Supporting Information
The Supporting Information is available free of charge at
https://www.elsevier.com
Author Contributions
#Y.Z., and Z.H. contributed equally to this work.Notes The authors declare no competing financial interest.
ACKNOWLEDGMENT
This research was supported by the National Natural Science Foundation
of China (Grant Nos. 51703163), the Natural Science Foundation of
Tianjin (18JCZDJC34600 and 18JCYBJC86700) and the Program for Prominent
Young College Teachers of Tianjin Educational Committee.
REFERENCES
1. Li, J.; Pu, K. Development of organic semiconducting materials for
deep-tissue optical imaging, phototherapy and photoactivation. Chemical
Society Reviews 2019, 48, 38-71.
2. Li, Y.; Lin, T.-y.; Luo, Y.; Liu, Q.; Xiao, W.; Guo, W.; Lac, D.;
Zhang, H.; Feng, C.; Wachsmann-Hogiu, S.; Walton, J. H.; Cherry, S. R.;
Rowland, D. J.; Kukis, D.; Pan, C.; Lam, K. S. A smart and versatile
theranostic nanomedicine platform based on nanoporphyrin. Nature
Communications 2014, 5, 4712.
3. Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G.; Qu, C.; Diao,
S.; Deng, Z.; Hu, X.; Zhang, B.; Zhang, X.; Yaghi, O. K.; Alamparambil,
Z. R.; Hong, X.; Cheng, Z.; Dai, H. A small-molecule dye for NIR-II
imaging. Nature Materials 2015, 15, 235.
4. Zhang, Y.; Jeon, M.; Rich, L. J.; Hong, H.; Geng, J.; Zhang, Y.; Shi,
S.; Barnhart, T. E.; Alexandridis, P.; Huizinga, J. D.; Seshadri, M.;
Cai, W.; Kim, C.; Lovell, J. F. Non-invasive multimodal functional
imaging of the intestine with frozen micellar naphthalocyanines. Nature
Nanotechnology 2014, 9, 631.
5. Abuteen, A.; Zanganeh, S.; Akhigbe, J.; Samankumara, L. P.; Aguirre,
A.; Biswal, N.; Braune, M.; Vollertsen, A.; Röder, B.; Brückner, C.;
Zhu, Q. The evaluation of NIR-absorbing porphyrin derivatives as
contrast agents in photoacoustic imaging. Physical Chemistry Chemical
Physics 2013, 15, 18502-18509.
6. Song, X.; Chen, Q.; Liu, Z. Recent advances in the development of
organic photothermal nano-agents. Nano Research 2015, 8, 340-354.
7. Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim,
J. S. Organic molecule-based photothermal agents: an expanding
photothermal therapy universe. Chemical Society Reviews 2018, 47,
2280-2297.
8. Wang, H.; Chang, J.; Shi, M.; Pan, W.; Li, N.; Tang, B. A
Dual-Targeted Organic Photothermal Agent for Enhanced Photothermal
Therapy. Angewandte Chemie International Edition 2019, 58, 1057-1061.
9. Asadian-Birjand, M.; Bergueiro, J.; Wedepohl, S.; Calderón, M. Near
Infrared Dye Conjugated Nanogels for Combined Photodynamic and
Photothermal Therapies. Macromolecular Bioscience 2016, 16, 1432-1441.
10. Luo, S.; Tan, X.; Fang, S.; Wang, Y.; Liu, T.; Wang, X.; Yuan, Y.;
Sun, H.; Qi, Q.; Shi, C. Mitochondria-Targeted Small-Molecule
Fluorophores for Dual Modal Cancer Phototherapy. Advanced Functional
Materials 2016, 26, 2826-2835.
11. Yang, W.; Noh, J.; Park, H.; Gwon, S.; Singh, B.; Song, C.; Lee, D.
Near infrared dye-conjugated oxidative stress amplifying polymer
micelles for dual imaging and synergistic anticancer phototherapy.
