (Supporting Information Fig. S3) is indicated by the square in the

inset figure. Specimens reared from E. autumnata and O. brumata are in colored fonts that

correspond to different inferred species, reference specimens from GenBank and BOLD are in bold

black font. Moth host species are indicated by symbols, and reference barcodes of species known

or suspected to attack the focal moth species are indicated by arrows after names (see legends).

Numbers above branches are bootstrap proportions (only values >70% shown).
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