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Abstract

In this paper, we consider the long time behavior of stochastic evolution equations. The

exponential, polynomial and logarithmic decay for stochastic equations are considered. Suf-

ficient conditions are given to obtain these exponents. All the results show the noise (time

diffusion) will prevent the solutions to decay in p-th moment, which coincides with the fact

that the noise is a diffusion process but it will be different in the sense of almost surely, and

the partial diffusion operator (spatial diffusion) will accelerate the decay of solutions.
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1 Introduction

The stability of solutions is an important issue in the theory of partial differential equations, which

has been studied by many authors [23]. In the stability theory, the Lyapunov exponent is to judge

the decay (increase) velocity of the solution. Thus there are a lot of works to calculate the value.

We will only give a partial and incomplete survey of some parts that we feel more relevant for

this paper. In view of probability theory, stability of SDEs is also important, which covers p-th

moment stable, stochastic stable and almost surely stable. In our paper [19], we considered the

p-th moment stable and stochastic stable, and in this paper, we consider the stochastic stable and

almost surely stable.

The exponential stability of SDEs has been studied by many authors, see [1, 10, 12, 20, 21, 22],

and for delayed dynamic system, one consults to [7, 14, 18, 25]. Recently, the exponential stability

of stochastic partial differential equations (SPDEs) is also studied by many authors [3, 4, 5, 8, 9,
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15, 17]. Liu-Mao [15] considered the following equation dX = f(t,X)dt+ g(t,X)dW (t), t ∈ [0, T ],

X(0) = x0,
(1.1)

where T > 0, f(t, ·) and g(t, ·) are families of (non-linear) operators in Hilbert spaces and W (t)

is a Hilbert space-valued Wiener process. They established the exponential stability of (1.1).

Caraballo et al. [5] studied the exponential behaviour and stabilizability of stochastic 2D-Navier-

Stokes equations. In the book [8], the long time behavior of solutions was considered in Chapter

11 and sufficient condition of mean square stable is given, see Theorem 11.14. More precisely, Da

Prato- Zabczyk studied the following equation dX = AXdt+B(X)dW (t),

X(0) = x ∈ H,
(1.2)

where H is a Hilbert space, A generates a C0 semigroup and B ∈ L(H;L0
2) (see p309 of [8] for

more details). They proved that the following statements

(i) there exists M > 0, γ > 0 such that

E|X(t, x)|2 ≤Me−γt|x|2, t ≥ 0;

(ii) for any x ∈ H we have

E
∫ ∞
0
|X(t, x)|2dt <∞,

are equivalent.

On the other hand, not all the stochastic systems are exponentially stable, such as polynomial

or logarithmic one. In [16], Liu-Chen considered the moment decay rates of solutions of SDEs,

where the polynomial decay and logarithmic decay are studied, also see [13]. In this paper, we will

give some sufficient conditions to make sure the solutions decay polynomially to a class of stochastic

evolution equations (SEEs) with nonlinear terms and partial differential operators, which will cover

the cases (1.1) and (1.2). Moreover, we will prove that the additive noise will prevent the decay of

solutions and the partial diffusion operator (spatial diffusion) will accelerate the decay of solutions.

Some examples are given to illustrate our main results.

2 Main Results

In the section, we will use the Lyapunov functional method to consider the following SPDE:{
dX(t) = [AX(t) + f(t,X(t))]dt+ g(t,X(t))dW (t), t > 0,

X(0) = x ∈ H,
(2.1)

where f : V → V ′, g : [0,∞) × V → L(K,H) are continuous functions. The spaces V,H are

Hilbert spaces satisfying

V ⊂ H ≡ H ′ ⊂ V ′,
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where injections are dense, continuous, and compact. Let βn(t) (n = 1, 2, 3, · · ·) be a sequence of re-

al valued one-dimensional standard Brownian motions mutually independent on (Ω,F , {F}t≥0,P).

Set

W (t) =
∞∑
n=1

√
λnβn(t)en, t ≥ 0,

where λn ≥ 0 (n = 1, 2, 3, · · ·) are nonnegative real numbers such that
∑∞

n=1 λn < ∞ and {en}
(n = 1, 2, 3, · · ·) is a complete orthonormal basis in the real and separable Hilbert space K. Let

Q ∈ L(K,K) be the operator defined by Qen = λnen. The above K-valued stochastic process

W (t) is called a Q-Wiener process. And set

‖g(t, x)‖2L0
2

= tr(g(t, x)Qg(t, x)∗).

Denote |u|2 = (u, u)H and ‖u‖2 = (u, u)V . Firstly, we give the notion on strong solutions for (2.1).

Definition 2.1 A stochastic process X(t), t ≥ 0 is said to be a strong solution of (2.1) if

(i) X(t) is Ft-adapted;

(ii) X(·) ∈ C([0, T ];H) ∩ L2(0, T ;V ) almost surely for all T > 0;

(iii) As an identity in V ′, the following equation

X(t) = X(0) +

∫ t

0
[AX(s) + f(s,X(s))]ds+

∫ t

0
g(s,X(s))dW (s)

holds almost surely for t ∈ [0, T ].