Biomaterials 2018, 154, 48-59.
12. Cai, Y.; Liang, P.; Tang, Q.; Yang, X.; Si, W.; Huang, W.; Zhang,
Q.; Dong, X. Diketopyrrolopyrrole–Triphenylamine Organic Nanoparticles
as Multifunctional Reagents for Photoacoustic Imaging-Guided
Photodynamic/Photothermal Synergistic Tumor Therapy. ACS Nano 2017, 11,
1054-1063.
13. Wang, Q.; Dai, Y.; Xu, J.; Cai, J.; Niu, X.; Zhang, L.; Chen, R.;
Shen, Q.; Huang, W.; Fan, Q. All-in-One Phototheranostics: Single Laser
Triggers NIR-II Fluorescence/Photoacoustic Imaging Guided
Photothermal/Photodynamic/Chemo Combination Therapy. Advanced Functional
Materials 0, 1901480.
14. Spence, G. T.; Hartland, G. V.; Smith, B. D. Activated photothermal
heating using croconaine dyes. Chemical Science 2013, 4, 4240-4244.
15. Spence, G. T.; Lo, S. S.; Ke, C.; Destecroix, H.; Davis, A. P.;
Hartland, G. V.; Smith, B. D. Near-Infrared Croconaine Rotaxanes and
Doped Nanoparticles for Enhanced Aqueous Photothermal Heating. Chemistry
– A European Journal 2014, 20, 12628-12635.
16. Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein,
J. L.; Chan, W. C. W.; Cao, W.; Wang, L. V.; Zheng, G. Porphysome
nanovesicles generated by porphyrin bilayers for use as multimodal
biophotonic contrast agents. Nature Materials 2011, 10, 324.
17. Peng, J.; Zhao, L.; Zhu, X.; Sun, Y.; Feng, W.; Gao, Y.; Wang, L.;
Li, F. Hollow silica nanoparticles loaded with hydrophobic
phthalocyanine for near-infrared photodynamic and photothermal
combination therapy. Biomaterials 2013, 34, 7905-7912.
18. Zhang, J.; Yang, C.; Zhang, R.; Chen, R.; Zhang, Z.; Zhang, W.;
Peng, S.-H.; Chen, X.; Liu, G.; Hsu, C.-S.; Lee, C.-S. Biocompatible
D–A Semiconducting Polymer Nanoparticle with Light-Harvesting Unit for
Highly Effective Photoacoustic Imaging Guided Photothermal Therapy.
Advanced Functional Materials 2017, 27, 1605094.
19. Zou, Q.; Abbas, M.; Zhao, L.; Li, S.; Shen, G.; Yan, X. Biological
Photothermal Nanodots Based on Self-Assembly of Peptide–Porphyrin
Conjugates for Antitumor Therapy. Journal of the American Chemical
Society 2017, 139, 1921-1927.
20. Chen, P.; Ma, Y.; Zheng, Z.; Wu, C.; Wang, Y.; Liang, G. Facile
syntheses of conjugated polymers for photothermal tumour therapy. Nature
Communications 2019, 10, 1192.
21. Guo, B.; Sheng, Z.; Hu, D.; Li, A.; Xu, S.; Manghnani, P. N.; Liu,
C.; Guo, L.; Zheng, H.; Liu, B. Molecular Engineering of Conjugated
Polymers for Biocompatible Organic Nanoparticles with Highly Efficient
Photoacoustic and Photothermal Performance in Cancer Theranostics. ACS
Nano 2017, 11, 10124-10134.
22. Yang, T.; Liu, L.; Deng, Y.; Guo, Z.; Zhang, G.; Ge, Z.; Ke, H.;
Chen, H. Ultrastable Near-Infrared Conjugated-Polymer Nanoparticles for
Dually Photoactive Tumor Inhibition. Advanced Materials 2017, 29,
1700487.
