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1 Introduction
In this paper, we devoted to study the nonlinear tempered fractional differential

equation involving p−Laplacian operator as follows:

R
0 D

α,λ

t

(
ϕp
(
R
0 D

α,λ

t u(t)
))

= F (t, u(t)), 0 ≤ t ≤ 1;

u(0) = R
0 D

γ,λ

t u(0) = 0;

R
0 D

β1,λ

t u(1) =
∫ η

0
a(s)R0 D

β2,λ

t u(s)dA(s);

ϕp
(
R
0 D

α,λ

t u
)
(0) = R

0 D
γ,λ

t

(
ϕp(

R
0 D

α,λ

t u)
)
(0) = 0;

R
0 D

β1,λ

t

(
ϕp(

R
0 D

α,λ

t u)
)
(1) =

∫ η
0
a(s)R0 D

β2,λ

t

[
ϕp
(
R
0 D

α,λ

t u(s)
)]
dA(s);

(1.1)

where 2 < α ≤ 3, 0 < β2 < β1 < α − 1, 1 < α − γ < 2, F (t, u(t)) =

f
(
t, u(t), u(t)

)
+ g
(
t, u(t)

)
, a ∈ C(0, 1) and ϕp is p−Laplacian operator. R0 D

α,λ

t u,
R
0 D

γ,λ

t u and R
0 D

βi,λ

t u(i = 1, 2) are tempered fractional derivatives defined by

R
0 D

α,λ
t u(t) = e−λtR0 D

α
t (eλtu(t)), λ ≥ 0.

Here, R0 D
α
t is the standard Riemann-Liouville fractional derivative defined by

R
0 D

α
t u(t) =

dn

dtn
(0I

n−α
t u(t)),

where 0I
β
t is β-order fractional integral operator defined by:

0I
β
t ψ =

1

Γ(β)

∫ t

0

(t− s)β−1ψ(s)ds.
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A is a function of bounded variation,
∫ 1

0
a(s)R0 D

β2

t u(s)dA(s) denote Riemann-

Stieltjes integral with respect to A. By using the sum-type mixed monotone fixed

point theorem based on cone Ph, we investigate the existence-uniqueness and mono-

tone iteration of positive solutions for p−Laplacian differential system (1.1).

In the past decades, fractional calculus and all kinds of fractional differential e-

quations have been proved to be power tools in the modeling of various phenomena

in a great deal of fields of science and engineering, such as chemical physics, fluid

mechanics, heat conduction, control theory, economics, etc.; see[1-4] for example. In

fact, a standard Riemann-Liouville (or Caputo) fractional derivative is a convolu-

tion with a power law, so does fractional integration, the difference between the two

fractional derivatives only lies in the order of derivation and integration. Moreover,

based on the definition of classical fractional derivative, the tempered fractional

derivative multiplies the power law kernel by exponential factor, and the various

differential equation models based on tempered fractional derivative open up a new

possibility for robust mathematical modeling of anomalous phenomena and complex

multi-scal problems, readers can refer to [5-9]. In [9], we studied two kinds of tem-

pered fractional differential systems involving Riemann-Stieltjes integral boundary

values condtions as follows:
R
0 D

α,λ

t u(t) + f(t, u(t), u(t)) + g(t, u(t)) = 0, t ∈ (0, 1),

u(0) = R
0 D

γ1,λ

t u(0) = R
0 D

γ2,λ

t u(0) = · · · = R
0 D

γn−2,λ

t u(0) = 0,

R
0 D

β1,λ

t u(1) =
∫ η

0
b(s)R0 D

β2,λ

t u(s)dA(s) +
∫ 1

0
a(s)R0 D

β3,λ

t u(s)dA(s)

(1.2)

and 
R
0 D

α,λ

t u(t) + ψ(t, u(t)) = c, t ∈ (0, 1),

u(0) = R
0 D

γ1,λ

t u(0) = R
0 D

γ2,λ

t u(0) = · · · = R
0 D

γn−2,λ

t u(0) = 0,

R
0 D

β1,λ

t u(1) =
∫ η

0
b(s)R0 D

β2,λ

t u(s)dA(s) +
∫ 1

0
a(s)R0 D

β3,λ

t u(s)dA(s),

(1.3)

where R
0 D

α,λ

t u, R0 D
γk,λ

t u(k = 1, 2, · · ·, n − 2) and R
0 D

βi,λ

t u(i = 1, 2, 3) are the tem-

pered fractional derivatives. By using a class of sum-type mixed monotone opera-

tors fixed point theorems and increasing ϕ − (h, σ)−concave operators fixed point

theorems, respectively, we constructed the sufficient conditions to guarantee the

existence-uniqueness of positive solutions for Riemann-Stieltjes integral boundary

value problems (1.2) and (1.3), respectively.