Assume λ1 > 0 is the first eigenvalue of A satisfying |v|2 ≤ λ−11 ‖v‖2, ∀ v ∈ V . Since the

injections V ⊂ H ≡ H ′ ⊂ V ′ are dense, continuous, and compact, under some assumptions,

the existence of strong solution of (2.1) has been obtained in [6, 8], for example [6, Theorem 6.5

Chapter 3].

Let C1,2([0,∞)×H,R+) denote the space of all R+-valued functions Ψ defined on [0,∞)×H
with the following properties:

(i) Ψ(t, x) is differentiable in t ∈ [0,∞) and twice Frechet differential in x with ∂tΨ(t, ·), ∂xΨ(t, ·)
and ∂xxΨ(t, ·) are locally bounded on H, and Ψ(t, ·), ∂tΨ(t, ·), ∂xΨ(t, ·) are continuous on H;

(ii) For all trace class operators R, tr(∂xxΨ(t, ·)R) is continuous from H into R;

(iii) ∂xΨ(t, v) ∈ V for all v ∈ V , and v → 〈∂xΨ(t, v), v∗〉 is continuous for each v∗ ∈ V ′;
(iv) ‖∂xΨ(t, v)‖ ≤ C0(t)(1 + ‖v‖) for all v ∈ V , where C0(t) > 0.

We recall the well-known Itô formula, see [5, Theorem 2.1]. If the stochastic process X(t) is a

strong solution of (2.1), then it holds that

Ψ(t,X(t)) = Ψ(0, X(0)) +

∫ t

0
LΨ(s,X(s))ds+

∫ t

0
(∂xΨ(s,X(s)), g(s,X(s)))dW (s),

where

LΨ(s,X(s)) = ∂tΨ(s,X(s)) + 〈AX(s) + f(s,X(s)), ∂xΨ(s,X(s))〉

+
1

2
tr(∂xxΨ(s,X(s))g(s,X(s))Qg(s,X(s))∗).
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Throughout this paper, we assume x∞ is a solution of limited equation (2.1). That is to say, x∞
satisfies

AX + f∗(X) = 0, (2.2)

where f(t, x)→ f∗(x) in V ′ as t→∞ for any x ∈ V .

Definition 2.2 Assume that λ(t) ↑ +∞, as t → +∞, and satisfies λ(t + s) ≤ λ(t)λ(s) for

s, t ∈ R+ largely enough. We say a strong solution X(t) of (2.1) converges to x∞ ∈ V in p-th

moment with decay λ(t) if there exist positive constants µ and C such that

E|X(t)− x∞|p ≤ C(x0)λ(t)−µ, t ≥ 0

holds for any X0 = x0 ∈ H, an F0-measurable random vector, or equivalently,

lim sup
t→+∞

log (E|X(t)− x∞|p)
log λ(t)

≤ −µ.

Apart from the decay of p-th moment, we will consider the convergence almost surely.

Definition 2.3 Assume that λ(t) ↑ +∞, as t → +∞, and satisfies λ(t + s) ≤ λ(t)λ(s) for

s, t ∈ R+ largely enough. We say a strong solution X(t) of (2.1) converges to x∞ ∈ V almost

surely with decay λ(t) if there exist positive constant µ such that

lim
t→∞

log |X(t)− x∞|
log λ(t)

≤ −µ, t ≥ 0, almost surely.

In order to get the main results, we need the following Gronwall lemma, which is a generalization

of the well-known Gronwall lemma [11, Page 9].

Lemma 2.1 Let x, ψ and φ be real continuous positive functions defined on [a, b]. If

x(t) ≤ ψ(t) +

∫ t

a
φ(s)x(s)ds, t ∈ [a, b],

then

x(t) ≤ ψ(t) +

∫ t

a
φ(s)ψ(s) exp

(∫ t

s
φ(r)dr

)
ds, t ∈ [a, b].

Assume further that ψ is differentiable and increasing function and φ ≥ 0, then

x(t) ≤ ψ(t) exp

(∫ t

a
φ(r)dr

)
ds, t ∈ [a, b].

Proof. The former part is classical and we omit the proof. Now we prove the latter part. We

first claim

ψ(t) +

∫ b

a
φ(s)ψ(s) exp

(∫ t

s
φ(r)dr

)
ds

= ψ(a) exp

(∫ t

a
φ(r)dr

)
+

∫ t

a
ψ′(s) exp

(∫ t

s
φ(r)dr

)
ds.
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Indeed, by integrating by parts, we have∫ t

a
ψ′(s) exp

(∫ t

s
φ(r)dr

)
ds

= ψ(s) exp

(∫ t

s
φ(r)dr

) ∣∣∣t
a
−
∫ t

a
ψ(s)

d

ds
exp

(∫ t

s
φ(r)dr

)
ds

= ψ(t)− ψ(a) exp

(∫ t

a
φ(r)dr

)
+

∫ t

a
ψ(s) exp

(∫ t

s
φ(r)dr

)
φ(s)ds.