23. Prostota, Y.; Kachkovsky, O. D.; Reis, L. V.; Santos, P. F. New
unsymmetrical squaraine dyes derived from imidazo[1,5-a]pyridine.
Dyes and Pigments 2013, 96, 554-562.
24. Gao, F.-P.; Lin, Y.-X.; Li, L.-L.; Liu, Y.; Mayerhöffer, U.; Spenst,
P.; Su, J.-G.; Li, J.-Y.; Würthner, F.; Wang, H. Supramolecular adducts
of squaraine and protein for noninvasive tumor imaging and photothermal
therapy in vivo. Biomaterials 2014, 35, 1004-1014.
25. Guo, Z.; Zou, Y.; He, H.; Rao, J.; Ji, S.; Cui, X.; Ke, H.; Deng,
Y.; Yang, H.; Chen, C.; Zhao, Y.; Chen, H. Bifunctional Platinated
Nanoparticles for Photoinduced Tumor Ablation. Advanced Materials 2016,
28, 10155-10164.
26. Du, Y.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q.
Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source
Precursor. Journal of the American Chemical Society 2010, 132,
1470-1471.
27. Zhou, J.; Yu, M.; Sun, Y.; Zhang, X.; Zhu, X.; Wu, Z.; Wu, D.; Li,
F. Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for
multimodality PET/MR/UCL imaging. Biomaterials 2011, 32, 1148-1156.
28. Atilgan, S.; Ekmekci, Z.; Dogan, A. L.; Guc, D.; Akkaya, E. U. Water
soluble distyryl-boradiazaindacenes as efficient photosensitizers for
photodynamic therapy. Chemical Communications 2006, 4398-4400.
29. Tian, J.; Zhou, J.; Shen, Z.; Ding, L.; Yu, J.-S.; Ju, H. A
pH-activatable and aniline-substituted photosensitizer for near-infrared
cancer theranostics. Chemical Science 2015, 6, 5969-5977.
30. Drogat, N.; Gady, C.; Granet, R.; Sol, V. Design and synthesis of
water-soluble polyaminated chlorins and bacteriochlorins – With
near-infrared absorption. Dyes and Pigments 2013, 98, 609-614.
31. Li, X.; Liu, L.; Li, S.; Wan, Y.; Chen, J.-X.; Tian, S.; Huang, Z.;
Xiao, Y.-F.; Cui, X.; Xiang, C.; Tan, Q.; Zhang, X.-H.; Guo, W.; Liang,
X.-J.; Lee, C.-S. Biodegradable π-Conjugated Oligomer Nanoparticles with
High Photothermal Conversion Efficiency for Cancer Theranostics. ACS
Nano 2019, 13, 12901-12911.
32. He, Z.; Zhao, L.; Zhang, Q.; Chang, M.; Li, C.; Zhang, H.; Lu, Y.;
Chen, Y. An Acceptor–Donor–Acceptor Structured Small Molecule for
Effective NIR Triggered Dual Phototherapy of Cancer. Advanced Functional
Materials 2020, 30, 1910301.
33. Cai, Y.; Wei, Z.; Song, C.; Tang, C.; Huang, X.; Hu, Q.; Dong, X.;
Han, W. Novel acceptor–donor–acceptor structured small molecule-based
nanoparticles for highly efficient photothermal therapy. Chemical
Communications 2019, 55, 8967-8970.
34. Tian, B.; Wang, C.; Zhang, S.; Feng, L.; Liu, Z. Photothermally
Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide. ACS Nano
2011, 5, 7000-7009.
35. Yan, H.; Wu, H.; Li, K.; Wang, Y.; Tao, X.; Yang, H.; Li, A.; Cheng,
R. Influence of the Surface Structure of Graphene Oxide on the
Adsorption of Aromatic Organic Compounds from Water. ACS Applied
Materials & Interfaces 2015, 7, 6690-6697.