It is well known that p-Laplacian operator is used in analyzing various complex

problems in physics, mechanics and the related fields of mathematical modeling,

see[10-14]. In [10], for studying the turbulent flow in a kind of porous media, Leiben-

son introduced the p-Laplacian differential equation as follow:

(
ϕp
(
u′(t)

))′
= f

(
t, u(t), u′(t)

)
, t ∈ (0, 1), (1.4)

where ϕp(s) = |s|p−2s, p > 1. Motivated by the Leibenson’s work in [10], Ren,

Li and Zhang [11] studied the existence of maximum and minimum solutions for
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nonlocal p-Laplacian fractional differential systems as follows:



−Dβ1

t

(
ϕp1
(
−Dα1

t x1

))
(t) = f1

(
x1(t), x2(t)

)
,

−Dβ2

t

(
ϕp2
(
−Dα2

t x2

))
(t) = f2

(
x1(t), x2(t)

)
,

x1(0) = 0, Dα1
t x1(0) = Dα1

t x1(1) = 0, x1(1) =
∫ 1

0
x1(t)dA1(t),

x2(0) = 0, Dα2
t x2(0) = Dα2

t x2(1) = 0, x2(1) =
∫ 1

0
x2(t)dA2(t),

(1.5)

where ϕpi denotes p-Laplacian operator, Dαi
t , D

βi
t are all the standard Riemann-

Liouville derivatives, which satisfies 1 < αi, βi < 2,
∫ 1

0
xi(t)dAi(t) denotes the

Riemann-Stieltjes integral, Ai is a function of bounded variation. By employing

the cone theory and monotone iterative technique, some new existence results on

maximal and minimal solutions were established. Furthermore, the estimation of

the bounds of maximum and minimum solutions was derived.

In [13], we investigated the existence results of multiple positive solutions for p-

Laplacian fractional differential equations two points boundary value problems as

follows:

R
0 D

α

t

(
ϕp
(
R
0 D

α

t u(t)
))

= f
(
t, u(t),R0 D

α

t u(t)
)
, 0 ≤ t ≤ 1;

u(i)(0) = 0, [ϕp(
R
0 D

α

t u)](i)(0) = 0, i = 0, 1, 2, ..., n− 2;

[R0 D
β

t u(t)]t=1 = 0, 0 < β ≤ α− 1;[
R
0 D

β

t

(
ϕp
(
R
0 D

α

t u(t)
))]

t=1
= 0;

(1.6)

where n−1 < α ≤ n, R0 D
α

t is standard Riemann-Liouville fractional derivative, ϕp is

p−Laplacian operator. By employing functional-type cone expansion-compression

fixed point theorem and Leggett-Williams fixed point theorem, we obtained some

existence conclusions of multiple positive solutions for p-Laplacian differential sys-

tems(1.7).

Inspired by the above references, in this paper, we investigate the p-Laplacian

fractional differential equation with integral boundary value conditions (1.1). So far,

this kind of Riemann-Stieltjes integral boundary value problem involving p-Lalacian

operator has seldom been researched. Comparing with the previous references, this

article has the following characteristics, firstly, the tempered fractional derivative
R
0 D

α,λ

t is a more general definition than the standard Riemann-Liouvill fractional

derivative R
0 D

α

t , for instance, let λ = 0, it is clear to see the operator R
0 D

α,λ

t is

equivalent to R
0 D

α

t . Secondly, the Riemann-Stieltjes integral boundary conditions

are more general cases, which covers the common integral boundary conditions as

special cases. Finally, comparing with p-Laplacin differential systems (1.6) and (1.7),

the integral operator in this paper need not be completely continuous or compact.

Furthermore, we can not only obtain sufficient conditions for the existence of the

unique positive solution, but also construct a Cauchy sequences to approximate the

unique positive solution.

The organization of the article is as follow. In Section 2, we list some concepts,

symbols, definitions and lemmas in the abstract Banach spaces, which need to be

used in the subsequent proof process. In Section 3, by employing the sum-type
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mixed monotone operators fixed point theorem based on cone Ph, we show that the

existence-uniqueness and monotone iteration of positive solutions for p−Laplacian

differential equation two points boundary value problems (1.1). In Section 4, we

present an example to demonstrate our main results.

2 Preliminaries
Definition 2.1 ([17]) A : P → P is said to be sub-homogeneous if it satisfies

A(tx) ≥ tAx, ∀t ∈ (0, 1), x ∈ P.

Definition 2.2 ([18]) An operator A : P ×P → P is said to be a mixed monotone

operator if A(x, y) is increasing in x and decreasing in y, i.e., ui, vi(i = 1, 2) ∈ P ,

u1 < u2, v1 > v2 imply A(u1, v1) ≤ A(u2, v2). Element x ∈ P is called a fixed point

of A if A(x, x) = x.

Definition 2.3 ([10]) Let p > 1, the p−Laplacian operator is given by

ϕp(x) = |x|p−2x, and ϕ−1
p = ϕq,

1
p + 1

q = 1.

Lemma 2.1 ([9]) Let h(t) ∈ C[0, 1]
⋂
L1[0, 1], α > 0, then

0I
α
t
R
0 D

α
t h(t) = h(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,

where ci ∈ R, i = 1, 2, 3, ..., n(n = [α] + 1).

Lemma 2.2 ([13])

(1) If u ∈ L1(0, 1), α > β > 0, then

0I
α
t 0I

β
t u(t) = 0I

α+β
t u(t), R0 D

β

t 0I
α
t u(t) =0 I

α−β
t u(t), R0 D

β

t 0I
β
t u(t) = u(t);

(2) If ρ > 0, µ > 0, then

R
0 D

ρ

t t
µ−1 =

Γ(µ)

Γ(µ− ρ)
tµ−ρ−1.