Thus we prove the claim. And thus we obtain

x(t) ≤ ψ(a) exp

(∫ t

a
φ(r)dr

)
+

∫ t

a
ψ′(s) exp

(∫ t

s
φ(r)dr

)
ds, t ∈ [a, b].

It follows from the assumptions that

x(t) ≤ ψ(a) exp

(∫ t

a
φ(r)dr

)
+ exp

(∫ t

a
φ(r)dr

)∫ t

a
ψ′(s)ds

= ψ(t) exp

(∫ t

a
φ(r)dr

)
, t ∈ [a, b].

The proof is complete. �
The first result is similar to [16, Theorem 1.1], where the stability of stochastic ordinary

differential equations is obtained and here we consider the stability of stochastic partial differential

equations.

Theorem 2.1 Let Ψ ∈ C1,2([0,∞) × H,R+) and let ψ1, ψ2 be two continuous non-negative

functions on R+. Assume that for all x ∈ H and t ∈ R+, there exist positive constants p > 0,

m > 0 and real numbers ν, θ such that

(1) λm(t)|x|p ≤ Ψ(t, x), for all t ∈ R+ and x ∈ H;

(2) LΨ(t, x) ≤ ψ1(t) + ψ2(t)Ψ(t, x), for all t ∈ R+ and x ∈ H;

(3) lim sup
t→∞

log
(∫ t

0 ψ1(s)ds
)

log λ(t)
≤ ν, lim sup

t→∞

∫ t
0 ψ2(s)ds

log λ(t)
≤ θ.

Then the solution to (2.1) decays in the p-th moment to zero with decay λ(t). Moreover, we

have

lim sup
t→+∞

log (E|X(t)|p)
log λ(t)

≤ −µ,

where µ = m− θ − ν > 0.

Proof. The proof is similar to that of [16, Theorem 1.1] and we only give the outline of proof.

By Itô’s formula and the definition of L, we can derive that

Ψ(t,X(t)) = Ψ(0, X(0)) +

∫ t

0
LΨ(s,X(s))ds+

∫ t

0
(∂xΨ(s,X(s)), g(s,X(s)))dW (s). (2.3)
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Note that the last term of right hand side of (2.3) is a continuous martingale, thus taking the

expectation on both sides of (2.3) yields that

EΨ(t,X(t)) = EΨ(0, X(0)) +

∫ t

0
E[LΨ(s,X(s))]ds

≤ EΨ(0, X(0)) +

∫ t

0
[ψ1(s) + ψ2(s)EΨ(s,X(s))]ds.

The Lemma 2.1 implies that

EΨ(t,X(t)) ≤
[
EΨ(0, X(0)) +

∫ t

0
ψ1(s)ds

]
exp

(∫ t

0
ψ2(s)ds

)
.

Consequently, we have

log(EΨ(t,X(t))) ≤ log

[
EΨ(0, X(0)) +

∫ t

0
ψ1(s)ds

]
+

∫ t

0
ψ2(s)ds.

By using the assumptions (2) and (3) and the property of limit, we have for any ε > 0, t > 0 large

enough implies that

log(EΨ(t,X(t))) ≤ log
[
EΨ(0, X(0)) + λ(t)ν+ε

]
+ log[λ(t)θ+ε].

That is to say,

lim sup
t→+∞

log(EΨ(t,X(t)))

log λ(t)
≤ ν + ε+ θ.

Letting ε→ 0 and using assumption (1), we have

lim sup
t→+∞

log(E|X(t)|p)
log λ(t)

≤ lim sup
t→+∞

log(λ(t)−mEΨ(t,X(t)))

log λ(t)
≤ −[m− ν − θ].

The proof is complete. �
The above result can be regarded as the stability of trivial solution 0. Next, we consider the

stability of non-trivial solution. Assume that x∞ is a solution of limited equation (2.2).

Theorem 2.2 Assume that there exist positive constants ν, θ and m > ν + θ such that f and

g satisfy the following conditions

(x− x∞, f(t, x)− f∗(x∞)) ≤ β0(t)|x− x∞|+ β1(t)|x− x∞|2, t ≥ 0, x ∈ H;

‖g(t, x)‖2L0
2
≤ γ1(t) + γ2(t)|x− x∞|2, t ≥ 0, x ∈ H,

where βi(t) and γi(t), i = 1, 2 are positive functions satisfying

lim sup
t→∞

log
(∫ t

0 λ(s)m(β0(s) + γ1(s))ds
)

log λ(t)
≤ ν,

lim sup
t→∞

∫ t
0

(
−2λ1 + 2β1(s) + β0(s) + γ2(s) + mλ′(s)

λ(s)

)
ds

log λ(t)
≤ θ.