36. Liang, X.; Shang, W.; Chi, C.; Zeng, C.; Wang, K.; Fang, C.; Chen,
Q.; Liu, H.; Fan, Y.; Tian, J. Dye-conjugated single-walled carbon
nanotubes induce photothermal therapy under the guidance of
near-infrared imaging. Cancer Letters 2016, 383, 243-249.
37. Qi, J.; Fang, Y.; Kwok, R. T. K.; Zhang, X.; Hu, X.; Lam, J. W. Y.;
Ding, D.; Tang, B. Z. Highly Stable Organic Small Molecular
Nanoparticles as an Advanced and Biocompatible Phototheranostic Agent of
Tumor in Living Mice. ACS Nano 2017, 11, 7177-7188.
38. Zhang, S.; Guo, W.; Wei, J.; Li, C.; Liang, X.-J.; Yin, M.
Terrylenediimide-Based Intrinsic Theranostic Nanomedicines with High
Photothermal Conversion Efficiency for Photoacoustic Imaging-Guided
Cancer Therapy. ACS Nano 2017, 11, 3797-3805.
39. Jang, B.; Park, J.-Y.; Tung, C.-H.; Kim, I.-H.; Choi, Y. Gold
Nanorod−Photosensitizer Complex for Near-Infrared Fluorescence Imaging
and Photodynamic/Photothermal Therapy In Vivo. ACS Nano 2011, 5,
1086-1094.
40. Gao, H.-H.; Sun, Y.; Wan, X.; Ke, X.; Feng, H.; Kan, B.; Wang, Y.;
Zhang, Y.; Li, C.; Chen, Y. A New Nonfullerene Acceptor with Near
Infrared Absorption for High Performance Ternary-Blend Organic Solar
Cells with Efficiency over 13%. Advanced Science 2018, 5, 1800307.
41. Zhao, L.; Kim, T.-H.; Huh, K. M.; Kim, H.-W.; Kim, S. Y.
Self-assembled photosensitizer-conjugated nanoparticles for targeted
photodynamic therapy. Journal of Biomaterials Applications 2013, 28,
434-447.
42. Byrne, J. D.; Betancourt, T.; Brannon-Peppas, L. Active targeting
schemes for nanoparticle systems in cancer therapeutics. Advanced Drug
Delivery Reviews 2008, 60, 1615-1626.
43. Lyu, Y.; Fang, Y.; Miao, Q.; Zhen, X.; Ding, D.; Pu, K.
Intraparticle Molecular Orbital Engineering of Semiconducting Polymer
Nanoparticles as Amplified Theranostics for in Vivo Photoacoustic
Imaging and Photothermal Therapy. ACS Nano 2016, 10, 4472-4481.
44. Hahn, G. M.; Braun, J.; Har-Kedar, I. Thermochemotherapy: synergism
between hyperthermia (42-43 degrees) and adriamycin (of bleomycin) in
mammalian cell inactivation. Proceedings of the National Academy of
Sciences 1975, 72, 937-940.
45. Liu, Y.; Ai, K.; Liu, J.; Deng, M.; He, Y.; Lu, L. Dopamine-Melanin
Colloidal Nanospheres: An Efficient Near-Infrared Photothermal
Therapeutic Agent for In Vivo Cancer Therapy. Advanced Materials 2013,
25, 1353-1359.
46. Deng, Y.; Huang, L.; Yang, H.; Ke, H.; He, H.; Guo, Z.; Yang, T.;
Zhu, A.; Wu, H.; Chen, H. Cyanine-Anchored Silica Nanochannels for
Light-Driven Synergistic Thermo-Chemotherapy. Small 2017, 13, 1602747.
47. Sun, Z.; Xie, H.; Tang, S.; Yu, X.-F.; Guo, Z.; Shao, J.; Zhang, H.;
Huang, H.; Wang, H.; Chu, P. K. Ultrasmall Black Phosphorus Quantum
Dots: Synthesis and Use as Photothermal Agents. Angewandte Chemie
International Edition 2015, 54, 11526-11530.
Figure Legends