REFERENCE
1 Schütz W. A history of fatigue. Eng Fract Mech . 1996;54: 263–300.
2 Belattar A, Taleb L, Hauet A, Taheri S. Dependence of the cyclic stress–strain curve on loading history and its interaction with fatigue of 304L stainless steel. Mater Sci Eng A . 2012;536: 170–180.
3 Kamaya M, Kawakubo M. Loading sequence effect on fatigue life of Type 316 stainless steel. Int J Fatigue . 2015;81: 10–20.
4 Giancane S, Nobile R, Panella FW, Dattoma V. Fatigue life prediction of notched components based on a new nonlinear continuum damage mechanics model. Procedia Eng . 2010;2: 1317–1325.
5 Anes V, Caxias J, Freitas M, Reis L. Fatigue damage assessment under random and variable amplitude multiaxial loading conditions in structural steels. Int J Fatigue . 2017;100: 591–601.
6 Calderon-Uriszar-Aldaca I, Biezma MV. A plain linear rule for fatigue analysis under natural loading considering the sequence effect.Int J Fatigue . 2017;103: 386–394.
7 Zheng X, Engler-Pinto CC, Su X, Cui H, Wen W. Modeling of fatigue damage under superimposed high-cycle and low-cycle fatigue loading for a cast aluminum alloy. Mater Sci Eng A . 2013;560: 792–801.
8 Fatemi A, Yang L. Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials.Int J Fatigue . 1998;20: 9–34.
9 Liu X, Wu Q, Su S, Wang Y. Evaluation and prediction of material fatigue characteristics under impact loads: review and prospects.Int J Struct Integr . 2022;13: 251–277.
10 Liao D, Zhu S-P, Keshtegar B, Qian G, Wang Q. Probabilistic framework for fatigue life assessment of notched components under size effects.Int J Mech Sci . 2020;181: 105685.
11 Miner M. Cumulative damage in Fatigue. J Appl Mech . 1945;3.
12 Hectors K, De Waele W. Cumulative Damage and Life Prediction Models for High-Cycle Fatigue of Metals: A Review. Metals . 2021;11: 204.
13 Corten HT, Dolan TJ. Cumulative Fatigue Damage. In: Vol 1. London, UK: Institution of Mechanical Engineering and American Society of Mechanical Engineers; 1956:235–242.
14 Freudenthal AM, Heller RA. On Stress Interaction in Fatigue and a Cumulative Damage Rule. J Aerosp Sci . 1959;26: 431–442.
15 Subramanyan S. A Cumulative Damage Rule Based on the Knee Point of the S-N Curve. J Eng Mater Technol . 1976;98: 316–321.
16 Remadi A, Bahloul A, Bouraoui C. Prediction of fatigue crack growth life under variable-amplitude loading using finite element analysis.Comptes Rendus Mécanique . 2019;347: 576–587.
17 Manson SS, Halford GR. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage. Int J Fract . 1981;17: 169–192.
18 Chaboche JL, Lesne PM. A Non-linear Continuous Fatigue Damage Model.Fatigue Fract Eng Mater Struct . 1988;11: 1–17.
19 Lv Z, Huang H-Z, Zhu S-P, Gao H, Zuo F. A modified nonlinear fatigue damage accumulation model. Int J Damage Mech . 2015;24: 168–181.
20 Shang D. A nonlinear damage cumulative model for uniaxial fatigue.Int J Fatigue . 1999;21: 187–194.
21 Golos K, Ellyin F. Generalization of cumulative damage criterion to multilevel cyclic loading. Theor Appl Fract Mech . 1987;7: 169–176.
22 Golos K, Ellyin F. A Total Strain Energy Density Theory for Cumulative Fatigue Damage. J Press Vessel Technol . 1988;110: 36–41.
23 Peng Z, Huang H-Z, Zhu S-P, Gao H, Lv Z. A fatigue driving energy approach to high-cycle fatigue life estimation under variable amplitude loading: A Fatigue Driving Energy Approach to High-cycle Fatigue Life Estimation. Fatigue Fract Eng Mater Struct . 2016;39: 180–193.
24 Jiang C, Liu X, Zhang M, Wang X, Wang Y. An improved nonlinear cumulative damage model for strength degradation considering loading sequence. Int J Damage Mech . 2021;30: 415–430.
25 Ye D, Wang Z. A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy during fatigue. Int J Fatigue . 2001;23: 679–687.
26 Chaboche J-L. Continuous damage mechanics — A tool to describe phenomena before crack initiation. Nucl Eng Des . 1981;64: 233–247.
27 Gough H. The Fatigue of Metals . London: Scott, Green- wood and Son; 1924.
28 Akita M, Nakajima M, Uematsu Y, Tokaji K, Jung J-W. Some factors exerting an influence on the coaxing effect of austenitic stainless steels. Fatigue Fract Eng Mater Struct . 2012;35: 1095–1104.
29 Zhao LH, Li JX, Yu WY, Ma J, Zheng SL. Experimental Study on the Coaxing Effect of Multi-Level Stresses with Different Sequences.Strength Mater . 2017;49: 55–60.
30 Nakajima M, Jung JW, Uematsu Y, Tokaji K. Coaxing Effect in Stainless Steels and High-Strength Steels. Key Eng Mater . 2007;345–346: 235–238.
31 Nakajima M, Akita M, Uematsu Y, Tokaji K. Effect of strain-induced martensitic transformation on fatigue behavior of type 304 stainless steel. Procedia Eng . 2010;2: 323–330.
32 Sinclair G. An Investigation of the Coaxing Effect in Fatigue of Metals. In: Vol 52. ; 1952:743–758.
33 Nakagawa T, Ikai Y. Strain ageing and the fatigue limit in carbon steel. Fatigue Fract Eng Mater Struct . 1979;2: 13–21.
34 Zhao LH, Feng JZ, Zheng SL. Effect of Cyclic Stresses Below the Endurance Limit on the Fatigue Life of 40Cr Steel. Strength Mater . 2018;50: 2–10.
35 Lu X, Zheng S. Changes in mechanical properties of vehicle components after strengthening under low-amplitude loads below the fatigue limit.Fatigue Fract Eng Mater Struct . 2009;32: 847–855.
36 Hironobu N, Ken-Ichi T. Significance of initiation, propagation and closure of microcracks in high cycle fatigue of ductile metals.Eng Fract Mech . 1981;15: 445–456.
37 Scott-Emuakpor O, Schwartz J, George T, Cross C, Holycross C, Shen MHH. In-Situ Study on Coaxing During Vibration-Based Bending Fatigue of Inconel 625 and 718. In: Volume 7A: Structures and Dynamics . San Antonio, Texas, USA: American Society of Mechanical Engineers; 2013:V07AT27A003.
38 Lu X, Zheng S. Strengthening of transmission gear under low-amplitude loads. Mater Sci Eng A . 2008;488: 55–63.
39 Lu X, Zheng S. Strengthening and damaging under low-amplitude loads below the fatigue limit. Int J Fatigue . 2009;31: 341–345.
40 Zhu S-P, Huang H-Z, Wang Z-L. Fatigue Life Estimation Considering Damaging and Strengthening of Low amplitude Loads under Different Load Sequences Using Fuzzy Sets Approach. Int J Damage Mech . 2011;20: 876–899.
41 Zhang J, Fu X, Lin J, Liu Z, Liu N, Wu B. Study on Damage Accumulation and Life Prediction with Loads below Fatigue Limit Based on a Modified Nonlinear Model. Materials . 2018;11: 2298.
42 Zheng S, Lu X. Lightweight design of vehicle components based on strengthening effects of low-amplitude loads below fatigue limit.Fatigue Fract Eng Mater Struct . 2012;35: 269–277.
43 Mahtabi MJ, Stone TW, Shamsaei N. Load sequence effects and variable amplitude fatigue of superelastic NiTi. Int J Mech Sci . 2018;148: 307–315.
44 Li Z, Shi D, Li S, Yang X. Residual fatigue life prediction based on a novel damage accumulation model considering loading history.Fatigue Fract Eng Mater Struct . 2020;43: 1005–1021.
45 Ishihara S, McEvily AJ. A coaxing effect in the small fatigue crack growth regime. Scr Mater . 1999;40: 617–622.
46 Dattoma V, Giancane S, Nobile R, Panella F. Fatigue life prediction under variable loading based on a new non-linear continuum damage mechanics model. Int J Fatigue . 2006;28: 89–95.
47 Jin O, Lee H, Mall S. Investigation Into Cumulative Damage Rules to Predict Fretting Fatigue Life of Ti-6Al-4V Under Two-Level Block Loading Condition1. J Eng Mater Technol . 2003;125: 315–323.
48 Pavlou DG. A phenomenological fatigue damage accumulation rule based on hardness increasing, for the 2024-T42 aluminum. Eng Struct . 2002;24: 1363–1368.
49 Manson S, Freche J, Ensign C. Application of a double linear damage rule to cumulative fatigue. In: Fatigue Crack Propagation . Philadelphia,PA: ASTM International; 1967:384–412.
50 Zhu S, Hao Y, Oliveira Correia JAF, Lesiuk G, Jesus AMP. Nonlinear fatigue damage accumulation and life prediction of metals: A comparative study. Fatigue Fract Eng Mater Struct . 2019;42: 1271–1282.
51 Tian J, Liu Z, He R. Nonlinear fatigue-cumulative damage model for welded aluminum alloy joint of EMU. J China Railw Soc . 2012;34: 40–43.
52 Fang Y, Hu M, Luo Y. New continuous fatigue damage model based on whole damage filed measurement. J Mech Strength . 2006;28: 582–586.
53 Aid A, Amrouche A, Bouiadjra BB, Benguediab M, Mesmacque G. Fatigue life prediction under variable loading based on a new damage model.Mater Des . 2011;32: 183–191.
54 Zheng S, Lu X. Microscopic Mechanism of Strengthening Under Low-Amplitude Loads Below the Fatigue Limit. J Mater Eng Perform . 2012;21: 1526–1533.
55 Zhang X, Wu Y, Xie L, Zhang Y, Zhang K. The effects of pre-cyclic stress on fracture properties and fatigue crack propagation life of 7N01 aluminum alloy. Eng Fract Mech . 2018;191: 1–12.
56 Lados D, Apelian D. Fatigue crack growth characteristics in cast Al–Si–Mg alloysPart I. Effect of processing conditions and microstructure. Mater Sci Eng A . 2004;385: 200–211.
57 Wu Z, Lu W. Study on Fatigue Damage Below the Fatigue Limit and the Coaxing Effects. Acta Meta . 1996;3: 5.
58 Zheng S, Lu X, Ma X. Microscopic Mechanism of Automobile Structure Strengthening under Low Amplitude Load. Mater Mech Eng . 2006;30: 29–32.
59 Wang J, Yao Y. An Entropy Based Low-Cycle Fatigue Life Prediction Model for Solder Materials. Entropy . 2017;19: 503.
60 Shi Y, Yang X, Yang D, Shi D, Miao G, Wang Z. Evaluation of the influence of surface crack-like defects on fatigue life for a P/M nickel-based superalloy FGH96. Int J Fatigue . 2020;137: 105639.
61 Miao G, Yang X, Shi D. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature. Mater Sci Eng A . 2016;668: 66–72.
62 Stinville JC, Martin E, Karadge M, et al. Fatigue deformation in a polycrystalline nickel base superalloy at intermediate and high temperature: Competing failure modes. Acta Mater . 2018;152: 16–33.
63 Introduction. In: Fatigue Design of Steel and Composite Structures . Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2018:13–15.
64 Si-Jian L, Wei L, Da-Qing T, Jun-Bi L. A new fatigue damage accumulation model considering loading history and loading sequence based on damage equivalence. Int J Damage Mech . 2018;27: 707–728.
65 Sarkar A, Nagesha A, Parameswaran P, Sandhya R, Laha K, Okazaki M. Investigation of Cumulative Fatigue Damage Through Sequential Low Cycle Fatigue and High Cycle Fatigue Cycling at High Temperature for a Type 316LN Stainless Steel: Life-Prediction Techniques and Associated Mechanisms. Metall Mater Trans A . 2017;48: 953–964.
66 Kwofie S, Rahbar N. A fatigue driving stress approach to damage and life prediction under variable amplitude loading. Int J Damage Mech . 2013;22: 393–404.
67 Peng Z, Huang H-Z, Zhou J, Li Y-F. A New Cumulative Fatigue Damage Rule Based on Dynamic Residual S-N Curve and Material Memory Concept.Metals . 2018;8: 456.
68 Zhu S-P, Liao D, Liu Q, Correia JAFO, De Jesus AMP. Nonlinear fatigue damage accumulation: Isodamage curve-based model and life prediction aspects. Int J Fatigue . 2019;128: 105185.