Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Anderson E. L., Turnham P., Griffin J. R. & Clarke C. C. (2020). Consideration of the aerosol transmission for COVID‐19 and public health. Risk Analysis , 40(5), 902-907. https://doi.org/10.1111/risa.13500
Bexfield L. M., Toccalino P. L., Belitz K., Foreman W. T. & Furlong E. T. (2019). Hormones and pharmaceuticals in groundwater used as a source of drinking water across the United States. Environmental Science & Technology , 53(6), 2950-2960. https://doi.org/10.1021/acs.est.8b05592
Bi R., Zhou C., Jia Y., Wang S., Li P., Reichwaldt E. S. & Liu W. (2019). Giving waterbodies the treatment they need: A critical review of the application of constructed floating wetlands. Journal of Environmental Management , 238, 484-498. https://doi.org/10.1016/j.jenvman.2019.02.064
Bierlein K. A., Rezvani M., Socolofsky S. A., Bryant L. D., Wüest A. & Little J. C. (2017). Increased sediment oxygen flux in lakes and reservoirs: The impact of hypolimnetic oxygenation. Water Resources Research , 53(6), 4876-4890. https://doi.org/10.1002/2016WR019850
Bormans M., Maršálek B. & Jančula D. (2016). Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review. Aquatic Ecology , 50(3), 407-422. https://doi.org/10.1007/s10452-015-9564-x
Bridges T. S., Gustavson K. E., Schroeder P., Ells S. J., Hayes D., Nadeau S. C., Palermo M. R. & Patmont C. (2010). Dredging processes and remedy effectiveness: Relationship to the 4 Rs of environmental dredging. Integrated Environmental Assessment and Management , 6(4), 619-630. https://doi.org/10.1002/ieam.71.
Brouwer R. & Bateman I. J. (2005). Temporal stability and transferability of models of willingness to pay for flood control and wetland conservation. Water Resources Research , 41(3), https://doi.org/10.1029/2004WR003466
Calheiros C. S., Rangel A. O. & Castro P. M. (2007). Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater.Water Research , 41(8), 1790-1798. https://doi.org/10.1016/j.watres.2007.01.012
Carrard N., Foster T. & Willetts J. (2019). Groundwater as a source of drinking water in southeast Asia and the Pacific: A multi-country review of current reliance and resource concerns. Water , 11(8), 1605. https://doi.org/10.3390/w11081605
Chakraborty B., Roy S., Bera A., Adhikary P. P., Bera B., Sengupta D., Bhunia G. S. & Shit P. K. (2021a). Eco-restoration of river water quality during COVID-19 lockdown in the industrial belt of eastern India. Environmental Science and Pollution Research , 28(20), 25514-25528. https://doi.org/10.1007/s11356-021-12461-4
Chakraborty S. K., Pakhira H. & Paria K. (2021b). Biomonitoring and Bioremediation of a Transboundary River in India: Functional Roles of Benthic Mollusks and Fungi. In:Spatial Modeling and Assessment of Environmental Contaminants , Springer, pp. 611-661.
Chang Y.-H., Ku C.-R. & Lu H.-L. (2014a). Effects of aquatic ecological indicators of sustainable green energy landscape facilities. Ecological Engineering , 71, 144-153. https://doi.org/10.1016/j.ecoleng.2014.07.051
Chang Y.-H., Ku C.-R. & Yeh N. (2014b). Solar powered artificial floating island for landscape ecology and water quality improvement. Ecological Engineering , 69, 8-16. https://doi.org/10.1016/j.ecoleng.2014.03.015
Chang Y.-H., Wu B.-Y. & Lai C.-F. (2014c). The effect of a green energy landscape fountain on water quality improvement. Ecological Engineering , 73, 201-208. https://doi.org/10.1016/j.ecoleng.2014.09.062
Chang Y., Cui H., Huang M. & He Y. (2017). Artificial floating islands for water quality improvement.Environmental Reviews , 25(3), 350-357. https://doi.org/10.1139/er-2016-0038
Chen C., Kong M., Wang Y.-Y., Shen Q.-S., Zhong J.-C. & Fan C.-X. (2020a). Dredging method effects on sediment resuspension and nutrient release across the sediment-water interface in Lake Taihu, China. Environmental Science and Pollution Research , 27(21), 25861-25869. https://doi.org/10.1007/s11356-019-06192-w.