Then the solution of (2.1) converges to x∞ in the mean square with decay λ(t), i.e.

lim sup
t→+∞

log
(
E|X(t)− x∞|2

)
log λ(t)

≤ −µ,

where µ = m− θ − ν > 0.
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Proof. By using the Itô formula, we have

λ(t)mE|X(t)− x∞|2 = λ(0)mE|x− x∞|2 +m

∫ t

0
λ(s)m−1λ′(s)E|X(s)− x∞|2ds

+2

∫ t

0
λ(s)mE(X(s)− x∞, AX(s)−Ax∞)ds

+2

∫ t

0
λ(s)mE(X(s)− x∞, f(s,X(s))− f∗(x∞))ds

+

∫ t

0
λ(s)mE‖g(s,X(s))‖2L0

2
ds.

By using |v|2 ≤ λ−11 ‖v‖2 and the assumptions, we get

λ(t)mE|X(t)− x∞|2 ≤ λ(0)mE|x− x∞|2 +m

∫ t

0
λ(s)m−1λ′(s)E|X(s)− x∞|2ds

−2

∫ t

0
λ(s)mE‖X(s)− x∞‖2ds+ 2

∫ t

0
β1(s)λ(s)mE|X(s)− x∞|2ds

+2

∫ t

0
β0(s)λ(s)mE|X(s)− x∞|ds

+

∫ t

0
λ(s)mE[γ1(s) + γ2(s)|X(s)− x∞|2]ds

≤ λ(0)mE|x− x∞|2 +

∫ t

0
λ(s)mγ1(s)ds+ 2

∫ t

0
β0(s)λ(s)mE|X(s)− x∞|ds

+

∫ t

0
λ(s)m

(
mλ′(s)

λ(s)
− 2λ1 + 2β1(s) + γ2(s)

)
E|X(s)− x∞|2ds.

By using Hölder’s inequality, we have

2

∫ t

0
β0(s)λ(s)mE|X(s)− x∞|ds

≤ 2

∫ t

0
β0(s)λ(s)m

(
E|X(s)− x∞|2

) 1
2 ds

≤ 2

(∫ t

0
β0(s)λ(s)mds

) 1
2
(∫ t

0
β0(s)λ(s)mE|X(s)− x∞|2ds

) 1
2

≤
∫ t

0
β0(s)λ(s)mds+

∫ t

0
β0(s)λ(s)mE|X(s)− x∞|2ds.

The Lemma 2.1 and the above inequality imply that

λ(t)mE|X(t)− x∞|2 ≤
(
λ(0)mE|x− x∞|2 +

∫ t

0
λ(s)m(β0(s) + γ1(s))ds

)
× exp

(∫ t

0

[
mλ′(s)

λ(s)
− 2λ1 + 2β1(s) + β0(s) + γ2(s)

]
ds

)
.

Consequently, we have

log(λ(t)mE|X(t)− x∞|2)
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≤ log

[
λ(0)mE|x− x∞|2 +

∫ t

0
λ(s)m(β0(s) + γ1(s))ds

]
+

∫ t

0

[
mλ′(s)

λ(s)
− 2λ1 + 2β1(s) + β0(s) + γ2(s)

]
ds.

By using the assumptions and the property of limit, we have for any ε > 0, t > 0 large enough

implies that

log(λ(t)mE|X(t)− x∞|2) ≤ log
[
λ(0)mE|x− x∞|2 + λ(t)ν+ε

]
+ log[λ(t)θ+ε].

That is to say,

lim sup
t→+∞

log(λ(t)mE|X(t)− x∞|2)
log λ(t)

≤ ν + ε+ θ + ε.

Letting ε→ 0, we have

m+ lim sup
t→+∞

log(E|X(t)− x∞|2

log λ(t)
≤ lim sup

t→+∞

log(λ(t)mE|X(t)− x∞|2)
log λ(t)

≤ ν + θ.

Thus we get the desired result. �

Remark 2.1 In Theorem 2.2, the function β1(t) < 0 will play an important role. Obviously,

if we take β0 = 0 and β1(t) ≡ β = λ1 (constant), then

lim sup
t→∞

∫ t
0

(
−2λ1 + 2β1(s) + β0(s) + γ2(s) + mλ′(s)

λ(s)

)
ds

log λ(t)

= lim sup
t→∞

∫ t
0

(
γ2(s) + mλ′(s)

λ(s)

)
ds

log λ(t)

≥ lim sup
t→∞

∫ t
0

(
mλ′(s)
λ(s)

)
ds

log λ(t)
= m.

Consequently, µ = 0. If β1(t) < 0, there will help the stability for x∞, see Example 2.3. This

theorem covers the results of SDEs.

Theorem 2.3 Assume the hypotheses in Theorem 2.2 hold. Assume further that the function

γ1(t) is a positive bounded function on any finite interval and∫ ∞
0

γ2(t)dt <∞,
∫ ∞
0

λ(t)−
µ
4 dt <∞,

∫ ∞
0

−2λ1 + 2β1(t) + β0(t)

λ(t)µ
dt <∞. (2.4)

Then there exist positive constants M , ε > 0 and a subset Ω0 ⊂ Ω with P(Ω0) = 0 such that, for

each ω 6∈ Ω0 there exists a positive random number T (ω) such that

|X(t)− x∞| ≤
M

λ(t)ε
, ∀ t ≥ T (ω).
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Proof. It follows from the assumptions of Theorem 2.2 that

lim sup
t→∞

∫ t
0 λ(s)mγ1(s)ds

λ(t)ν
≤ C.