Lemma 2.3 Given g ∈ C(0, 1), then, the unique solution of
R
0 D

α,λ

t u(t) + g(t) = 0, 2 < α ≤ 3, t ∈ (0, 1),

u(0) = R
0 D

γ,λ

t u(0) = 0,

R
0 D

β1,λ

t u(1) =
∫ η

0
a(s)R0 D

β2,λ

t u(s)dA(s),

(2.1)

is

u(t) =

∫ 1

0

G(t, s)g(s)ds, t ∈ [0, 1], (2.2)

where

G(t, s) = G1(t, s) +
tα−1e−λt

∆Γ(α− β2)

∫ η

0

a(t)G2(t, s)dA(t), (2.3)
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in which

∆ =
e−λ

Γ(α− β1)
− δ

Γ(α− β2)
, δ =

∫ η

0

e−λssα−β2−1a(s)dA(s),

G1(t, s) =
eλ(s−t)

Γ(α)

 (1− s)α−β1−1tα−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

(1− s)α−β1−1tα−1, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
eλ(s−t)

Γ(α)

 (1− s)α−β1−1tα−β2−1 − (t− s)α−β2−1, 0 ≤ s ≤ t ≤ 1,

(1− s)α−β1−1tα−β2−1, 0 ≤ t ≤ s ≤ 1,

Proof For the system (2.1), by means of Lemma 2.1, we have

eλtu(t) = −
∫ t

0

(t− s)α−1

Γ(α)
eλsg(s)ds+ c1t

α−1 + c2t
α−2 + c3t

α−3. (2.4)

From u(0) = 0, we get c3 = 0, hence,

u(t) = −e−λt0Iαt eλtg(t) + c1e
−λttα−1 + c2e

−λttα−2. (2.5)

By using the tempered fractional-order derivative operator R
0 D

γ,λ

t on both sides of

(2.5), we obtain

R
0 D

γ,λ

t u(t) = R
0 D

γ,λ

t

(
− e−λt0Iαt

(
eλtg(t)

)
+ c1e

−λttα−1 + c2e
−λttα−2

)
= e−λtR0 D

γ

t

(
− 0I

α
t

(
eλtg(t)

)
+ c1t

α−1 + c2t
α−2

)
= −e−λt0Iα−γt

(
eλtg(t)

)
+ c1e

−λtR
0 D

γ

t t
α−1 + c2e

−λtR
0 D

γ

t t
α−2

= −
∫ t

0

(t− s)α−γ−1eλ(s−t)

Γ(α− γ)
g(s)ds+ c1

Γ(α)e−λt

Γ(α− γ)
tα−1−γ

+ c2
Γ(α− 1)e−λt

Γ(α− 1− γ1)
tα−2−γ .

From R
0 D

γ,λ

t u(0) = 0 and 1 < α− γ ≤ 2, we know that c2 = 0. Hence, the equation

(2.5) can be reduced as following

u(t) = −e−λt
∫ t

0

(t− s)α−1eλs

Γ(α)
g(s)ds+ c1e

−λttα−1. (2.6)

Once again, applying tempered fractional derivative operator R
0 D

βi,λ

t on the both

sides of (2.6), we have

R
0 D

βi,λ

t u(t) = −R0 D
βi,λ

t

(
e−λt0I

α
t

(
eλtg(t)

))
+ c1

R
0 D

βi,λ

t (e−λttα−1)

= −e−λtR0 D
βi
t

(
0
Iαt
(
eλtg(t)

))
+ c1e

−λtR
0 D

βi
t (tα−1)

= −e−λt0Iα−βit

(
eλtg(t)

)
+ c1

Γ(α)

Γ(α− βi)
e−λttα−1−βi

= −
∫ t

0

(t− s)α−βi−1eλ(s−t)

Γ(α− βi)
g(s)ds+ c1

Γ(α)

Γ(α− βi)
e−λttα−1−βi .

(2.7)
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From (2.7), it is clear to see that

 R
0 D

β1,λ

t u(1) = −1
Γ(α−β1)

∫ 1

0
(1− s)α−β1−1eλ(s−1)g(s)ds+ c1

Γ(α)
Γ(α−β1)e

−λ,

R
0 D

β2,λ

t u(t) = −1
Γ(α−β2)

∫ t
0
(t− s)α−β2−1eλ(s−t)g(s)ds+ c1

Γ(α)e−λt

Γ(α−β2) t
α−1−β2 .

(2.8)

Substituting (2.8) into R
0 D

β1,λ

t u(1) =
∫ η

0
a(s)R0 D

β2,λ

t u(s)dA(s), we obtain

c1 = [Γ(α)∆]−1
{∫ 1

0

(1− s)α−β1−1eλ(s−1)

Γ(α− β1)
g(s)ds

−
∫ η

0

a(t)dA(t)

∫ t

0

(t− s)α−β2−1eλ(s−t)

Γ(α− β2)
g(s)ds

}
.