Chen J. A., Yang H. Q., Zhang D. D., Xu D., Luo J. & Wang J. F. (2015). A particular river-whiting phenomenon caused by discharge of hypolimnetic water from a stratified reservoir. PloS One , 10(9), 1-12. https://doi.org/10.1371/journal.pone.0137860
Chen S., Chao L., Zhao J., Chen N., Wang L. S., Liu X. & Sun L. N. (2014). Application and development of artificial floating island technology. In: Applied Mechanics and Materials , Trans Tech Publ, pp. 696-700. https://doi.org/10.1016/j.rser.2015.03.090
Chen Z., Zhao D., Li M., Tu W. & Liu X. (2020b). A field study on the effects of combined biomanipulation on the water quality of a eutrophic lake. Environmental Pollution , 265, 115091. https://doi.org/10.1016/j.envpol.2020.115091
Choi J. & Ahn Y. (2014). Comparative performance of air-lift partial nitritation processes with attached growth and suspended growth without biomass retention.Environmental Technology , 35(11), 1328-1337. https://doi.org/10.1080/09593330.2013.868037.
Conley D. J., Paerl H. W., Howarth R. W., Boesch D. F., Seitzinger S. P., Havens K. E., Lancelot C. & Likens G. E. (2009). Controlling Eutrophication: Nitrogen and Phosphorus.Science , 323(5917), 1014. https://doi.org/10.1126/science.1167755
Cooke G. D. & Kennedy R. H. (1978). Effects of a hypolimnetic application of aluminium sulfate to a eutrophic lake: With 2 figures and 3 tables in the text.Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen , 20(1), 486-489.
Cooper R. (2020). Water security beyond Covid-19, K4D Helpdesk Report 803 , Brighton, UK: Institute of Development Studies.
Davis D. E., Hanson C. H. & Hansen R. B. (2008). Constructed Wetland Habitat for American Avocet and Black‐Necked Stilt Foraging and Nesting. The Journal of Wildlife Management , 72(1), 143-151. https://doi.org/10.2193/2005-553
Deppe T. & Benndorf J. (2002). Phosphorus reduction in a shallow hypereutrophic reservoir by in-lake dosage of ferrous iron. Water Research , 36(18), 4525-4534. https://doi.org/10.1016/S0043-1354(02)00193-8
Desai J. P., Pillarisetti A. & Brooks A. D. (2007). Engineering approaches to biomanipulation.Annual Review of Biomedical Engineering , 9, 35-53. https://doi.org/10.1146/annurev.bioeng.9.060906.151940
Dittrich M., Gabriel O., Rutzen C. & Koschel R. (2011). Lake restoration by hypolimnetic Ca (OH) 2 treatment: impact on phosphorus sedimentation and release from sediment.Science of the Total Environment , 409(8), 1504-1515. https://doi.org/10.1016/j.scitotenv.2011.01.006
Dobrzyński J., Kulkova I., Wierzchowski P. S. & Wróbel B. (2022). Response of Physicochemical and Microbiological Properties to the Application of Effective Microorganisms in the Water of the Turawa Reservoir. Water , 14(1), 12. https://doi.org/10.3390/w14010012
Dondajewska-Pielka R., Gołdyn R., Budzyńska A., Kowalczewska-Madura K., Kozak A., Messyasz B. & Podsiadłowski S. (2020). Sustainable approach to lake restoration–an innovative treatment applied in Polish lakes. In: ECWS .
Dondajewska R., Kowalczewska-Madura K., Gołdyn R., Kozak A., Messyasz B. & Cerbin S. (2019a). Long-term water quality changes as a result of a sustainable restoration—A case study of dimictic Lake Durowskie. Water , 11(3), 616. https://doi.org/10.3390/w11030616
Dondajewska R., Kozak A., Rosińska J. & Gołdyn R. (2019b). Water quality and phytoplankton structure changes under the influence of effective microorganisms (EM) and barley straw–Lake restoration case study. Science of the Total Environment , 660, 1355-1366. https://doi.org/10.1016/j.scitotenv.2019.01.071
Duan H., Tao M., Loiselle S. A., Zhao W., Cao Z., Ma R. & Tang X. (2017). MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source. Water Research , 122, 455-470. https://doi.org/10.1016/j.watres.2017.06.022
Dunalska J. A., Staehr P. A., Jaworska B., Górniak D. & Gomułka P. (2014). Ecosystem metabolism in a lake restored by hypolimnetic withdrawal. Ecological Engineering , 73, 616-623. https://doi.org/10.1016/j.ecoleng.2014.09.048
Dunalska J. A., Wiśniewski G. & Mientki C. (2007). Assessment of multi-year (1956–2003) hypolimnetic withdrawal from Lake Kortowskie, Poland. Lake and Reservoir Management , 23(4), 377-387. https://doi.org/10.1080/07438140709354025
Dunne E. J., Coveney M. F., Marzolf E. R., Hoge V. R., Conrow R., Naleway R., Lowe E. F. & Battoe L. E. (2012). Efficacy of a large-scale constructed wetland to remove phosphorus and suspended solids from Lake Apopka, Florida.Ecological Engineering , 42, 90-100. https://doi.org/10.1016/j.ecoleng.2012.01.019
Dunne E. J., Coveney M. F., Marzolf E. R., Hoge V. R., Conrow R., Naleway R., Lowe E. F., Battoe L. E. & Inglett P. W. (2013). Nitrogen dynamics of a large-scale constructed wetland used to remove excess nitrogen from eutrophic lake water.Ecological Engineering , 61, 224-234. https://doi.org/10.1016/j.ecoleng.2013.09.039
Erftemeijer P. L. & Lewis III R. R. R. (2006). Environmental impacts of dredging on seagrasses: a review.Marine Pollution Bulletin , 52(12), 1553-1572. https://doi.org/10.1016/j.marpolbul.2006.09.006
Fast A. W., Overholtz W. J. & Tubb R. A. (1975). Hypolimnetic oxygenation using liquid oxygen. Water Resources Research , 11(2), 294–299. https://doi.org/10.1029/WR011i002p00294
Fonseca Largo K. M., Ruiz Depablos J. L., Espitia-Sarmiento E. F. & Llugsha Moreta N. M. (2020). Artificial Floating Island with Vetiver for Treatment of Arsenic-Contaminated Water: A Real Scale Study in High-Andean Reservoir. Water , 12(11), 3086. https://doi.org/10.3390/w12113086
Fox A. L. & Trefry J. H. (2018). Environmental dredging to remove fine-grained, organic-rich sediments and reduce inputs of nitrogen and phosphorus to a subtropical estuary.Marine Technology Society Journal , 52(4), 42-57. https://doi.org/10.4031/MTSJ.52.4.3
Gaget V., Humpage A. R., Huang Q., Monis P. & Brookes J. D. (2017). Benthic cyanobacteria: A source of cylindrospermopsin and microcystin in Australian drinking water reservoirs. Water Research , 124, 454-464. https://doi.org/10.1016/j.watres.2017.07.073
Gao J., Zhu J., Wang M. & Dong W. (2018). Dominance and Growth Factors of Pseudanabaena sp. in Drinking Water Source Reservoirs, Southern China. Sustainability , 10(11), 3936. https://doi.org/10.3390/su10113936
Geerdink R. B., van den Hurk R. S. & Epema O. J. (2017). Chemical oxygen demand: Historical perspectives and future challenges. Analytica Chimica Acta , 961, 1-11. https://doi.org/10.1016/j.aca.2017.01.009
Grochowska J. (2020). Proposal for Water Quality Improvement by Using an Innovative and Comprehensive Restoration Method. Water , 12(9), 2377. https://doi.org/10.3390/w12092377
Hansen J., Reitzel K., Jensen H. S. & Andersen F. Ø. (2003). Effects of aluminum, iron, oxygen and nitrate additions on phosphorus release from the sediment of a Danish softwater lake. Hydrobiologia , 492(1), 139-149. https://doi.org/10.1023/A:1024826131327
Heisler J., Glibert P. M., Burkholder J. M., Anderson D. M., Cochlan W., Dennison W. C., Dortch Q., Gobler C. J., Heil C. A., Humphries E., Lewitus A., Magnien R., Marshall H. G., Sellner K. S., D.A., Stoecker D. K. & Suddleson M. (2008). Eutrophication and harmful algal blooms: a scientific consensus.Harmful Algae , 8(1), 3-13. https://doi.org/10.1016/j.hal.2008.08.006
Higa T. & Parr J. (1994). Effective microorganisms for sustainable agriculture and healthy environment. In, Van Arkel Utrecht, p. 191.