Noting that λ(t+ s) ≤ λ(t)λ(s) for s, t ∈ R+ largely enough, we have there exists T0 > 0 such that

λ(nT0) ≤ λ((n− 1)T0)λ(T0) ≤ λ((n− 2)T0)λ
2(T0) ≤ λn(T0).

It follows from λ(t)→∞ as t→∞ that λ(T0) > 1.

lim
t→∞

∫ t
0 λ(s)mγ1(s)ds

λ(t)ν
= lim

t→∞

λ(t)mγ1(t)

νλ(t)ν−1λ′(t)
,

thus without loss of generality we assume that the following inequality holds for t ≥ T0,

γ1(t) ≤ Cν
λ′(t)

λ(t)m−ν+1
.

Consequently, the property of γ1(t) implies that∫ ∞
0

γ1(t)dt =

∫ T0

0
γ1(t)dt+

∫ ∞
T0

γ1(t)dt ≤ C <∞.

Together with the assumption (2.4), it is not hard to prove that∫ T

0
E‖g(t,X(t))‖2L0

2
dt ≤ C <∞, ∀ T > 0.

Next, we prove that there exists a positive constant M > 0 such that

E
(

sup
0≤t<∞

|X(t)− x∞|2
)
≤M. (2.5)

Itô’s formula implies that

|X(t)− x∞|2 = |x− x∞|2 + 2

∫ t

0
(X(s)− x∞, AX(s)−Ax∞)ds

+2

∫ t

0
(X(s)− x∞, f(s,X(s))− f(x∞))ds

+

∫ t

0
‖g(s,X(s))‖2L0

2
ds+ 2

∫ t

0
(X(s)− x∞, g(s,X(s))dW (s)).

Following Burkholder-Davis-Gundy’s inequality, we get for any T > 0

2E

[
sup
t∈[0,T ]

∣∣∣ ∫ t

0
(X(s)− x∞, g(s,X(s))dW (s))

∣∣∣]

≤ C1E

[(∫ T

0
|X(s)− x∞|2‖g(s,X(s))‖2L0

2
ds)

)1/2
]

≤ C1E

{
sup

0≤s≤T
|X(s)− x∞|

[∫ T

0
‖g(s,X(s))‖2L0

2
ds

]1/2}

≤ 1

2
E

[
sup

0≤s≤T
|X(s)− x∞|2

]
+ C2

∫ T

0
E‖g(s,X(s))‖2L0

2
ds,
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where Ci, i = 1, 2 are positive constants. The above inequality and the assumptions yield that

E

[
sup

0≤s≤T
|X(s)− x∞|2

]
≤ E|x− x∞|2 +

∫ T

0
(β0(s) + γ1(s))ds

+

∫ T

0
(−2λ1 + 2β1(s) + β0(s) + γ2(s))E|X(s)− x∞|2ds

+
1

2
E

[
sup

0≤s≤T
|X(s)− x∞|2

]
+ C2

∫ T

0
E‖g(s,X(s))‖2L0

2
ds.

This proves (2.5). Meanwhile, we have

|X(T )− x∞|2 ≤ |X(N)− x∞|2 +

∫ T

N
(β0(s) + γ1(s))ds

+

∫ T

N
(−2λ1 + 2β1(s) + β0(s) + γ2(s)) |X(s)− x∞|2ds

+ sup
N≤t≤T

∣∣∣ ∫ t

N
(X(s)− x∞, g(s,X(s))dW (s))

∣∣∣,
for T ≥ N , where N is a natural number. Taking N ∈ N large enough, we obtain

P

{
sup

t∈[N,N+1]
|X(t)− x∞|2 ≥ ε2N

}
≤ P{|XN − x∞|2 ≥ ε2N/4}

+P
{

2

∫ N+1

N
(−2λ1 + 2β1(s) + β0(s) + γ2(s)) |X(s)− x∞|2ds ≥ ε2N/4

}
+P

{
sup

N≤t≤N+1

∣∣∣ ∫ t

N
(X(s)− x∞, g(s,X(s))dW (s))

∣∣∣ ≥ ε2N/4
}
,

where ε2N = Cλ(N)−
µ
4 . Kolomogorov’s inequality [2] and (2.4) imply that

P{|XN − x∞|2 ≥ ε2N/4} ≤ C
E|XN − x∞|2

ε2N
≤ Cλ(N)−

µ
4 ,

and

P
{

2

∫ N+1

N
(−2λ1 + 2β1(s) + β0(s) + γ2(s)) |X(s)− x∞|2ds ≥ ε2N/4

}
≤ C

ε2N

∫ N+1

N
(−2λ1 + 2β1(s) + β0(s) + γ2(s))E|X(s)− x∞|2ds

≤ Cλ(N)−
µ
4 .

Direct calculus shows that∫ N+1

N
(β0(s) + γ1(s))ds ≤ Cν

∫ N+1

N

λ′(t)

λ(t)m−ν+1
dt ≤ Cλ(N)−µ.
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Similar to the proof of
∫ T
0 E‖g(t,X(t))‖2

L0
2
dt ≤ C, we obtain

P

{
sup

N≤t≤N+1

∣∣∣ ∫ t

N
(X(s)− x∞, g(s,X(s))dW (s))

∣∣∣ ≥ ε2N/4
}
≤ Cλ(N)−

µ
4 .

Combining the above discussions, we have

P

{
sup

t∈[N,N+1]
|X(t)− x∞|2 ≥ ε2N

}
≤ Cλ(N)−

µ
4 .

Finally, a Bore-Cantelli’s lemma-type argument completes the proof. �

Remark 2.2 We can not get (2.4) under the assumptions of Theorem 2.2. For example, if

λ1 > β then we can let γ2(t) = 1
1+t , µ = 1 and λ(t) = log(1 + t). Consequently, we have∫ ∞

0

γ2(t)

λ(t)µ
dt =

∫ ∞
0

1

(1 + t) log(1 + t)
dt =∞.

Even though λ(t) = t and x∞ = 0, the assumptions of Theorem 2.3 is weaker than those of [4,

Theorem 2.3].

It follows from the assumptions of Theorems 2.2 and 2.3 that noise may be not stabilize the

solution. In the following, we want to show the noise can stabilize the solution. For simplicity

and inspired by [5], we assume that (I): x∞ = 0, f(t, 0) = g(t, 0) = 0, W (t) is a one-dimensional

Wiener process and

|f(t, x)| ≤ β(t)|x|, g(t, x) = γ(t)x, t ≥ 0, x ∈ H.

Theorem 2.4 Assume that the condition (I) holds. If∫ t
0 (−2λ1 + 2β(s)− γ(s)2)ds

log λ(t)
≤ −2µ,

∫ t
0 γ(s)2ds

(log λ(t))2
→ 0, as t→∞,

then there exist positive constants M , ε > 0 and a subset Ω0 ⊂ Ω with P(Ω0) = 0 such that, for

each ω 6∈ Ω0 there exists a positive random number T (ω) such that

|X(t)|2 ≤ M

λ(t)µ
, ∀ t ≥ T (ω).

Proof. The Itô formula and the assumptions imply that

log |X(t)|2 = log |x|2 + 2

∫ t

0

1

|X(s)|2
[(X(s), AX(s)) + (X(s), f(X(s)))]ds

−
∫ t

0

γ(s)2|X(s)|4

|X(s)|4
ds+ 2

∫ t

0

(X(s), g(s,X(s)))

|X(s)|2
dW (s)

≤ log |x|2 +

∫ t

0
(−2λ1 + 2β(s)− γ(s)2)ds+ 2

∫ t

0
γ(s)dW (s)

≤ log |x|2 + log[λ(t)−2µ] + 2

∫ t

0
γ(s)dW (s).
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Note that for any ε > 0, we have

P
{

2

log λ(t)
|
∫ t

0
γ(s)dW (s)| ≥ ε

}
≤ 1

ε2
4

(log λ(t))2
E
[∫ t

0
γ(s)dW (s)

]2
≤ 4

ε2

∫ t
0 γ(s)2ds

(log λ(t))2
→ 0.

Therefore, we can find a subset Ω0 ⊂ Ω with P(Ω0) = 0 such that, for each ω 6∈ Ω0 there exists a

positive random number T (ω) such that for all t ≥ T (ω)

2

∫ t

0
γ(s)dW (s) ≤ log[λ(t)µ].

Consequently, it holds that for all t ≥ T (ω)

log |X(t)|2 ≤ log |x|2 + log[λ−µ(t)].

This completes the proof. �

Remark 2.3 Theorem 2.4 shows that the noise has stabilizing effect on stability. For example,

let

β(t) = λ1 +
1

t+ 1
, γ(t) =

2√
t+ 1

.

Then it is to see that if there is no noise, we have

log |X(t)|2 = log |x|2 + 2

∫ t

0

1

|X(s)|2
[(X(s), AX(s)) + (X(s), f(X(s)))]ds

≤ log |x|2 +

∫ t

0
(−2λ1 + 2β(s))ds

= log |x|2 + 2 log[1 + t].

Hence we can not get stability of null solution. However, direct calculation shows that for λ(t) =

1 + t ∫ t
0 (−2λ1 + 2β(s)− γ(s)2)ds

log λ(t)
= −2,

∫ t
0 γ(s)2ds

(log λ(t))2
=

4

log(1 + t)
→ 0, as t→∞,

But it follows from Theorem 2.4 that the solution of (2.1) is exponentially stable almost surely.

Moreover, if we consider the following stochastic differential equation{
dX(t) = 1

1+tX(t)dt+ 2p√
1+t

X(t)dW (t),

X(0) = x,

where p is a constant, then we have the following results:

(i) if p = 0, then X(t) = x(1+t), which shows that the solution of ordinary differential equation

does not decay;
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(ii) if p ≥ 1, it follows from Theorem 2.4 that the solution of stochastic ordinary differential

equations will decay polynomially almost surely. In fact, simple calculations show that

X(t) =
x

(1 + t)2p2−1
exp

(
2p

∫ t

0

1√
1 + s

dW (s)

)
,

which verifies Theorem 2.4.

Comparing with Theorems 2.1 and 2.4, we see that the decay index of the solution to the

stochastic evolutional equations will be lower than that of deterministic evolutional equations in

p-th moment sese, but in the sense of almost surely, the results will be entirely different. Similar

to Theorem 2.4, Zhu et al. [24] obtained the results of stochastic delayed differential equations.

Example 2.1: Consider the following stochastic partial differential equations
du = [∆u+ (β − p

1+t)u]dt+ (1 + t)−pdW (t), x ∈ D, t > 0,

u|∂D = 0, t > 0,

u(0, x) = u0(x), x ∈ D,
(2.6)

where D ⊂ Rn and W (t) is a one-dimensional Brownian motion. It follows from the results of [6]

that (2.6) admits a unique strong solution. Let

Ψ(t, x) = (1 + t)2p|x|2,

then it is easy to show that

LΨ(t, u) ≤ 2(−λ1 + β)(1 + t)2p|u|2 + 1.

Theorem 2.1 implies that if −λ1 + β ≤ 0 and p > 1/2, then the solution of (2.6) is the second

moment stable with polynomial decay. Moreover, we have

lim sup
t→∞

1

log t
logE|u(t, ·)|2 ≤ −(2p− 1).

Example 2.2: Consider the following stochastic partial differential equations
du = [α∆u− p

1+tu]dt+ (1 + t)−pudW (t), x ∈ D t > 0,

u|∂D = 0, t > 0,

u(0, x) = u0(x), x ∈ D,
(2.7)

where D and W (t) are the same as in (2.6). It also follows from the results of [6] that (2.7) admits

a unique strong solution. If α = 0, that is to say, equation (2.7) becomes the stochastic ordinary

differential equation, then the solution of (2.7) is the second moment stable with polynomial decay.

In fact, let

Ψ(t, x) = (1 + t)2p|x|2,

then it is easy to show that

LΨ(t, u) = |u|2 =
1

(1 + t)2p
Ψ(t, u).
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If p > 1/2, then the solution of (2.7) with α = 0 is the second moment stable with polynomial

decay by using the result of [16, Theorem 1.1]. Moreover,

lim sup
t→∞

∫ t
0

1
(1+s)2p

ds

log λ(t)
= 0.

Therefore, we have

lim sup
t→∞

1

log(1 + t)
logE|u(t, ·)|2 ≤ −2p.

However, if α > 0, then the solution (2.7) is the second moment stable with exponential decay.

Indeed, let

Ψ(t, x) = eαλ1t|x|2,

then it is easy to show that

LΨ(t, u) ≤
(
−αλ1 −

2p

1 + t
+

1

(1 + t)2p

)
eαλ1t|u|2.

Then there exists a positive constant T0 such that for any t > T0, LΨ(t, u) ≤ 0. Using the

Lyapunov functional method, it is easy to obtain that for any t > T0,

E|u(t, ·)|2 ≤ Ce−αλ1t.

Example 2.3: Consider the following stochastic 2D-Navier-Stokes
du = [κ∆u− 〈u,∇〉u+ f(u) +∇p]dt+ g(t, u)dW (t),

divu = 0, t ≥ 0, x ∈ D,
u|∂D = 0, t > 0,

u(0, x) = u0(x), x ∈ D,

(2.8)

where the meanings of parameters are the same as in [5, Page 715]. As in (2.2) of [5], the stochastic

2D-Navier-Stokes equation can be written as

du = [κ∆u−B(u) + f(u)]dt+ g(t, u)dW (t),

where B(u) = B(u, u).

Condition (A): There exists β > 0 such that

‖f(u)− f(v)‖V ′ ≤ β‖u− v‖V , β > 0, u, v ∈ V,

where V = the closure of the set {u ∈ C∞0 (D,R2) : divu = 0} in H1
0 (D,R2) with the norm

‖u‖ = ((u, v))1/2 and H = the closure of the set {u ∈ C∞0 (D,R2) : divu = 0} in L2(D,R2) with

the norm |u| = (u, v)1/2.

Under the condition (A) and κ > β, they first proved the equation

κ∆u−B(u) = −f(u) (equality in V ′) (2.9)
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admits a stationary solution u∞ ∈ V . Moreover, if κ > c1‖f(0)‖V ′/(
√
λ1(ν − β)) + β, then the

stationary solution is unique, where c1 > 0 satisfies

|〈B(u, v), w〉| = |b(u, v, w)| ≤ c1|u|
1
2 ‖u‖

1
2 ‖v‖‖w‖

1
2 , ∀ u, v, w ∈ V.

Condition B. ‖g(t, u)‖2
L0
2
≤ γ(t) + (ξ + δ(t))|u− u∞|2, where ξ > 0 is a constant and γ(t), δ(t)

are nonnegative integrable functions such that there exist real numbers ϑ > 0, Mγ , Mδ ≥ 1 with

γ(t) ≤Mγe
−ϑt, δ(t) ≤Mδe

−ϑt, t ≥ 0. (2.10)

Proposition 2.1 [5, Theorem 3.2] Let u∞ ∈ V be the unique solution to (2.9) and let 2κ >

λ−11 ξ + 2β + (2c1/
√
λ1)‖u∞‖. Suppose that Conditions A and B are satisfied. Then any weak

solution u(t, x) to (2.8) converges to the stationary solution u∞ to (2.9) exponentially in the mean

square. That is, there exist real numbers a ∈ (0, ϑ), M0 = M0(u0) > 0 such that

E|u(t, ·)− u∞|2 ≤M0e
−at, t ≥ 0.

The assumption (2.10) is critical for Proposition 2.1, and now we want to release the assump-

tions. Suppose u∞ is a solution of limited equation (2.8), where f(t, u) is replaced by f∗(u) (as in

Theorem 2.2, f(t, x)→ f∗(x) in V ′ as t→∞ for any x ∈ V ). In order to generalize the exponential

decay to polynomial decay, we replace f(u) by f(t, u) in (2.8). Consequently, Condition (A) will

be changed into (A′): There exists β0(t) > 0 and β1(t) such that

〈u− u∞, f(t, u)− f∗(u∞)〉 ≤ β0(t)‖u− u∞‖+ β1(t)‖u− u∞‖2, β > 0, u ∈ V.

Theorem 2.5 Let u∞ ∈ V be the unique solution to (2.9). Suppose that Conditions (A′) and

B are satisfied, where γ(t) and δ(t) satisfy

lim sup
t→∞

log
(∫ t

0 λ(s)m(β0(s) + γ(s))ds
)

log λ(t)
≤ ν,

lim sup
t→∞

∫ t
0

(
−2κ+ (2c1/

√
λ1)‖u∞‖+ β0(s) + 2β1(s) + λ−11 ξ + δ(s) +

mλ−1
1 λ′(s)
λ(s)

)
ds

log λ(t)
≤ θ.

Then any weak solution u(t, x) to (2.8) converges to the stationary solution u∞ to (2.9) polyno-

mially in the mean square. That is, there exist real numbers a ∈ (0, θ), M0 = M0(u0) > 0 such

that

E|u(t, ·)− u∞(·)|2 ≤M0λ(t)µ, t ≥ 0,

where µ = m− ν − θ < 0.

The proof is exactly same as Theorem 2.2. We only remark that when β0(t) ≡ 0, β1(t) ≡ β, one

can take λ(t) = et, the index µ ∈ (0, ϑ − θ) satisfies that 2κ > λ−11 ξ + µ + 2β + (2c1/
√
λ1)‖u∞‖.

It follows from γ(t) ≤Mγe
−ϑt that

lim sup
t→∞

log
(∫ t

0 λ(s)mγ(s)ds
)

log λ(t)
≤ m− ϑ.
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Meanwhile, the assumption on δ(t) can be rewritten as

lim sup
t→∞

∫ t
0

(
−2κ+ (2c1/

√
λ1)‖u∞‖+ β0(s) + 2β1(s) + λ−11 ξ + δ(s) +

mλ−1
1 λ′(s)
λ(s)

)
ds

log λ(t)

≤ lim sup
t→∞

∫ t
0

(
−µλ−11 + δ(s) +

mλ−1
1 λ′(s)
λ(s)

)
ds

log λ(t)

= (µ−m)λ−11 + lim sup
t→∞

∫ t
0 δ(s)ds

t
.

Clearly, if δ(t) ≤ Mδe
−ϑt and λ(t) = et then lim supt→∞

∫ t
0 δ(s)ds

log λ(t)
= 0. Thus we have the

convergence rate is e−µt. Actually, we can release the assumption of δ(t), for example, we can take

δ(t) = 1
(1+t)2

. Similar to Theorem 2.3, one can establish that u(t, x) converges to u∞ ∈ H almost

surely with decay λ(t).

If λ(t) = 1 + t, we can take the nonlinear term as

f(t, u) = − p

1 + t
u+ f1(u),

where f1(u) satisfies the condition B. That is to say, we take

β0(t) =
p

1 + t
, β1(t) = − p

1 + t
.

Apart from that, we assume that

2κ = λ−11 ξ + µ+ 2β + (2c1/
√
λ1)‖u∞‖, γ(t) =

ε1
1 + t

, δ(t) =
ε2

1 + t
.

Direct calculus shows that

lim sup
t→∞

log
(∫ t

0 λ(s)m(β0(s) + γ(s))ds
)

log λ(t)
= (p+ ε1)(2−m);

lim sup
t→∞

∫ t
0

(
−2κ+ (2c1/

√
λ1)‖u∞‖+ β0(s) + 2β1(s) + λ−11 ξ + δ(s) +

mλ−1
1 λ′(s)
λ(s)

)
ds

log λ(t)

= −p+ ε2 +mλ−11 .

Hence we can take suitable m, p, ε1, ε2 such that Theorem 2.5 holds.
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