(2.9)

Finally, combining (2.9) with (2.6), we obtain

u(t) = −e−λt
∫ t

0

(t− s)α−1eλs

Γ(α)
g(s)ds+

e−λttα−1

Γ(α)∆

{∫ 1

0

(1− s)α−β1−1e−λ

Γ(α− β1)
eλsg(s)ds

−
∫ η

0

a(t)dA(t)

∫ t

0

(t− s)α−β2−1eλ(s−t)

Γ(α− β2)
g(s)ds

}
= −

∫ t

0

(t− s)α−1eλ(s−t)

Γ(α)
g(s)ds+

e−λttα−1

Γ(α)

∫ 1

0

(1− s)α−β1−1eλsg(s)ds

+
e−λttα−1δ

Γ(α)Γ(α− β2)∆

∫ 1

0

(1− s)α−β1−1eλsg(s)ds

− e−λttα−1

Γ(α)Γ(α− β2)∆

∫ η

0

a(t)dA(t)

∫ t

0

(t− s)α−β2−1eλ(s−t)g(s)ds

=

∫ 1

0

G1(t, s)g(s)ds+
tα−1e−λt

Γ(α− β2)∆

∫ 1

0

g(s)ds

∫ η

0

G2(t, s)a(t)dA(t)

=

∫ 1

0

G(t, s)g(s)ds,

where G(t, s) is Green function of systems (2.1). The proof is complete.

Lemma 2.4 Suppose that

(H) Γ(α− β1)eλδ < Γ(α− β2),

then, for all (t, s) ∈ [0, 1]× [0, 1], G(t, s), G1(t, s) and G2(t, s) satisfies

(A1) G(t, s), G1(t, s) and G2(t, s) are all continuous in (t, s) ∈ [0, 1]× [0, 1];

(A2) Gi(t, s) ≥ 0 (i = 1, 2), and G(t, s) ≥ 0;

(A3) eλs[(1−s)α−β1−1−(1−s)α−1]
Γ(α) e−λttα−1 ≤ G1(t, s) ≤ eλs(1−s)α−β1−1

Γ(α) e−λttα−1;

(A4) eλs[(1−s)α−β1−1−(1−s)α−β2−1]
Γ(α) e−λttα−β2−1 ≤ G2(t, s) ≤ eλs(1−s)α−β1−1

Γ(α) e−λttα−β2−1;

(A5) m(s)e−λttα−1 ≤ G(t, s) ≤M(s)e−λttα−1, where

M(s) = [
1

Γ(α)
+

δ

∆Γ(α)Γ(α− β2)
]eλs(1− s)α−β1−1
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and

m(s) =
eλs[(1− s)α−β1−1 − (1− s)α−1]

Γ(α)
+
δeλs[(1− s)α−β1−1 − (1− s)α−β2−1]

∆Γ(α)Γ(α− β2)
.

Proof Firstly, for (t, s) ∈ [0, 1]×[0, 1], it is obvious that G(t, s) and Gi(t, s)(i = 1, 2)

are continuous.

Secondly, for Gi(t, s)(i = 1, 2) in (A3) and (A4), it is evident that the right sides

of the inequalities hold, so we only need to prove the left sides of the inequalities.

If 0 ≤ s ≤ t ≤ 1, it’s easy to see 0 ≤ t − s ≤ t − ts = (1 − s)t, thus (t − s)α−1 ≤
(1− s)α−1tα−1. So we get

G1(t, s) ≥ eλ(s−t)

Γ(α)
[tα−1(1− s)α−β1−1 − (1− s)α−1tα−1]

=
eλs[(1− s)α−β1−1 − (1− s)α−1]

Γ(α)
e−λttα−1.

If 0 ≤ t ≤ s ≤ 1, evidently, G1(t, s) ≥ eλs[(1−s)α−β1−1−(1−s)α−1]
Γ(α) e−λttα−1 holds.

Furthermore, from (1 − s)α−β1−1 > (1 − s)α−1, we get G1(t, s) ≥ 0 for ∀(t, s) ∈
[0, 1] × [0, 1]. In the same way, we can know that G2(t, s) ≥ 0 and the inequality

(A4) holds.

Finally, from (A3) and (A4), we can know that m(s)e−λttα−1 ≤ G(t, s) ≤
M(s)e−λttα−1. In, addition, from the condition (H), we can deduce that ∆ > 0.

Combining (1 − s)α−β1−1 > (1 − s)α−1 with ∆ > 0 together, we obtain m(s) ≥ 0,

that is, G(s, t) ≥ 0 for ∀(t, s) ∈ [0, 1]× [0, 1]. So, the proof is over.

Lemma 2.5 ([18]) Let ξ ∈ (0, 1), A : P × P → P is a mixed monotone operator

and satisfies

A(tx, t−1y) ≥ tξA(x, y), ∀t ∈ (0, 1), x, y ∈ P. (2.10)

B : P → P is increasing sub-homogeneous operator. Assume that

(I) there exists h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph;

(II) there exists a constant δ0 > 0 such that A(x, y) ≥ δ0Bx, ∀x, y ∈ P ;

Then,

(1) A : Ph × Ph → Ph, B : Ph → Ph;

(2) there exists u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) +Bu0 ≤ A(v0, u0) +B(v0) ≤ v0;

(3) the operator equation A(x, x) +Bx = x has a unique solution x∗ in Ph;

(4) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn−1, yn−1) +Bxn−1, yn = A(yn−1, xn−1) +Byn−1, n = 1, 2, · · ·,

we have xn → x∗ and yn → x∗ as n→∞.
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3 Main results
Lemma 3.1 If g̃ ∈ C[0, 1] is given, then the p−Laplacian tempered fractional

differential system

R
0 D

α,λ

t

(
ϕp
(
R
0 D

α,λ

t u(t)
))

= g̃(t), 2 < α ≤ 3, 0 ≤ t ≤ 1;

u(0) = R
0 D

γ,λ

t u(0) = 0,

ϕp
(
R
0 D

α,λ

t u(0)
)

= R
0 D

γ,λ

t

(
ϕp
(
R
0 D

α,λ

t u(0)
))

= 0,

R
0 D

β1,λ

t u(1) =
∫ η

0
a(s)R0 D

β2,λ

t u(s)dA(s)

R
0 D

β1,λ

t

(
ϕp
(
R
0 D

α,λ

t u(1)
))

=
∫ η

0
a(s)R0 D

β2,λ

t

[
ϕp
(
R
0 D

α,λ

t u(s)
)]
dA(s)

(3.1)

has a unique integral formal solution

u(t) =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)g̃(τ)dτ

)
ds, (3.2)

where G(t, s) is given in (2.3).

Proof Firstly, applying the fractional integral operator 0I
α
t on both sides of the

first equation of p−Laplacian differential equation integral boundary value problems

(3.1), we have

eλtϕp
(
R
0 D

α,λ

t u(t)
)

= 0I
α
t

(
eλtg̃(t)

)
+ d1t

α−1 + d2t
α−2 + d3t

α−3

=

∫ t

0

(t− s)α−1

Γ(α)
eλsg̃(s)ds+ d1t

α−1 + d2t
α−2 + d3t

α−3.

From ϕp(
R
0 D

α,λ

t u)(0) = 0, we can deduce that d3 = 0. So,

ϕp
(
R
0 D

α,λ

t u(t)
)

= e−λt0I
α
t

(
eλtg̃(t)

)
+ d1e

−λttα−1 + d2e
−λttα−2. (3.3)

Furthermore, applying the tempered fractional derivative operator R
0 D

γ,λ

t on both

sides of (3.3), we have

R
0 D

γ,λ

t

(
ϕp
(
R
0 D

α,λ

t u(t)
))

= R
0 D

γ,λ

t

(
e−λt0I

α
t

(
eλtg̃(t)

)
+ d1e

−λttα−1 + d2e
−λttα−2

)
= e−λt0I

α−γ
t

(
eλtg̃(t)

)
+ d1e

−λtR
0 D

γ

t t
α−1 + d2e

−λtR
0 D

γ

t t
α−2

=

∫ t

0

(t− s)α−γ−1eλ(s−t)

Γ(α− γ)
g̃(s)ds+ d1

Γ(α)e−λt

Γ(α− γ)
tα−1−γ

+ d2
Γ(α− 1)e−λt

Γ(α− 1− γ1)
tα−2−γ .

From R
0 D

γ,λ

t

(
ϕp(

R
0 D

α,λ

t u)
)
(0) = 0 and 1 < α − γ < 2, we deduce that d2 = 0, that

is,

ϕp
(
R
0 D

α,λ

t u(t)
)

= e−λt0I
α
t

(
eλtg̃(t)

)
+ d1e

−λttα−1. (3.4)
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Secondly, applying tempered fractional derivative operator R0 D
βi,λ

t (i = 1, 2) on both

sides of (3.4), we get

R
0 D

βi,λ

t

(
ϕp
(
R
0 D

α,λ

t u(t)
))

= R
0 D

βi,λ

t

(
e−λt0I

α
t

(
eλtg̃(t)

))
+ d1

R
0 D

βi,λ

t (e−λttα−1)

= e−λt0I
α−βi
t

(
eλtg̃(t)

)
+ d1e

−λtR
0 D

βi
t (tα−1)

=

∫ t

0

(t− s)α−βi−1eλ(s−t)

Γ(α− βi)
g̃(s)ds+ d1

Γ(α)

Γ(α− βi)
e−λttα−1−βi .

(3.5)

From (3.5), it is clear to see that


R
0 D

β1,λ

t

(
ϕp
(
R
0 D

α,λ

t u(1)
))

=
∫ 1

0
(1−s)α−β1−1eλ(s−1)

Γ(α−β1) g̃(s)ds+ d1
Γ(α)

Γ(α−β1)e
−λ,

R
0 D

β2,λ

t

(
ϕp
(
R
0 D

α,λ

t u(t)
))

=
∫ t

0
(t−s)α−β2−1eλ(s−t)

Γ(α−β2) g̃(s)ds+ d1
Γ(α)

Γ(α−β2)e
−λttα−1−β2 .

(3.6)

Combining (3.6) with the Riemann-Stieltjes integral boundary value condition
R
0 D

β1,λ

t

(
ϕp(

R
0 D

α,λ

t u)
)
(1) =

∫ η
0
a(s)R0 D

β2,λ

t

[
ϕp
(
R
0 D

α,λ

t u(s)
)]
dA(s), we obtain

d1 =
−1

Γ(α)∆

{∫ 1

0

(1− s)α−β1−1eλ(s−1)

Γ(α− β1)
g̃(s)ds

−
∫ η

0

a(t)dA(t)

∫ t

0

(t− s)α−β2−1eλ(s−t)

Γ(α− β2)
g̃(s)ds

}
.

(3.7)

Substituting (3.7) into (3.4), we obtain

ϕp
(
R
0 D

α,λ

t u(t)
)

= −
∫ 1

0

G(t, s)g̃(s)ds. (3.8)

Furthermore, applying the p−Laplacian operator ϕq on both sides of (3.8), we get

R
0 D

α,λ

t u(t) + ϕq

(∫ 1

0

G(t, s)g̃(s)ds

)
= 0. (3.9)

Finally, letting g(t) :, ϕq
( ∫ 1

0
G(t, s)g̃(s)ds

)
. It’s easy to see that the p−Laplacin

fractional differential equation (3.1) is equivalent to the fraction differential system

as following:
R
0 D

α,λ

t u(t) + g(t) = 0, t ∈ (0, 1), 2 < α ≤ 3;

u(0) = R
0 D

γ,λ

t u(0) = 0,

R
0 D

β1,λ

t u(1) =
∫ η

0
a(s)R0 D

β2,λ

t u(s)dA(s).

(3.10)

By means of Lemma 2.3, we know that the p−Lalacian tempered fractional differ-

ential systems (3.10) has a unique integral solution

u(t) =

∫ 1

0

G(t, s)g(s)ds

=

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)g̃(τ)dτ

)
ds.
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This constitutes the complete proof.

From Lemma 3.1, we can deduce that the systems (1.1) is equivalent to integral

formulation given by

u(t) =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)
[
f
(
τ, u(τ), u(τ)

)
+ g
(
τ, u(τ)

)]
dτ
)
ds. (3.11)

For the convenience of further research, we define the operator T by

T (u, v)(t) =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)
[
f
(
τ, u(τ), v(τ)

)
+g
(
τ, u(τ)

)]
dτ
)
ds. (3.12)

It’s obvious that u∗ is a solution of (1.1) if and only if T (u∗, u∗) = u∗.

Theorem 3.1 Suppose that the condition (H) in lemma 2.4 is true, a(t) : [0, 1]→
R+, f(t, u, v) : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞) and g(t, u) : [0, 1]× [0,+∞)→
[0,+∞) are all continuous functions with g(t, u) 6≡ 0, and the following conditions

are satisfied:

(H1) for fixed t ∈ [0, 1], f(t, u, v) is increasing in u ∈ [0,+∞) and decreasing

in v ∈ [0,+∞). In addition, for ∀γ ∈ (0, 1), u, v ∈ [0,+∞), there exists a

constant ξ ∈ (0, 1) such that

f(t, γu, γ−1v) ≥ ϕξp(γ)f(t, u, v); (3.13)

(H2) for fixed t ∈ [0, 1], g(t, u) is increasing in u ∈ [0,+∞). In addition, for ∀t ∈
[0, 1], γ ∈ (0, 1), u ∈ [0,+∞),

g(t, γu) ≥ ϕp(γ)g(t, u); (3.14)

(H3) for ∀u, v ∈ [0,+∞), there exists a constant δ0 > 0 such that

f(t, u, v) ≥ ϕp(δ0)g(t, u), t ∈ [0, 1]. (3.15)

Then, we have:

(I) the p−Laplacian tempered fractional differential equation Riemann-Stieltjes in-

tegral boundary value problem (1.1) has a unique positive solution u∗ ∈ Ph,

where h(t) = e−λttα−1, t ∈ [0, 1];

(II) for ∀t ∈ [0, 1], there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0

and

u0(t) ≤
∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)
[
f
(
τ, u0(τ), v0(τ)

)
+ g
(
τ, u0(τ)

)]
dτ
)
ds,

v0(t) ≥
∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)
[
f
(
τ, v0(τ), u0(τ)

)
+ g
(
τ, v0(τ)

)]
dτ
)
ds;
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(III) for any initial values x0, y0 ∈ Ph, making successively the sequences

xn =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)
[
f
(
τ, xn−1(τ), yn−1(τ)

)
+ g
(
τ, xn−1(τ)

)]
dτ
)
ds,

yn =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)
[
f
(
τ, yn−1(τ), xn−1(τ)

)
+ g
(
τ, yn−1(τ)

)]
dτ
)
ds,

n = 0, 1, 2, ...,

we obtain xn → u∗ and yn → u∗ as n→∞.

Proof To begin with, we define two operators A : P × P → E and B : P → E by

A(u, v)(t) =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)f
(
τ, u(τ), v(τ)

)
dτ
)
ds, (3.16)

B(u)(t) =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)g
(
τ, u(τ)

)
dτ
)
ds. (3.17)

So, we have T (u, v) = A(u, v) + B(u), it’s evident that u∗ is the solution of the

systems (1.1) if and only if A(u∗, u∗) + B(u∗) = u∗. From Lemma 2.4, we get

A : P × P → P and B : P → P . Furthermore, it follows from (H1) and (H2) that

A is a mixed monotone operator and B is an increasing operator. For ∀γ ∈ (0, 1)

and u, v ∈ P , from (3.13), we obtain

A(γu, γ−1v)(t) =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)f
(
τ, γu(τ), γv(τ)

)
dτ
)
ds

≥
∫ 1

0

G(t, s)ϕq

(
ϕξp(γ)

∫ 1

0

G(s, τ)f
(
τ, u(τ), v(τ)

)
dτ
)
ds

= γξA(u, v)(t).

(3.18)

Hence, the mixed monotone operator A satisfies the condition (2.10) in Lemma 2.5.

In addition, for ∀γ ∈ (0, 1) and u ∈ P , from (3.14) we have

B(γu)(t) =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)g
(
τ, γu(τ)

)
dτ
)
ds

≥ ϕq
(
ϕp(γ)

) ∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)g
(
τ, u(τ)

)
dτ
)
ds

= γB(u)(t).

(3.19)

So, the operator B is a sub-homogeneous operator.
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Next, we show that A(h, h) ∈ Ph and Bh ∈ Ph. From Lemma 2.4, we have

A(h, h)(t) =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)f
(
τ, h(τ), h(τ)

)
dτ
)
ds

≤
∫ 1

0

G(t, s)ϕq

(∫ 1

0

M(τ)e−λssα−1f
(
τ, h(τ), h(τ)

)
dτ
)
ds

≤
∫ 1

0

M(s)e−λttα−1ϕq

(∫ 1

0

M(τ)e−λssα−1f
(
τ, h(τ), h(τ)

)
dτ
)
ds

≤
(∫ 1

0

M(s)s(α−1)(q−1)

eλs(q−1)
ϕq

(∫ 1

0

M(τ)f
(
τ, hmax, 0

)
dτ
)
ds

)
e−λttα−1

and

A(h, h)(t) =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)f
(
τ, h(τ), h(τ)

)
dτ
)
ds

≥
∫ 1

0

G(t, s)ϕq

(∫ 1

0

m(τ)e−λssα−1f
(
τ, h(τ), h(τ)

)
dτ
)
ds

≥
∫ 1

0

m(s)e−λttα−1ϕq

(∫ 1

0

m(τ)e−λssα−1f
(
τ, h(τ), h(τ)

)
dτ
)
ds

≥
(∫ 1

0

m(s)s(α−1)(q−1)

eλs(q−1)
ϕq

(∫ 1

0

m(τ)f
(
τ, 0, hmax

)
dτ
)
ds

)
e−λttα−1,

where hmax = max{h(t) : t ∈ [0, 1]}. Letting

L1 ,
∫ 1

0

M(s)s(α−1)(q−1)

eλs(q−1)
ϕq

(∫ 1

0

M(τ)f
(
τ, hmax, 0

)
dτ
)
ds,

l1 ,
∫ 1

0

m(s)s(α−1)(q−1)

eλs(q−1)
ϕq

(∫ 1

0

m(τ)f
(
τ, 0, hmax

)
dτ
)
ds.

It is clear to see that L1 > l1 > 0. Hence, l1h(t) ≤ A(h, h) ≤ L1h(t), that is,

A(h, h) ∈ Ph. Similarly, for the sub-homogenous operator B, from Lemma 2.4, we

get

B(h)(t) =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)g
(
τ, h(τ)

)
dτ
)
ds

≤
(∫ 1

0

M(s)s(α−1)(q−1)

eλs(q−1)
ϕq

(∫ 1

0

M(τ)g
(
τ, hmax

)
dτ
)
ds

)
e−λttα−1

and

B(h)(t) =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)g
(
τ, h(τ)

)
dτ
)
ds

≥
(∫ 1

0

m(s)s(α−1)(q−1)

eλs(q−1)
ϕq

(∫ 1

0

m(τ)g
(
τ, 0
)
dτ
)
ds

)
e−λttα−1.
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Letting

L2 ,
∫ 1

0

M(s)s(α−1)(q−1)

eλs(q−1)
ϕq

(∫ 1

0

M(τ)g
(
τ, hmax

)
dτ
)
ds,

l2 ,
∫ 1

0

m(s)s(α−1)(q−1)

eλs(q−1)
ϕq

(∫ 1

0

m(τ)g
(
τ, 0
)
dτ
)
ds.

From L2 > l2 > 0 and l2h(t) ≤ B(h) ≤ L2h(t), we get Bh ∈ Ph. Since h ∈ Ph,

letting h0 = h, then the condition (I1) of Lemma 2.5 is satisfied.

At last, we show that the condition (I2) of Lemma 2.5 is also satisfied. For ∀u, v ∈
P , from (3.15), we obtain

A(u, v)(t) =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)f
(
τ, u(τ), v(τ)

)
dτ
)
ds

≥
∫ 1

0

G(t, s)ϕq

(∫ 1

0

ϕp(δ0)G(s, τ)g
(
τ, u(τ)

)
dτ
)
ds

= δ0B(u)(t)t

(3.20)

that is, A(u, v) ≥ δ0Bu. Now, all the conditions of Lemma 2.5 are satisfied. Hence,

the conclusions of Theorem 3.1 follows from Lemma2.5.

Corollary 3.1 Assume that the condition (H) holds and

(H ′1) a(t) : [0, 1]→ R+ and f(t, u, v) : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞) are all

continuous functions.

(H ′2) for fixed t ∈ [0, 1], f(t, u, v) is increasing in u ∈ [0,+∞) and decreasing in

v ∈ [0,+∞), respectively;

(H ′3) for ∀u, v ∈ [0,+∞), γ ∈ (0, 1), there exists a constant ξ ∈ (0, 1) such that

f(t, γu, γ−1v) ≥ ϕξp(γ)f(t, u, v), t ∈ [0, 1]. (3.21)

Then we have:

(I) the p-Laplacian differential equation Riemann-Stieltjes integral boundary value

problem

R
0 D

α,λ

t

(
ϕp
(
R
0 D

α,λ

t u(t)
))

= f
(
t, u(t), u(t)

)
, 0 ≤ t ≤ 1;

u(0) = R
0 D

γ,λ

t u(0) = 0;

R
0 D

β1,λ

t u(1) =
∫ η

0
a(s)R0 D

β2,λ

t u(s)dA(s);

ϕp
(
R
0 D

α,λ

t u(0)
)

= R
0 D

γ,λ

t

(
ϕp
(
R
0 D

α,λ

t u(0)
))

= 0;

R
0 D

β1,λ

t

(
ϕp
(
R
0 D

α,λ

t u(1)
))

=
∫ η

0
a(s)R0 D

β2,λ

t

[
ϕp
(
R
0 D

α,λ

t u(s)
)]
dA(s)

has a unique positive solution u∗ ∈ Ph, where h(t) = e−λttα−1.

(II) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0 and

u0(t) ≤
∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)f
(
τ, u0(τ), v0(τ)

)
dτ
)
ds,

v0(t) ≥
∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)f
(
τ, v0(τ), u0(τ)

)
dτ
)
ds;
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(III) for any initial values x0, y0 ∈ Ph, making successively the sequences

xn =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)f
(
τ, xn−1(τ), yn−1(τ)

)
dτ
)
ds,

yn =

∫ 1

0

G(t, s)ϕq

(∫ 1

0

G(s, τ)f
(
τ, yn−1(τ), xn−1(τ)

)
dτ
)
ds,

n = 0, 1, 2, ...,

we obtain xn → u∗ and yn → u∗ as n→∞.

Proof Setting g(t, u(t)) ≡ 0, by means of Theorem 3.1, we get the conclusions.

4 Applications
Example 4.1 we consider the following tempered fractional differential systems

involving p-Laplacian operator:

R
0 D

5
2 ,1

t

(
ϕ3

(
R
0 D

5
2 ,1

t u(t)
))

= F (t, u(t)), 0 ≤ t ≤ 1;

u(0) = R
0 D

3
4 ,1

t u(0) = 0;

R
0 D

1,1

t u(1) =
∫ η

0
a(s)R0 D

5
8 ,1

t u(s)dA(s);

ϕ3

(
R
0 D

5
2 ,1

t u(0)
)

= R
0 D

3
4 ,1

t

(
ϕ3

(
R
0 D

5
2 ,1

t u(0)
))

= 0;

R
0 D

1,1

t

(
ϕ3

(
R
0 D

5
2 ,1

t u(1)
))

=
∫ 1

0
R
0 D

5
8 ,1

t

[
ϕ3

(
R
0 D

5
2 ,1

t u(s)
)]
dA(s);

(4.1)

where F (t, u(t)) = f
(
t, u(t), u(t)

)
+g
(
t, u(t)

)
, and f(t, u, v) = (1−t)− 1

3 t−
2
3u

1
3 +v−

1
5 ,

g(t, u) = (1− t)− 1
8 t−

1
6u

1
3 , p = 3, λ = 1 > 0, η = 1 and A(t) = t

2 . For any t ∈ (0, 1),

u > 0 and v > 0 and we see that α = 5
2 , β1 = 1, β2 = 5

8 , γ = 3
4 , a(t) ≡ 1 in the

systems (4.1).

Let us check that all the required conditions of Theorem 3.1 are satisfied.

(1) From δ =
∫ η

0
e−λssα−β2−1a(s)dA(s) = 0.1432, we can know Γ(α − β1)eλδ =

0.345 < 0.9534 = Γ(α− β2), clearly, the condition (H) is satisfied.

(2) From the expressions of f and g, it is evidently that f(t, u, v) : (0, 1) × R+ ×
R+ → R+ and g(t, u) : (0, 1) × R+ → R+ are continuous. Furthermore,

f(t, u, v) is increasing in u for fixed t ∈ (0, 1) and v ∈ R+, decreasing in v

for fixed t ∈ (0, 1) and u ∈ R+; in addition, for fixed t ∈ (0, 1), g(t, u) is

increasing in u.

(3) For any γ ∈ (0, 1), t ∈ (0, 1), u, v > 0, taking ξ = 1
2 ∈ (0, 1), we have

f(t, γu, γ−1v) = (1− t)− 1
3 t−

2
3 (γu)

1
3 + (γ−1v)−

1
5

≥ γ 1
2 [(1− t)− 1

3 t−
2
3u

1
3 + v−

1
5 ]

≥ γ[(1− t)− 1
3 t−

2
3u

1
3 + v−

1
5 ]

= ϕξp(γ)f(t, u, v)

and

g(t, γu) = (1− t)− 1
8 t−

1
6 (γu)

1
3

≥ γ2[(1− t)− 1
8 t−

1
6u

1
3 ]

= ϕp(γ)g(t, u).
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(4) Taking δ0 = 1
2 , for ∀t ∈ (0, 1) and u, v ∈ [0,+∞), we have

f(t, u, v) = (1− t)− 1
3 t−

2
3u

1
3 + v−

1
5

≥ 1

4
[(1− t)− 1

8 t−
1
6u

1
3 ]

= ϕp(δ0)g(t, u).

From the above conclusions, obviously, Theorem 3.1 implies that the tempered

fractional differential equation integral boundary value problem (4.1) has a unique

positive solution u∗ ∈ Ph, where h(t) = e−tt
3
2 .
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