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Singlet and triplet spin state energies for three-dimensional Hooke atoms,
i .e . electrons in a quadratic confinement, with even number of electrons
(2, 4, 6, 8, 10) is discussed using Full-CI and CASSCF type wavefunctions
with a variety of basis sets and considering perturbative corrections up to
second order. The effect of the screening of the electron-electron inter-
action is also discussed by using a Yukawa-type potential with different
values of the Yukawa screening parameter (λee=0.2, 0.4, 0.6, 0.8, 1.0).
Our results show that the singlet state is the ground state for 2 and 8
electron Hooke atoms, whereas the triplet is the ground spin state for 4,
6 and 10 electron systems. This suggests the following Auf bau structure
1s < 1p < 1d with singlet ground spin states for systems in which the
generation of the triplet implies an inter-shell one electron promotion,
and triplet ground states in cases when there is a partial filling of elec-
trons of a given shell. It is also observed that the screening of electron-
electron interactions has a sizable quantitative effect on the relative ener-
gies of both spin states, specially in the case of 2 and 8 electron systems,
favouring the singlet state over the triplet. However, the screening of
the electron-electron interaction does not provoke a change in the na-
ture of the ground spin state of these systems. By analyzing the different
components of the energy, we have gained a deeper understanding of
the effects of the kinetic, confinement and electron-electron interaction
components of the energy.
K E YWORD S
Optimized Gaussian basis functions, Hooke atoms, Yukawa
screening potential, electron correlation
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1 | INTRODUCTION
Quantum dots have attracted considerable attention in the last years. The possibility of creating artificial atoms in
which the electrons are confined to a center through a quadratic type potential opens the possibility of designing
new nanoelectronic devices with properties at will, by precisely controlling the degree of confinement. For instance,
transitions never observed in natural atoms can be obtained in the artificial ones, which could be of paramount impor-
tance in designing new lasers. [1] Another property that has attracted considerable attention is the determination of
the triplet-singlet gap in confined systems, for their use as states of a qubit, or to implement logical gates in quantum
computing. The excitation spectrum of two-electron two-dimensional (2D) quantum dots has been investigated by
tunneling spectroscopy, [2] and the theoretical prediction of triplet-singlet transitions with increasing magnetic field
has been experimentally corroborated. Although less studied, 3D quantum dots are also a subject of interest[3] ex-
amples of this are magnetically trapped fermion vapors confined by parabolic potentials[4, 5] or quantum defects in
diamond crystals used as basic gadgets in quantum computing[6, 7].

One of the simplest and most adequate models used in theoretical studies concerning QDs are the so called
Harmonium or Hooke’s atom in which electrons are confined in a spherical harmonic potential [8]. Such models
contain parameters that may be tuned in order to represent features corresponding to real QDs [9, 10]. For instance,
work carried out in our group using a Hookean exact three-body model to examine electron correlation in a two-
electron spherical quantum dot confirmed that triplet-singlet transitions take place as the externally applied magnetic
field increases.[11] However, the limitation of using an exact model restricted our study to two-electron systems. That
is, the analytical solutions[12] for specific curvature parameter of the two-electron Hooke atoms ( ω2 = 1

4 ,
1
100 . . .) arewell known, which can lead in principle to highly accurate densities for systems in low-correlation regimes (ω2 → ∞) as

well as in high-correlation regimes (ω2 → 0) [13, 14, 15, 16]. If similar systems containing larger number of electrons
(N > 2) are to be considered, a richer variety of electronic states consisting on several ground state spin multiplicities
and non-dynamical electron correlation (multi-determinantal features) arise [17, 18, 19]. Although such systems can
be employed to understand many-body interactions, the computational cost increases with the size of the system.

As in Hooke model atoms, the incorporation of electron correlation effects has been shown to be essential for an
adequate interpretation of the experimental spectra and transport properties in Quantum Dots. [20, 21, 22, 23, 3] In
quantum dots, as opposed to real atoms, the effect of electron correlation may be varied at will through manipulation
of the dimension and shape of the nanocrystal as well as of the strength, boundaries and symmetries of the confining
fields[24]. Besides, the electron-electron interaction can be screened due to lattice, the doping or the charges induced
on the metal gates[25]. This fact makes the quantum dot many-body problem more complex than the more familiar
atomic case.

Finally, Hooke model systems have been repeatedly used in the calibration of electronic structure methods, for
they provide very variable dynamic and non-dynamic electron correlation regimes [26, 27, 28] that pose a great chal-
lenge for current computational methods. [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42] Such calibration has
been possible because of the recent availability of highly accurate analytical and benchmark data.[43, 17, 44, 45, 18,
46, 47, 48, 49]

Several well established methods for the elucidation of atomic/molecular electronic structure have been applied
to quantum dots. Salient among these are diagonalizations of large configuration interaction representations of the
Hamiltonian matrix (usually referred as “exact”diagonalizations)[50, 50, 51, 52, 53, 54, 55], Hartree-Fock (HF)[53, 56,
57, 58], coupled-cluster[59], density functional theory[60, 61, 62, 63], and quantumMonte Carlo calculations[64]. Let
us emphasize, however, that even for two-electron quantum dots,[65] it has been observed that in order to account
properly for the electron correlation effects, one must go beyond perturbative schemes based on the independent-
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particle model or local spin-density functional theory.[2] Last but not least, some of us have found that the use of
flexible basis set is crucial for a correct description of strong correlation effects in harmonium.[65, 39, 18] Work
carried out in our group using a Hookean exact three-body model to examine electron correlation in a two-electron
spherical quantum dot confirmed that triplet-singlet transitions take place as the externally applied magnetic field
increases [11].

In the present paper, we address the orbital occupation pattern to establish the Aufbau principle for three-
dimensional quantum dots with an even number of electrons (N=2, 4, 6, 8, 10). Full configuration interaction (Full-CI)
for N=2, and complete active space self consistent field (CASSCF) type wavefunctions, for N > 2, are employed to
account for electron correlation effects. On top of this, second-order perturbation corrections to these energies are
also considered. Both the singlet and the triplet states will be evaluated in order to ascertain whether the ground
state wavefunction is either spin unpolarized or spin polarized. This will provide, by the same token, the estimate of
the triplet-singlet energy gap as the number of electrons of the quantum dots increases.

First, we have employed the Dunning’s family of correlation consistent (CC) basis sets up to sextuple zeta. One
should notice that these basis sets are optimized for Coulombic systems, and, therefore, for the sake of consistency,
we have compared their accuracy with the available benchmark data. [17, 65, 19, 47] We report the full data as sup-
plementary material. In summary, although these absolute energies do not reach full accuracy, the singlet-triplet gaps
were in full agreement with the benchmark data, except for the ten-electron system for which qualitative differences
were observed depending on which CC basis set was used. In order to further improve the performance of the basis
set, we have optimized a set of even-tempered basis sets (ETBS hereafter) for the Hooke potential considering differ-
ent number of electrons. After careful inspection, the best balance between accuracy and performance was obtained
for the basis set optimized with six electrons in the singlet state, we call this basis set ETBS-6S, and it is the one mainly
used throughout the paper.

Finally, we also introduce a model to take into account the screening of electron-electron interactions through an
electron-electron Yukawa type potential (also known as Debye-Yukawa potential as reference to the Debye-Hückel
theory so employed in the study of electrolytes and plasmas), as in Ref. 66. The screening in electron-electron in-
teraction is often included by introducing an effective dielectric media [67, 68, 69]. In the present work, we analyze
the use of a Yukawa potential, which at short range is similar to the Coulomb potential, to analyze the effect of the
electron-electron screening in correlation effects. We observe that even for an extreme screening, correlation effects
are still important, according to the corresponding Coulomb holes, highlighting the importance to adequately treat
electron correlation in these systems.

2 | COMPUTATIONAL METHODS
Let us consider the following generalized Hamiltonian operator (in atomic units) for our N -electron system:

Ĥ = −
N∑
i

1

2
+2ri +

N∑
i

1

2
ω2r2i +

N∑
i

N∑
j>i

e−λee ri j

ri j
(1)

where ri is the distance vector between the i th electron and the center of the harmonic potential, which for all the
calculations of this paper is centered at the origin. This Hamiltonian represents a harmonically confined N -electron
system, with a confinement strength ω2, whose inter-electronic interaction has been screened statically by a Yukawa-
like attenuated interaction potential, having a screening length λ−1ee .

Recall that for N=2 and λee=0, the Hamiltonian operator of Eq. 1 corresponds to the two-electron Hooke atom,
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which can be separated into its intracular coordinates, namely, the electron-electron relative distance vector r=r1 − r2
and the center of mass coordinate vector R= 1

2 (r1 + r2) as[70, 12]

Ĥ = −
+2R
4

+ ω2R 2 − +2r + 1

4
ω2r 2 + 1

r
(2)

being r = |r | and R = |R |, respectively. Eq. (2) unveils that the center of mass of the electrons will behave as a
harmonic oscillator with a spring constant of 2ω2 and a ground state energy of ER = 3

√
ω2. Likewise, Eq. (2) indicates

as well, that the electrons will remain in the proximity of each other for they are retained within finite inter-electronic
distances by the potential

V (r ) = 1

4
ω2r 2 + 1

r
, (3)

which is best seen as an effective confinement potential. This model system is commonly known as Hooke atom,
Hookean or harmonium.[71]

In summary, two types of systems have been considered in this paper:
• Coulombic Hooke Atom: The Hamiltonian includes an harmonic confinement term (ω2 = 0.25) with Coulombic like

electron-electron repulsion (λee = 0.0).
• Yukawa Hooke Atom: The Hamiltonian includes an harmonic confinement term (ω2 = 1

4 ) and a Yukawa-type
screened electron repulsion (λee = 0.2, 0.4, 0.6, 0.8, and1.0).
The corresponding one-electron confinement integrals and the two-electron Yukawa-type integrals have been im-

plemented by our group in an in-house code and the corresponding integral package interfaced with the GAMESS(US)
program [72, 73] to perform the calculations described in this work. HF, Full-CI, CASSCF and multireference second-
order Möller-Plesset (MRMP2) methods were used along with various basis sets of aug-cc type, and optimized even-
tempered basis set (ETBS) for 2, 4, 6 and 8 electrons systems. For each of the systems, the HF energy of the singlet
state was calculated. The corresponding orbitals were used to perform Full-CI (in the case of 2-electron systems) and
CASSCF and MRMP2 calculations in the case of 2, 4, 6, 8 and 10 electrons) for the singlet and triplet spin states.

As said in the introduction, we have employed two types of basis sets: i) standard Dunning’s family of correla-
tion consistent (cc) basis sets up to sextuple zeta and ii) even-tempered basis sets (ETBS) optimized for the Hooke
atom. The drawback of aug-cc-pVNZ basis sets is that they are optimized for Coulombic systems. Therefore, we have
compared their accuracy with the available benchmark data [17, 65, 19, 47] for Hookean systems. We report the full
data as supplementary material, but in summary, the conclusion is that, although absolute energies with aug-cc-pVNZ
basis sets do not reach full accuracy, the singlet-triplet gaps are in full agreement with the benchmark data. The only
exception to this rule is the ten-electron system, which shows a more erratic behaviour with important qualitative
differences concernig the ground state spin multiplicity among the various aug-cc-pVNZ basis sets.

In order to improve the absolute energies, we have optimized an even-tempered basis set in the presence of a
harmonic potential (ω2 = 0.25) considering different number of electrons. We have employed uncontracted ETBSwith
angular momentum L = 0 to L = 3 and the same number N of primitives per shell. The L and N dependent exponents
of the primitives are even-tempered following the scheme:

ζkLN (ω2) = ω2

2
αL,N (ω2)

[
βL,N (ω2)

]k−1
, 1 ≤ k ≤ N , (4)
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where the parameters α and β are optimized by minimizing the CASSCF (full electron and 13 active orbitals) energies.
Similar strategies have been followed in previous publications. [65, 74, 41]

After careful inspection, the best balance between accuracy and performance was obtained for the basis set
optimized with six electrons in the singlet state, we call to this basis set the ETBS-6S. This basis set can be character-
ized as an uncontracted 4(SPDF) basis set with the following exponent values: 0.2404032, 0.3130329, 0.4076051,
0.5307491. The total number of basis sets is 80, out of which 68 are linearly independent and these are the only
one used in the calculations. The results for this basis set showed a better agreement in both absolute energies and
singlet-triplet gaps with respect to the available benchmark data than the standard aug-cc-pVNZ series, and therefore,
we focus our discussion on the results obtained with this basis set.

3 | RESULTS AND DISCUSSION
This section is organized in accordance to the number of electrons of the system. Thus, we start our discussion with
two electron systems, and then 4, 6, 8, and 10 electron systems follow. In the case of the two-electron Coulombic
Hooke atom, the exact energy is known, [70, 12] and therefore, there is a benchmark value to calibrate the basis sets
employed throughout this work. In the other cases, we will use the benchmark data available in the literature.[65, 19,
47, 17] Thus, the first section is dedicated to this calibration. Then, the discussion is centered on the triplet-singlet
gap for each of the systems, focusing our discussion on the factors that affect this gap, such as the electron repulsion
screening and the number of electrons in the system. To understand these trends, we analyze the corresponding
natural orbitals, so that we can relate the solution to a specific electronic configuration. Based on this information,
we come up with an Auf bau structure to describe the electron filling pattern in these confined systems.

3.1 | Two-electron systems
The results for the two-electron Hooke-type atom with Coulombic electron repulsion are shown in Table 1. We
emphasize that for this system the exact energy for the singlet state is known, [12, 70] namely 2.0 a.u., and, therefore,
we use this reference value to calibrate the accuracy of the various basis sets used throughout this work (Table 1).
There is a substantial difference between aug-cc-pVDZ and the rest of the basis sets. Full-CI energy for the singlet
state is 2.055213 a.u. with this basis set. The use of aug-cc-pVTZ (25 basis functions including d orbitals) leads to a
reduction of the energy error of one order of magnitude, leading to a Full-CI energy of 2.004107 a.u. To further reduce
the energy error by one order of magnitude, one has to go up to the aug-cc-pV5Z basis set (2.000476 a.u.) with 105
basis functions. At this point, it is worth noticing that our results are of comparable accuracy to the best unextrapolated
result reported by Matito et al. [65] for ω2=0.25 , namely, 2.0002965 a.u., obtained using systematic sequences of
Gaussian primitives with even-tempered exponents. Finally, the use of the aug-cc-pV6Z basis set, which contains 182
basis functions, leads only to a minor improvement in the energy, 2.000196 a.u. Moreover, this basis set shows large
linear dependencies, and in fact, the total number of molecular orbitals in the variational space is reduced to 139 upon
elimination of linear dependencies. This fact has led us not to consider this basis set any further in this current work.
Besides, two more basis sets have been tested, which will be referred as aug-cc-pV5Z* and aug-cc-pV6Z*. This basis
set are created by removing the basis functions with angular momentum greater or equal to four. The reduction in
size of the basis set is substantial, from 105 to 75 for aug-cc-pV5Z, and from 182 to 95 for aug-cc-pV6Z. Moreover,
the latter basis set upon removal of g and h basis functions does not show linear dependencies. The reduction of
basis set size has only minor effects in the energy. In the case of aug-cc-pV5Z basis set, the energy increases only
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from 2.000476 a.u. to 2.000685 a.u., whereas for aug-cc-pV6Z, from 2.000196 to 2.000426 a.u. Considering the
performance of our optimized ETBS-6S basis set, it gives a value for the singlet of 2.000396 a.u., that is, the second
lowest energy value and only improved by the considerably higher aug-cc-pV6Z basis set.

The triplet-singlet gap (∆T −S ), in eV, for two-electron systems can be found in Table 1. Irrespective of the basis
set employed in the calculation, the lowest energy orbital is of s-type, followed by a shell of p orbitals .[12] We will
call to these orbitals the 1s and 1p orbitals. Hence, the singlet state is formed by the double occupation of the 1s

orbital and the triplet state corresponds to the promotion of one of the 1s electrons to one 1p orbital plus a one-spin
flip. The triplet-singlet gap is large. At the Full-CI/aug-cc-pV6Z level of theory, the gap is 9.86 eV and 9.78 eV for Full-
CI/ETBS-6S, a very similar value to our reference value of 9.79 eV, which fully justifies the use of our ETBS-6S basis
set as a good compromise between accuracy and computational cost. On the other hand, the better performance of
the ETBS-6S basis set over the Dunning ones is more evident when more electrons are considered (see below), and
therefore, we will discuss in the manuscript the results for the ETBS-6S basis set, in comparison with some values
for the aug-cc-pV6Z* basis set. The results for the rest of the Dunning’s basis sets can be found in Table S1 of the
supplementary material.

Since the use of Full-CI is prohibitive as the number of electrons increases,we have analyzed the performance
of CASSCF and MRMP2 methods, using the ETBS-6S basis sets. In Table 2, we report the energies obtained at the
CASSCF and MRMP2 levels of theory using different active spaces. The results can also be visualized in Fig. 1, where
we have analyzed the convergence of CASSCF (dashed line) andMRMP2 (continuum line) as we consider more orbitals
(Nor b in the active window). We consider from a minimal window of 2 orbitals up to 13 orbitals, which correspond to
the 1s , 1p , 1d , 2s and 2p shells. The convergence in ∆T −S is obtained quite fast, specially for MRMP2 method, with
an excellent agreement with Full-CI results.

3.2 | Four-electron systems
The results for the four-electron systems can be found in Tables 3 and S1, and in Fig. 1. In this case, the use of
Full-CI was computationally prohibitive. On the other hand, multideterminantal wave functions are mandatory due to
substantial near-degeneracy effects. Consequently, we have decided to use multiconfigurational wave functions of
the CASSCF type. We have investigated active spaces that span from 4 to 13 orbitals, corresponding to the 1s , 1p , 1d ,
2s and 2p shells. We have included the four electrons in this active orbital space and consider all possible excitations
within the window that are compatible with the desired spin state (singlet or triplet). The starting orbitals for the
CASSCF calculations correspond to the HF orbitals of the singlet state. The biggest calculation using 4 electrons and
13 orbitals for the CAS window leads to 2366 CSFs (Configuration State Functions) for the singlet state, and 3003
CSFs for the triplet state. We have also considered second-order perturbation corrections based on these CASSCF
wavefunctions (MRMP2, hereafter).

The electronic structure of the singlet state presents double occupation of the 1s orbital and one of the 1p or-
bitals. The triplet state corresponds mainly to a configuration in which the 1s orbital is doubly occupied and two 1p
orbitals have one electron each. Due to the degeneracy of the 1p shell, the resultant singlet and triplet CASSCF wave-
functions show large nondynamical correlation or near-degeneracy effects, and, therefore, the need to use multiple
configurations in the wavefunction.

As one can see in Tables 3 and S1, the values of ∆T −S are negative for all basis sets and methods considered,
indicating that in the case of 4 electrons the confinement has led to a triplet-spin ground state. Notice from Fig. 1
that the convergence of the results with the window size is quite fast. The values of the triplet-singlet gap at the
CAS(4,13) and MRMP2(4,13) levels of theory with the aug-cc-pV6Z* basis set are -1.11 eV and -1.08 eV, respectively,
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in nice agreement with the reference value by Cioslowski et al. [19] of -1.00 eV. The use of the ETBS-6S basis sets
slightly improves these results, giving values of -1.06 and -1.04 eV at the CAS(4,13) andMRMP2(4,13) levels of theory.
However, we can see that the CAS(4,13)/ETBS-6S energies are significantly closer to the reference values than the
CAS(4,13)/aug-cc-pV6Z* ones. For instance, the energy value for the singlet and triplet states are 6.398720 and
6.359758 , respectively, in good agreement with the values of Cioslowski et al.[19] 6.385543 and 6.348830 a.u.,
respectively. The introduction of second-order perturbation corrections, albeit non-variational, further improves this
agreement, giving energies, 6.390085 and 6.352024, that are even closer to the ones by Cioslowski et al.[19] An
advantage of the MRMP2 energies (see Figure 1) is that they are less dependent on the active space of the CASSCF
wavefunction and, thus, we can use a smaller active space without sacrificing the accuracy. The singlet-triplet gap
obtained with MRMP2(4,13) is -1.04 eV, in very good agreement with the one by Cioslowski et al., [19] namely, -1.00
eV.

3.3 | Six-electron systems
The results for the six electron systems can be found in Tables 4 and S1, and in Fig. 1. As in the previous case, we use
CASSCF type wavefunctions, with different active spaces that go from a minimal 6 orbital window up to 13 orbitals
(1s , 1p , 1d , 2s , and 2p), and include all six electrons. Our largest CAS window involves 26026 CSFs for the singlet
state, and 39039 for the triplet.

The inclusion of two further electrons in the 1p-shell yields a very similar triplet-singlet gap and trends close to
the ones observed for 4-electron systems. Again, we obtain negative values for ∆T −S , indicating that the ground state
is a triplet. For instance, the value of ∆T −S is -1.03 and -1.0 eV at the CAS(6,13)/ETBS-6S andMRMP2(6,13)/ETBS-6S
levels of theory. A glance at Fig. 1 clearly demonstrates that the results are verywell convergedwith respect to thewin-
dow size, specially for the MRMP2 level of theory. The values for the aug-cc-pV6Z* basis set are very similar, namely,
-1.06 and -1.05 eV. Our results for the singlet-triplet gap agree satisfactorily with the reference calculations for the
6-electron Hookean atom, [47] which yield a value of -0.95 eV with an energy of 12.066294 a.u. for the singlet and
12.031275 a.u. for the triplet. In the case of the six-electron system, ETBS-6S absolute energies again give a signifi-
cant improvement over the aug-cc-pV6Z* ones. However, now the difference between our CASSCF/ETBS-6S and the
reference energies of Strasburger[47] increases with respect to the 4-electron case. For instance, CAS(6,13)/ETBS-6S
energies are 12.115772 and 12.077925 a.u. for singlet and triplet states, respectively, whereas the reference ener-
gies are 12.066294 and 12.031275 a.u.. However, the introduction of perturbation corrections lowers the energies
to 12.082805 and 12.046142 a.u at the MRMP2(6,13)/ETBS-6S level of theory, yielding a triplet-singlet gap only dif-
fering by 0.05 eV with respect to the -0.95 eV gap obtained from the data of Strasburger. [47] In summary, although
the quality of our absolute energies of each of the states decreases with the increasing number of electrons, the
estimation of the triplet-singlet gap remains correct.

3.4 | Eight-electron systems
Tables 5 and S1, and Fig. 1 summarize the results for 8-electron systems, using CASSCF wavefunctions with an active
space composed of 8 to 13 orbitals (1s , 1p , 1d , 2s , and 2p orbitals) and 8 electrons. In the case of our largest window,
the CASSCF(8,13) wavefunction yields 143143 CSFs for the singlet state, and 234234 CSFs for the triplet. The
corresponding second-order perturbative corrections can also be found in Table 5.

In the case of the singlet state, the 8-electron system corresponds to an electronic configuration in which the 1s
and 1p shells are fulfilled. In the case of the triplet state, based on the analysis of the occupancies of natural orbitals, an
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electronic configuration of 1s21p51d 1-type is observed with ETBS-6S and aug-cc-pV6Z* basis sets, however, lower
quality basis sets can yield an electronic configuration of 1s21p52s1-type (see Table S1). In other words, the gap
between the 2s and 1d orbitals is sufficiently small so as to be sensible to the type of basis set. However, our best
basis sets, according to the criteria of the lowest triplet energy, favours the 1s21p51d 1 configuration and, therefore, we
conclude that our orbital ordering is 1s < 1p < 1d < 2s < 2p . This behavior reminds the situation that one encounters
in transition metal atoms regarding the 3d/4s orbital ordering.

Irrespective of the type of configuration adopted, it is clear that the ground state of the 8-electron system is a
singlet state, and presents a substantial gap with the triplet state, 7.66 eV at the CAS(8,13)/ETBS-6S level of theory
and 7.37 eV at the MRMP2(8,13)/ETBS-6S level of theory. The latter results are reasonable well converged with
respect to the CAS window size (see Fig. 1). The triplet-singlet gap is significantly smaller than the one found for the
two-electron case, namely, 9.78 eV. This result suggests a decrease of the inter-shell gap as we move along this series:
1s > 1p > 1d . However, our results differ significantly from the results of Varga et al.,[17] which reported a gap of 10.6
eV. A closer inspection to the absolute energies can clarify this difference. Our singlet and triplet CAS(8,13)/ETBS-6S
energies are 19.05314 and 19.334793 a.u, respectively. When perturbation corrections are included the values are
18.997973 and 19.268892 a.u. Themost accurate eight-electronHooke atom results found in the literature up to date
correspond to the ones of Varga et al. [17] which are 19.038 and 19.430 a.u., leading to a gap of 10.6 eV, much higher
than our triplet-singlet gap. However, notice that our variational value for the triplet state is lower than the results
obtained by Varga et al.[17] for their lowest triplet state, which suggests that we have been able to obtain a more
accurate result for this state. In addition, since our results for 4- and 6-electron systems show a better agreement with
the reference data, we believe that they are of higher accuracy than the ones of Varga et al. [17] for the eight-electron
system. It is worth mentioning that some discrepancy with the three-electron case published by Varga [17] has been
reported in the literature. [18]

3.5 | Ten-electron systems
To the best of our knowledge, for the 10-electron system, there are not previous calculations in the literature. Tables
6 and S1, and Fig. 1, summarize the results for the 10-electron systems. We used CASSCF wavefunctions with an
active space composed of 10 to 13 orbitals (1s , 1p , 1d , 2s and 2p orbitals) and 10 electrons. For the CASSCF(10,13)
wavefunction, this yields 429429 CSFs for the singlet state, and 736164 CSFs for the triplet. Regarding the dominant
electronic configuration, this is of 1s21p61d2 type for both singlet and triplet state. It is worth noticing that there
is an important discrepancy among the various aug-cc type basis sets on the nature of the Aufbau principle for the
10-electron system, with the aug-cc-pV6Z* basis set favouring the filling of 1d orbitals (as for ETBS-6S), while the
rest of the basis-sets favour the filling of a 2s orbital (see Table S1). This has importance consequences in the relative
energies of the singlet and triplet states, giving a singlet ground electronic state in the case that the filling of a 2s

orbital is favoured, whereas a triplet ground state is obtained in the case that the filling of the 1d shell is prioritized.
This highlights the importance of optimizing an appropriate basis set, which is adapted to the external potential of
the system, like the ETBS-6S one. A remarkable aspect is that the Aufbau structure 1s>1p>1d remains throughout
the whole 2-,4-,6-,8- and 10-electron series with the ETBS-6S basis set, since in all cases we obtain higher fractional
occupation numbers for 1d orbitals than for the 2s one.

Using the ETBS-6S basis set, and irrespective of the method used, the triplet state is lower in energy than the
singlet state, with a gap smaller than the one found for the 4- and 6-electron cases. Hence, When passing from 8- to
10-electron, the system changes the spin state of the ground state of the system. Our best estimate is -0.55 eV at
CAS(10,13)/ETBS-6S level of theory and -0.74 eV at MRMP2(10,13)/ETBS-6S.
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The convergence of the triplet-singlet gap with respect to Nor b is less satisfactory than for the cases of a lower
number of electrons (see Fig. 1). We also noticed that the natural orbital occupation associated to the 1s orbital in
the 10-electron case is always higher than 1.98. Therefore, we decided to remove this orbital and the two associated
electrons form the CAS window, which allowed us to expand further the window size to include more virtual orbitals
at a reasonable computational cost. When the occupation of the 1s orbital is set to 2.0 (magenta curve in Fig. 1), we
obtain almost identical values of the triplet-singlet gap to the case in which the 1s orbital and its electrons participate
in the definition of the CAS window (orange curve in Fig. 1). One can see in the figure that now we get quite well
converged results finding a triplet-singlet gap of -0.64 eV at CASSCF(8,15)/ETBS-6S level of theory and -0.53 eV at
MRMP2(8,15)/ETBS-6S level of theory, further conforming the triplet nature of the ground state of the 10-electron
Hooke atom, and the smaller triplet-singlet gap with respect to the cases of 4 and 6 electrons.

3.6 | Screened Hooke Atom
Due to the fact that the results for Ne=2,4,6, and 8 electron systems were quite converged for a window of 10 orbitals,
we have considered the CASSCF(Ne , 10)/ETBS-6S and MRMP2(Ne ,10)/ETBS-6S methods to analyze the effect that
the screening of the electron-electron interaction has on the triplet-singlet gap. In the case of the 10-electron sys-
tem, we also used the CAS(10, 10)/ETBS-6S and MRMP2(10,10)/ETBS-6S methods, but we also performed CAS(8,
14)/ETBS-6S andMRMP2(8,14)/ETBS-6S calculations, which are more converged results with respect to the window
size, as demonstrated in the previous section. We have increased progressively the amount of screened electron-
electron interactions by considering values of λee of 0.2, 0.4, 0.6, 0.8, and 1.0; the results are summarized in Table 7
and Fig. 2 .

The nature of the spin of the ground state is not altered upon inclusion of screening effects (see Fig. 2A, top figure),
namely 2- and 8-electron cases show singlet ground states, whereas 4-, 6- and 10-electron cases have triplet ground
states. Nevertheless, the triplet-singlet gap is sensitive to the degree of electron-electron screening, specially in the
case of 2 and 8 electrons. This is due to the fact that, based on the Auf bau structure, these systems form closed-
shell structures for singlet spin states; hence, every two electrons share the same spatial orbital and interact strongly
through two-body interacting. In these two cases, the introduction of screening effects produces a very substantial
and gradual stabilization of the singlet state over the triple one (see Fig. 2B). Therefore, the reduction of the electronic
repulsion leads to a more favourable spin pairing in these two systems. Thus, in the case of the two-electron Hooke
atom, there is an increase in ∆T −S from 9.78 to 11.51 eVwhen passing from full Coulombic to Yukawa λ=1.0 screened
electron-electron potential at MRMP2(2,10)/ETBS-6S level of theory. This increase in ∆T −S is even higher for the 8-
electron case, from 7.28 to 10.48 eV. Notice that in these two cases the triplet is formed by promoting one electron to
the next shell with higher angular momentum, and thus, our results suggest that the introduction of screening effects
among the electrons results in an stabilization of the lower angular momentum shells, leading to larger gaps between
the shells, and therefore, more pronounced triplet-singlet gaps.

On the other hand, the 4-, 6-, and 10-electron cases are less affected by the screening of the electron-electron
interactions (Figure 2A). These three cases show triplet ground states and the introduction of screening has again a
stabilizing effect of the singlet state over the triplet one (see Fig. 2B) but to a much lesser extent than in the case of
2- and 8-electron systems. Thus, in the case of 4 electrons, ∆T −S changes from -1.04 to -0.78 eV, in the case of 6
electrons goes from -0.99 to -0.77 eV, and in the case of 10 electrons from -0.56 to -0.34 eV. Notice however, that
even though in terms of absolute numbers this is a small effect, the screening of electron-electron interactions has
been able to reduce almost to half the S/T gap in the case of 10 electron system. In general, we may conclude that
there is a clear stabilization of the singlet over the triplet state upon screening effects, but this stabilization is not as
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large as to revert the nature of the spin of the ground state.
F IGURE 1 Triplet-singlet energy gap, in eV, calculated at the CAS(Ne ,Nor b ) (dashed line) and MRMP2(Ne ,Nor b )(continuous line) levels of theory with the ETBS-6S basis set, as a function of the number of orbitals Nor b included in
the active space. All cases correspond to a CASSCF wavefunction in which all electrons are included in the active
space, except for the curves in magenta for the 10 electron system, that correspond to wavefunctions in which the
1s orbital occupation is set to 2, and therefore, the active space is composed of 8 electrons and Nor b -2 orbitals.

F IGURE 2 A) Left Figure: Triplet-singlet energy gap, in eV, calculated at the MRMP2(Ne ,10) level of theory (2-,4-, 6-, and 8-electron systems) and MRMP2(8,14) (10-electron system), as a function of the number of electrons and
for different values of λ. B) Right Figure: Triplet-singlet energy gap, in eV, calculated at CAS(Ne ,10) (dashed line) and
MRMP2(Ne ,10) (continous line) levels of theory for 2,4,6 and 8 electrons, and CAS(8,14) (dashed line) and
MRMP2(8,14) (continuous line) levels of theory for the 10-electron system, as a function of the degree of screening
(λ). All calculations were done with the ETBS-6S basis set.
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3.7 | Decomposing the energy into different contributions
To get further insights of the different contributions into the above mentioned trends, in Table 8, we can find the
decomposition of the total energy into kinetic, confinement and electron-electron repulsion terms for the 2-, 4-, 6-, 8-,
and 10-electron Hooke atoms and the corresponding screened (λee=1.0) Hooke atoms, using the CAS(Ne ,10)/ETBS-
6S energies.

First, we analyze the different contributions to the triplet-singlet gap for the unscreened Hooke atom. We find
two clear different patterns for the singlet (2- and 8-electron systems) and triplet ground states (4-, 6-, and 10-electron
cases). In all cases, the electron-electron repulsion term is always negative, favouring the triplet state over the singlet
one. However, while for 4, 6, and 10 electron systems, the ∆Vee

T −S is the leading term that governs the overall triplet-
singlet gap, for 2 and 8 elecrons, this term is of lower magnitude than the kinetic ∆K

T −S and the confinement terms
∆
Vconf
T −S . Thus, the promotion of one electron to the next shell, as it happens in the triplet state of 2 and 8 electron

systems, results in a very high increase of the kinetic and confinement energies, that can not be overcome by the lower
electron-electron repulsion of the triplet state. However, the formation of the triplet states in 4-, 6-, and 10-electron
systems corresponds to intra-shell promotions, with very small differences in the kinetic energy between singlet and
triplet states and with a confinement contribution that favours the triplet over the singlet, although its magnitude is
smaller than the energy gain obtained by decreasing the electron-electron repulsion.

We analyze now the influence of screening on the different components of the energy. We have selected a
λee=1.0 to perform this analysis. As one can see in Table 8, this value of λee implies a very effective screening of
the electron-electron interactions with a reduction between 78.1-89.6% of the electron-electron repulsion energy.
As expected, this is the main energy component affected by the introduction of the screening. Nevertheless, the
confinement and kinetic contributions are also substantially affected, with an increase in the kinetic energy and a
lowering of the confinement energy, as the number of electrons increases. Thus, the increase in kinetic energy goes
from a 5.8% in two-electron systems to 34% in 10-electron systems, whereas the reduction in confinement energy
goes from 6-8 % in singlet and triplet two-electron cases to 28% when 10 electrons are considered. These trends can
be explained in terms of a more compact electronic density upon reduction of the electron-electron repulsion, which
augments the kinetic energy and reduces the confinement energy.

The influence of screening in the different contributions to ∆T −S can also be found in Table 8. Again, we see
different trends for 2- and 8-electron cases, and for 4-, 6-, and 10-electron cases. For 2- and 8-electron Hooke
atoms, there is an important reduction in the electron-electron repulsion contribution to the triplet-singlet gap, which
favours the singlet state by roughly 1 eV. In addition, due to the fact that there is an increase in the energy gap between
shells upon screening, the confinement and kinetic energy contributions also augment and favour the singlet state.
Therefore, in the 2- and 8-electron systems, the three contributions to ∆T −S increase, and substantially favours the
singlet state over the triplet one. In the case of 4- and 6-electron systems, the reduction in the electron-electron
repulsion is very similar in both the triplet and singlets states and, therefore, its contribution to the changes in ∆T −S

is minimal. In these two cases, the kinetic ∆K
T −S term is the main contributor to the slight changes in triplet-singlet

gap upon screening. Finally, in 10 electron systems, both kinetic and electron-electron repulsion contribute equally.
Nevertheless, the differences in these terms when introducing electron-electron screening are very small compared to
the 2- and 8-electron systems, and highlights the difference between inter- and intra-shell promotion when building
the triplet state.
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3.8 | Coulomb Holes
Finally, in order to gain a deeper insight of the electron correlation effects, we have also calculated the Coulomb holes
for the Coulombic and Yukawa confined (λee = 1.0) systems. The Coulomb holes, h (u) , are defined as the difference
in the intracule density, I (u) , of a correlated wavefunction, CASSCF(N ,13) in our case, and an uncorrelated one, RHF
or ROHF for singlet and triplet states, respectively.

h (u) = I CASSCF (u) − I RHF/ROHF (u) , (5)
with u = |r12 |. The radial intracule density provides a distribution of the electron-electron distances and it is defined
as,

I (u) =

∫ ∫
n2 (r1, r2)δ (u − r12)d r1d r2, (6)

where n2 (r1, r2) is the pair density and r12 is the module of the intracular coordinate, namely, the interelectronic
distance. Thus, the intracule density gives the probability of finding any two electrons at a certain distance u . The
Coulomb hole is a measure of how electron correlation affects the probability of finding two electrons at a given dis-
tance. As this function only depends on the interelectronic distance, it provides a simple visualization of the distribu-
tion of electron-electron separations; by monitoring the changes in this distribution. We may gain further knowledge
of the behaviour of electron correlation in these systems and how this is affected by the number of electrons, spin
state and screening of electron-electron interaction.

Results are displayed in Figure 3. A common pattern is observed irrespective of the number of electrons: i ) the
Coulomb hole is more pronounced for singlet than for triplet states in both full Coulombic and screened systems and
i i ) the introduction of screening effects results in a significant reduction of the corresponding Coulomb holes. As
expected, in general, the main effect of introducing electron correlation effects is an increase in the interelectronic
distance, namely, the Coulomb holes show a depletion at short distances and a concomitant rise at larger distances.
However, an interesting feature arises for screened systems in the case of singlet states with 4, 6 and 10 electrons:
there is a depletion of the Coulomb hole at large distances. This feature is also observed to a lower extent for the
8-electron screened system with a triplet spin multiplicity. Therefore, in these cases, electrons are correlated in such
way that they come closer compared to the Coulomb potential due to the attractive interaction at large distances. This
can be explained by the tendency mentioned in the previous section of a more compact electronic cloud in screened
systems, which leads to a reduction of the confinement energy. Our results points to a relationship of the intrashell
electron-electron correlation (as it occurs for singlet 4-, 6- and 10-electron and triplet 8-electron systems), with the
promotion of a more compact electronic cloud.
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F IGURE 3 Coulomb holes calculated at the CASSCF(N ,13)/ETBS-6S level of theory for both full (solid lines) and
λee = 1.0 screened-coulombic (dasshed lines) Hooke systems with different number of electrons (N=2,4,6,8 and 10)
and for singlet(black lines) and triplet states (red lines).
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4 | CONCLUDING REMARKS
In the present paper, we have presented a thorough study of 2-,4-,6-,8- and 10-electron systems confined in a spher-
ical quantum dot in their singlet and triplet spin states, with the aim of determining the triplet-singlet gap for Hooke-
type systems. The effect of screening the electron-electron interaction has also been taken into account effectively
by the introduction of a Yukawa type potential.

Our results show an interesting pattern in the triplet-singlet gap as the number of electrons increases. Thus,
singlet state is the ground state for 2 and 8, whereas the triplet state is the ground spin state in 4 and 6 electron
systems. The situation for 10-electron system is again a triplet ground state, but with a gap smaller than the one found
for 4 and 6 electrons. Our results can be readily rationalized in terms of the following orbital ordering 1s < 1p < 1d ,
with a decrease in the successive energy gaps.

We have also observed that the screening of electron-electron interaction has a sizable effect, not only on the
absolute energies for each state, but also on the triplet-singlet gap. The triplet-singlet gap for the 2 electron and 8
electron cases is specially sensible to the screening effect, favouring the singlet state over the triplet. This can be
related to an increase of the corresponding gap between shells upon screening. However, the influence of screening
in the triplet-singlet gap for 4-, 6- and 10-electron cases was much more reduced, favouring again the singlet state
but, in no case, this screening produced a switch between spin states.
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TABLE 1 HF and Full-CI energies of the singlet and triplet spin states for the two-electron Hooke atom
(ω2 = 0.25; λee = 0.0)

Basis Size Contraction Singlet HF Singlet FCI Triplet FCI ∆T −S

(a.u.) (a.u.) (a.u.) (eV)
aug-cc-pVDZ 9 (5s2p/3s2p) 2.087904 2.055213 2.386080 9.00
aug-cc-pVTZ 25 (7s3p2d/4s3p2d) 2.038634 2.004107 2.373537 10.05
aug-cc-pVQZ 55 (8s4p3d2f/5s4p3d2f) 2.038443 2.001484 2.383204 10.39
aug-cc-pV5Z* 75 (9s5p4d3f/6s5p4d3f) 2.038408 2.000685 2.373767 10.15
aug-cc-pV6Z* 95 (11s6p5d4f/7s6p5d4f) 2.038423 2.000426 2.362738 9.86
aug-cc-pV5Z 105 (9s5p4d3f2g/6s5p4d3f2g) 2.038400 2.000476 2.373701 10.16
aug-cc-pV6Z 182 (11s6p5d4f3g2h/7s6p5d4f3g2h) 2.038404 2.000196 2.362579 9.86
ETBS-6S 80 (4s4p4d4f/4s4p4d4f) 2.038400 2.000396 2.359673 9.78

* Modified basis set removing basis functions with l ≥ 4
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TABLE 2 HF, CAS(2,Nor b ) and MRMP2(2,Nor b ) energies with the ETBS-6S basis set, in atomic units, for the
singlet and triplet spin states o the two-electron Hooke atom. The RHF energy for the singlet state is 2.038400 and
2.038423 a.u. for the ETBS-6S and aug-cc-pV6Z* basis sets, respectively.

Basis Nor b CAS(Ne , Nor b ) ∆T −S MRMP2(Ne ,Nor b ) ∆T −S

Singlet Triplet (eV) Singlet Triplet (eV)
2 2.026787 2.364478 9.19 2.006140 2.360420 9.64
3 2.016225 2.364478 9.48 2.003759 2.360428 9.70
4 2.006551 2.364478 9.74 2.001197 2.360601 9.78
5 2.003410 2.362773 9.78 2.000701 2.360358 9.79
6 2.003056 2.361106 9.74 2.000670 2.359828 9.77
7 2.002705 2.361106 9.75 2.000637 2.359819 9.77
8 2.002358 2.361106 9.76 2.000601 2.359820 9.77
9 2.002019 2.361106 9.77 2.000559 2.359821 9.78
10 2.001681 2.361106 9.78 2.000516 2.359828 9.78
11 2.001630 2.359907 9.75 2.000513 2.359694 9.77
12 2.001280 2.359859 9.76 2.000481 2.359687 9.77
13 2.001082 2.359821 9.76 2.000461 2.359688 9.77
FCI 2.000396 2.359673 9.78

aug-cc-pV6Z* 13 2.001203 2.362886 9.84 2.000483 2.362749 9.86
aug-cc-pV6Z* FCI 2.000426 2.362738 9.86
Reference [12] 2.000000 2.359657 9.79

TABLE 3 HF, CAS(4,Nor b ) and MRMP2(4,Nor b ) energies with ETBS-6S basis set, in atomic units, for the singlet
and triplet spin states of the four-electron Hooke atom. The RHF energy or the singlet state is 6.505162 and
6.517905 for the EBTS-6S and aug-cc-pV6Z* basis sets, respectively.

Basis Nor b CAS(4, Nor b ) ∆T −S MRMP2(4,Nor b ) ∆T −S

Singlet Triplet (eV) Singlet Triplet (eV)
4 6.466497 6.420487 -1.25 6.393971 6.357443 -0.99
5 6.436891 6.409056 -0.76 6.395878 6.358352 -1.02
6 6.432908 6.395502 -1.02 6.395253 6.357424 -1.03
7 6.412845 6.387924 -0.68 6.391439 6.356035 -0.96
8 6.416955 6.379714 -1.01 6.392298 6.354322 -1.03
9 6.412845 6.371627 -1.12 6.391439 6.353215 -1.04
10 6.410052 6.368950 -1.12 6.391231 6.352928 -1.04
11 6.409228 6.365185 -1.20 6.391078 6.352579 -1.05
12 6.408315 6.361114 -1.28 6.390980 6.352180 -1.06
13 6.398720 6.359758 -1.06 6.390085 6.352024 -1.04

aug-cc-pV6Z* 13 6.412708 6.371770 -1.11 6.403958 6.364288 -1.08
Reference[19] 6.385543 6.348830 -1.00
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TABLE 4 HF, CAS(6,Nor b ) and MRMP2(6,Nor b ) energies with ETBS-6S basis set, in atomic units, for the singlet
and triplet spin states of the four-electron Hooke atom. The RHF energy or the singlet state is 12.253446 and
12.287010 for the EBTS-6S and aug-cc-pV6Z* basis sets, respectively.

Basis Nor b CAS(6, Nor b ) ∆T −S MRMP2(6,Nor b ) ∆T −S

Singlet Triplet (eV) Singlet Triplet (eV)
6 12.177056 12.154962 -0.60 12.091183 12.055694 -0.97
7 12.171843 12.132887 -1.06 12.089361 12.051390 -1.03
8 12.147118 12.117039 -0.82 12.086838 12.050945 -0.98
9 12.137934 12.099985 -1.03 12.085660 12.048808 -1.00
10 12.132401 12.094292 -1.04 12.084591 12.047936 -1.00
11 12.126035 12.087898 -1.04 12.083819 12.047183 -1.00
12 12.120721 12.082893 -1.03 12.083437 12.046636 -1.00
13 12.114932 12.077925 -1.01 12.082804 12.046141 -1.00

aug-cc-pV6Z* 13 12.149632 12.110496 -1.06 12.120797 12.082391 -1.05
Reference[47] 12.066294 12.031275 -0.95

TABLE 5 HF, CAS(8,Nor b ) and MRMP2(8,Nor b ) energies with ETBS-6S basis set, in atomic units, for the singlet
and triplet spin states of the four-electron Hooke atom. The RHF energy or the singlet state is 19.190980 and
19.247016 for the EBTS-6S and aug-cc-pV6Z* basis sets, respectively.

Basis Nor b CAS(8, Nor b ) ∆T −S MRMP2(8,Nor b ) ∆T −S

Singlet Triplet (eV) Singlet Triplet (eV)
8 19.113340 19.395160 7.67 19.008248 19.272166 7.18
9 19.083985 19.371303 7.82 19.003255 19.270391 7.27
10 19.075987 19.362461 7.79 19.000736 19.268463 7.28
11 19.069697 19.353362 7.72 19.000079 19.269118 7.32
12 19.063989 19.343947 7.62 18.999332 19.269118 7.34
13 19.053174 19.334793 7.66 18.997973 19.268892 7.37

aug-cc-pV6Z* 13 19.110238 19.437774 8.91 19.065563 19.386165 8.72
Reference[17] 19.038 19.430 10.6

TABLE 6 HF, CAS(10,Nor b ) and MRMP2(10,Nor b ) energies with ETBS-6S basis set, in atomic units, for the singlet
and triplet spin states of the four-electron Hooke atom. The RHF energy or the singlet state is 27.932821 and
28.174226 for the EBTS-6S and aug-cc-pV6Z* basis sets, respectively.

Basis Nor b CAS(10, Nor b ) ∆T −S MRMP2(10,Nor b ) ∆T −S

Singlet Triplet (eV) Singlet Triplet (eV)
10 27.828015 27.807466 -0.56 27.675164 27.665330 -0.27
11 27.813009 27.790373 -0.62 27.678880 27.664692 -0.39
12 27.795515 27.773761 -0.59 27.688082 27.663346 -0.67
13 27.777241 27.757081 -0.55 27.689185 27.661990 -0.74

aug-cc-pV6Z* 13 28.020989 28.007019 -0.38 27.951539 27.937691 -0.38
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TABLE 7 HF, CAS(Ne ,10) and MRMP2(Ne ,10) energies, in atomic units, for the singlet and triplet spin states of
the s-Hooke model at different values of the λ screening parameter.

λ HF CAS(Ne , 10) ∆T −S MRMP2(Ne ,10) ∆T −S

Singlet Singlet Triplet (eV) Singlet Triplet (eV)
2-electron

0.0 2.038400 2.001681 2.361106 9.78 2.000516 2.359828 9.78
0.2 1.879433 1.845903 2.212892 9.99 1.844644 2.211584 9.98
0.4 1.777898 1.750206 2.131426 10.37 1.748859 2.130299 10.38
0.6 1.710108 1.688101 2.084166 10.78 1.686715 2.083500 10.80
0.8 1.663091 1.645841 2.055639 11.15 1.644470 2.055161 11.17
1.0 1.629427 1.615941 2.037805 11.48 1.614631 2.037480 11.51

4-electron
0.0 6.505162 6.410052 6.368950 -1.12 6.391231 6.352928 -1.04
0.2 4.447821 5.522013 5.481478 -1.10 5.502540 5.464743 -1.03
0.4 5.098802 5.027175 4.988257 -1.06 5.008695 4.972340 -0.99
0.6 4.786937 4.729994 4.692890 -1.01 4.712556 4.678623 -0.92
0.8 4.584830 4.539335 4.505120 -0.93 4.524068 4.492776 -0.85
1.0 4.447821 4.411219 4.380074 -0.85 4.398160 4.369611 -0.78

6-electron
0.0 12.253446 12.133679 12.094292 -1.07 12.084454 12.047936 -0.99
0.2 10.066994 9.960398 9.921242 -1.07 9.909188 9.873006 -0.98
0.4 8.877716 8.792459 8.754633 -1.03 8.745296 8.710196 -0.96
0.6 8.171402 8.104086 8.069290 -0.95 8.064118 8.030753 -0.91
0.8 7.723094 7.671069 7.638238 -0.89 7.636670 7.605815 -0.84
1.0 7.424057 7.382940 7.353003 -0.81 7.354441 7.326141 -0.77

8-electron
0.0 19.190980 19.075987 19.362461 7.79 19.000736 19.268463 7.28
0.2 15.182763 15.084400 15.384014 8.15 15.005631 15.289623 7.73
0.4 13.068595 12.994991 13.317898 8.79 12.922972 13.235696 8.51
0.6 11.834935 11.781507 12.128228 9.43 11.719577 12.060148 9.27
0.8 11.060156 11.021423 11.389781 10.02 10.969653 11.334431 9.93
1.0 10.547028 10.518701 10.905855 10.53 10.475994 10.861138 10.48

10-electron
0.0 27.932821 27.828015 27.807466 -0.56 27.675164 27.665330 -0.27
0.2 21.621750 21.528857 21.511339 -0.48 21.375745 21.363283 -0.34
0.4 18.408818 18.334295 18.317410 -0.46 18.203431 18.190047 -0.36
0.6 16.573893 16.515099 16.499172 -0.43 16.408780 16.395457 -0.36
0.8 15.437499 15.390866 15.376062 -0.40 15.305881 15.293178 -0.35
1.0 14.692340 14.654914 14.641306 -0.37 14.587232 14.575380 -0.32
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TABLE 8 Decomposition of the total energy (a.u.) of the singlet and triplet states into different contributions,
kinetic energy, confinement energy (that is the one corresponding to the monoelectronic harmonium confinement
operator), and electron-electron repulsion energy. Decomposition of the triplet-singlet gap ∆T −S into kinetic (∆K

T −S ),confinement (∆Vw
T −S ) and electron-electron repulsion terms ( ∆Vee

T −S ). Two cases are considered: i) Hooke atom with
standard Coulombic interactions between electrons and ii) s-Hooke in which the electron-electron interactions are
screened by the Yukawa potential with λee=1.0. ∆s−u corresponds to the differences between the screened and
unscreened calculation.

Ne Model Singlet Energy Components (a.u.) Triplet Energy Components (a.u.) Triplet-Singlet Gap (eV)
Kin. E. Vconf Vee Total E. Kin. E. Vconf Vee Total E. ∆K

T −S ∆Vw
T −S ∆Vee

T −S ∆T −S

2 Hooke 0.664231 0.888647 0.448803 2.001681 0.920322 1.093808 0.346977 2.361106 6.97 5.58 -2.77 9.78
s-Hooke 0.702495 0.815055 0.098391 1.615941 0.974102 1.027525 0.036178 2.037805 7.39 5.78 -1.69 11.48

∆s−u 0.038264 -0.073592 -0.350412 -0.385740 0.053780 -0.066283 -0.310799 -0.323301 0.42 0.20 1.08 1.70
%∆s−u 5.8 -8.3 -78.1 -19.3 5.8 -6.06 -89.6 -13.7

4 Hooke 1.575643 2.661960 2.172449 6.410052 1.575087 2.648067 2.145797 6.368950 -0.02 -0.38 -0.73 -1.12
s-Hooke 1.802488 2.247689 0.361041 4.411219 1.810012 2.234690 0.335372 4.380074 0.20 -0.35 -0.70 -0.85

∆s−u 0.226845 -0.414271 -1.811408 -1.998833 0.234925 -0.413377 -1.810425 -1.988876 0.22 0.03 0.03 0.27
%∆s−u 14.4 -15.6 -83.4 -31.2 14.9 -15.61 -84.4 -31.2

6 Hooke 2.298682 4.810967 5.024030 12.133679 2.296848 4.797225 5.000219 12.094292 -0.05 -0.37 -0.65 -1.07
s-Hooke 2.815149 3.794034 0.773756 7.382940 2.821571 3.781367 0.750065 7.353003 0.17 -0.30 -0.64 -0.81

∆s−u 0.516467 -1.016933 -4.250274 -4.750739 0.524723 -1.015858 -4.250154 -4.741289 0.22 0.03 0.01 0.26
%∆s−u 22.5 -21.1 -84.6 -39.2 22.8 -21.18 -85.0 -39.2

8 Hooke 2.889288 7.320715 8.865985 19.075987 3.129535 7.489993 8.742933 19.362461 6.54 4.61 -3.35 7.79
s-Hooke 3.755694 5.445591 1.317417 10.518701 4.034318 5.638694 1.232843 10.905855 7.58 5.25 -2.30 10.53

∆s−u 0.866406 -1.875124 -7.548568 -8.557286 0.904783 -1.851299 -7.510090 -8.456606 1.04 0.64 1.05 2.74
%∆s−u 30.0 -25.6 -85.1 -44.9 28.9 -24.72 -85.9 -43.7

10 Hooke 3.857152 10.517423 13.453440 27.828015 3.857015 10.511402 13.439049 27.807466 0.00 -0.16 -0.39 -0.56
s-Hooke 5.168257 7.609567 1.877090 14.654914 5.171068 7.603958 1.866280 14.641306 0.08 -0.15 -0.29 -0.37

∆s−u 1.311105 -2.907856 -11.576350 -13.173101 1.314053 -2.907444 -11.572769 -13.166160 0.08 0.01 0.10 0.19
%∆s−u 34.0 -27.6 -86.0 -47.3 34.1 -27.66 -86.1 -47.3