Hindson J. (2020). COVID-19: faecal–oral transmission? Nature Reviews Gastroenterology & Hepatology , 17(5), 259-259. https://doi.org/10.1038/s41575-020-0295-7
Huser B. J., Futter M., Lee J. T. & Perniel M. (2016). In-lake measures for phosphorus control: the most feasible and cost-effective solution for long-term management of water quality in urban lakes. Water Research , 97, 142-152. https://doi.org/10.1016/j.watres.2015.07.036
Iamchaturapatr J., Yi S. W. & Rhee J. S. (2007). Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland. Ecological Engineering , 29(3), 287-293. https://doi.org/10.1016/j.ecoleng.2006.09.010
Janssen R., Goosen H., Verhoeven M. L., Verhoeven J. T., Omtzigt A. & Maltby E. (2005). Decision support for integrated wetland management. Environmental Modelling & Software , 20(2), 215-229. https://doi.org/10.1016/j.envsoft.2003.12.020
Jeppesen E., Meerhoff M., Jacobsen B., Hansen R., Søndergaard M., Jensen J., Lauridsen T., Mazzeo N. & Branco C. (2007). Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia , 581(1), 269-285. https://doi.org/10.1007/s10750-006-0507-3
Jurczak T., Wagner I., Kaczkowski Z., Szklarek S. & Zalewski M. (2018). Hybrid system for the purification of street stormwater runoff supplying urban recreation reservoirs.Ecological Engineering , 110, 67-77. https://doi.org/10.1016/j.ecoleng.2017.09.019
Jurczak T., Wagner I., Wojtal-Frankiewicz A., Frankiewicz P., Bednarek A., Łapińska M., Kaczkowski Z. & Zalewski M. (2019a). Comprehensive approach to restoring urban recreational reservoirs. Part 1–Reduction of nutrient loading through low-cost and highly effective ecohydrological measures.Ecological Engineering , 131, 81-98. https://doi.org/10.1016/j.ecoleng.2019.03.006
Jurczak T., Wojtal-Frankiewicz A., Frankiewicz P., Kaczkowski Z., Oleksińska Z., Bednarek A. & Zalewski M. (2019b). Comprehensive approach to restoring urban recreational reservoirs. Part 2–Use of zooplankton as indicators for the ecological quality assessment. Science of the Total Environment , 653, 1623-1640. https://doi.org/10.1016/j.scitotenv.2018.08.006
Jůza T., Duras J., Blabolil P., Sajdlová Z., Hess J., Chocholoušková Z. & Kubečka J. (2019). Recovery of the Velky Bolevecky pond (Plzen, Czech Republic) via biomanipulation–Key study for management. Ecological Engineering , 136, 167-176. https://doi.org/10.1016/j.ecoleng.2019.06.025
K O., K M. & S N. (1995). The purification of Lake Suwa (dredging). Proceedings of 6th International Conference on the Conservation & Management of Lakes-Kasumigaura , 438-441.
Kangro K., Laugaste R., Noges P. & Ott I. (2005). Long-term changes and seasonal development of phytoplankton in a strongly stratified, hypertrophic lake.Hydrobiologia , 547(1), 91-103. https://doi.org/10.1007/1-4020-4363-5_9
Kasprzak P., Benndorf J., Mehner T. & Koschel R. (2002). Biomanipulation of lake ecosystems: an introduction. Freshwater Biology , 47(12), 2277-2281. https://doi.org/10.1046/j.1365-2427.2002.01001.x
Katsanou K. & Karapanagioti H. K. (2017). Surface water and groundwater sources for drinking water. In:Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment , Springer, pp. 1-19.
Khuntia S., Majumder S. K. & Ghosh P. (2012). Microbubble-aided water and wastewater purification: a review. Reviews in Chemical Engineering , 28(4-6), 191-221. https://doi.org/10.1515/revce-2012-0007
Kirimtat A. & Krejcar O. (2018). Development of self-sufficient floating cities with renewable resources. In: International Conference on Computational Collective Intelligence , Springer, pp. 437-446.
Knopik J. M. & Newman R. M. (2018). Transplanting aquatic macrophytes to restore the littoral community of a eutrophic lake after the removal of common carp. Lake and Reservoir Management , 34(4), 365-375. https://doi.org/10.1080/10402381.2018.1477885
Kowalczewska-Madura K., Dondajewska R., