4.8 Catechol oxidation assay
CTRL and EXP group bacteria were collected by centrifugation of 5,000-8,000 r.p.m for 2 minutes and washed twice using PBS. Then, 100 μL PBS culture were added to each well of 96-well plate, and the mCherry fluorescence level of EXP groups and CTRL groups were matched to each other. Prior to each assay, 100 mM catechol water solution was diluted to 10 mM working solution, 2.5 μL of which was then added to each well. The absorbance of oxidation product 2-HMS at 377 nm can be measured at 19-22℃. Catechol was purchased from Damas-beta (120-80-9). Thermo Scientific Varioskan LUX was used for quantitating reactions. SkanIt software was used for data management.
Reference
[1] Wang, X., Han, J. N., Zhang, X., Ma, Y. Y., et al. , Reversible thermal regulation for bifunctional dynamic control of gene expression in Escherichia coli. Nat Commun 2021, 12 , 1411.
[2] Wu, G., Yan, Q., Jones, J. A., Tang, Y. J., et al. , Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications. Trends Biotechnol 2016, 34 , 652-664.
[3] Conrado, R. J., Varner, J. D., DeLisa, M. P., Engineering the spatial organization of metabolic enzymes: mimicking nature’s synergy.Curr Opin Biotechnol 2008, 19 , 492-499.
[4] Shi, Y., Wang, D., Li, R., Huang, L., et al. , Engineering yeast subcellular compartments for increased production of the lipophilic natural products ginsenosides. Metab Eng 2021,67 , 104-111.
[5] Blumhoff, M. L., Steiger, M. G., Mattanovich, D., Sauer, M., Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger. Metab Eng 2013,19 , 26-32.
[6] Conrado, R. J., Wu, G. C., Boock, J. T., Xu, H., et al. , DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res 2012, 40 , 1879-1889.
[7] Lee, M. J., Brown, I. R., Juodeikis, R., Frank, S., Warren, M. J., Employing bacterial microcompartment technology to engineer a shell-free enzyme-aggregate for enhanced 1,2-propanediol production in Escherichia coli. Metab Eng 2016, 36 , 48-56.
[8] Lee, M. J., Palmer, D. J., Warren, M. J., Biotechnological Advances in Bacterial Microcompartment Technology. Trends Biotechnol 2019, 37 , 325-336.
[9] Chowdhury, C., Sinha, S., Chun, S., Yeates, T. O., Bobik, T. A., Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev 2014, 78 , 438-468.
[10] Kerfeld, C. A., Erbilgin, O., Bacterial microcompartments and the modular construction of microbial metabolism. Trends Microbiol 2015, 23 , 22-34.
[11] Kerfeld, C. A., Aussignargues, C., Zarzycki, J., Cai, F., Sutter, M., Bacterial microcompartments. Nat Rev Microbiol 2018,16 , 277-290.
[12] Zhao, E. M., Zhang, Y., Mehl, J., Park, H., et al. , Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature 2018, 555 , 683-687.
[13] Banani, S. F., Lee, H. O., Hyman, A. A., Rosen, M. K., Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 2017, 18 , 285-298.
[14] Schuster, B. S., Reed, E. H., Parthasarathy, R., Jahnke, C. N., et al. , Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nat Commun 2018, 9 , 2985.
[15] Love, C., Steinkuhler, J., Gonzales, D. T., Yandrapalli, N., et al. , Reversible pH-Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angew Chem Int Ed Engl 2020, 59 , 5950-5957.
[16] Zhao, E. M., Suek, N., Wilson, M. Z., Dine, E., et al. , Light-based control of metabolic flux through assembly of synthetic organelles. Nat Chem Biol 2019, 15 , 589-597.
[17] Shin, Y., Berry, J., Pannucci, N., Haataja, M. P., et al. , Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets. Cell 2017, 168 , 159-171 e114.
[18] Peeples, W., Rosen, M. K., Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat Chem Biol2021, 17 , 693-702.
[19] Küffner, A. M., Prodan, M., Zuccarini, R., Capasso Palmiero, U., et al. , Acceleration of an Enzymatic Reaction in Liquid Phase Separated Compartments Based on Intrinsically Disordered Protein Domains. ChemSystemsChem 2020, 2 .
[20] Dzuricky, M., Rogers, B. A., Shahid, A., Cremer, P. S., Chilkoti, A., De novo engineering of intracellular condensates using artificial disordered proteins. Nat Chem 2020, 12 , 814-825.
[21] Wei, S. P., Qian, Z. G., Hu, C. F., Pan, F., et al. , Formation and functionalization of membraneless compartments in Escherichia coli. Nat Chem Biol 2020, 16 , 1143-1148.
[22] Suresh, H. G., da Silveira Dos Santos, A. X., Kukulski, W., Tyedmers, J., et al. , Prolonged starvation drives reversible sequestration of lipid biosynthetic enzymes and organelle reorganization in Saccharomyces cerevisiae. Mol Biol Cell 2015, 26 , 1601-1615.
[23] Narayanaswamy, R., Levy, M., Tsechansky, M., Stovall, G. M., et al. , Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc Natl Acad Sci U S A 2009, 106 , 10147-10152.
[24] Prouteau, M., Loewith, R., Regulation of Cellular Metabolism through Phase Separation of Enzymes. Biomolecules 2018, 8 .
[25] Al-Husini, N., Tomares, D. T., Bitar, O., Childers, W. S., Schrader, J. M., alpha-Proteobacterial RNA Degradosomes Assemble Liquid-Liquid Phase-Separated RNP Bodies. Mol Cell 2018,71 , 1027-1039 e1014.
[26] Tatomer, D. C., Terzo, E., Curry, K. P., Salzler, H., et al. , Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. J Cell Biol2016, 213 , 557-570.
[27] Du, M., Chen, Z. J., DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 2018, 361 , 704-709.
[28] Vernon, R. M., Chong, P. A., Tsang, B., Kim, T. H., et al. , Pi-Pi contacts are an overlooked protein feature relevant to phase separation. Elife 2018, 7 .
[29] Martin, E. W., Holehouse, A. S., Peran, I., Farag, M., et al. , Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 2020, 367 , 694-699.
[30] Deng, Y., Zheng, Q., Liu, J., Cheng, C. S., et al. , Self-assembly of coiled-coil tetramers in the 1.40 A structure of a leucine-zipper mutant. Protein Sci 2007, 16 , 323-328.
[31] Brangwynne, C. P., Eckmann, C. R., Courson, D. S., Rybarska, A., et al. , Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 2009, 324 , 1729-1732.
[32] Laloux, G., Jacobs-Wagner, C., How do bacteria localize proteins to the cell pole? J Cell Sci 2014, 127 , 11-19.
[33] Duan, L., Hope, J., Ong, Q., Lou, H. Y., et al. , Understanding CRY2 interactions for optical control of intracellular signaling. Nat Commun 2017, 8 , 547.
[34] Ramamurthi, K. S., Losick, R., Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proc Natl Acad Sci U S A 2009, 106 , 13541-13545.
[35] Winkler, J., Seybert, A., Konig, L., Pruggnaller, S., et al. , Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J 2010, 29 , 910-923.
[36] Hofweber, M., Hutten, S., Bourgeois, B., Spreitzer, E., et al. , Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell 2018, 173 , 706-719 e713.
[37] Shin, Y., Chang, Y. C., Lee, D. S. W., Berry, J., et al. , Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome. Cell 2018, 175 , 1481-1491 e1413.
[38] Liu, H., Yu, X., Li, K., Klejnot, J., et al. , Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 2008, 322 , 1535-1539.
[39] Schavemaker, P. E., Boersma, A. J., Poolman, B., How Important Is Protein Diffusion in Prokaryotes? Front Mol Biosci 2018,5 , 93.
[40] Shamir, M., Bar-On, Y., Phillips, R., Milo, R., SnapShot: Timescales in Cell Biology. Cell 2016, 164 , 1302-1302 e1301.
[41] Jawerth, L., Fischer-Friedrich, E., Saha, S., Wang, J., et al. , Protein condensates as aging Maxwell fluids. Science2020, 370 , 1317-1323.
[42] Banani, S. F., Rice, A. M., Peeples, W. B., Lin, Y., et al. , Compositional Control of Phase-Separated Cellular Bodies.Cell 2016, 166 , 651-663.
[43] Shimizu, T. S., Delalez, N., Pichler, K., Berg, H. C., Monitoring bacterial chemotaxis by using bioluminescence resonance energy transfer: absence of feedback from the flagellar motors.Proc Natl Acad Sci U S A 2006, 103 , 2093-2097.
[44] Inouye, S., Sahara-Miura, Y., Sato, J., Iimori, R., et al. , Expression, purification and luminescence properties of coelenterazine-utilizing luciferases from Renilla, Oplophorus and Gaussia: comparison of substrate specificity for C2-modified coelenterazines. Protein Expr Purif 2013, 88 , 150-156.
[45] Junker, F., Leisinger, T., Cook, A. M., 3-Sulphocatechol 2,3-dioxygenase and other dioxygenases (EC 1.13.11.2 and EC 1.14.12.-) in the degradative pathways of 2-aminobenzenesulphonic, benzenesulphonic and 4-toluenesulphonic acids in Alcaligenes sp. strain O-1.Microbiology (Reading) 1994, 140 ( Pt 7) , 1713-1722.
[46] Aghapour, A. A., Moussavi, G., Yaghmaeian, K., Biological degradation of catechol in wastewater using the sequencing continuous-inflow reactor (SCR). J Environ Health Sci Eng 2013,11 , 3.
[47] Colon, G. E., Nguyen, T. T., Jetten, M. S., Sinskey, A. J., Stephanopoulos, G., Production of isoleucine by overexpression of ilvA in a Corynebacterium lactofermentum threonine producer. Appl Microbiol Biotechnol 1995, 43 , 482-488.
[48] Doupe, D. P., Perrimon, N., Visualizing and manipulating temporal signaling dynamics with fluorescence-based tools. Sci Signal 2014, 7 , re1.
[49] Wang, Z., Zhang, G., Zhang, H., Protocol for analyzing protein liquid–liquid phase separation. Biophysics Reports 2018,5 , 1-9.
Figure legend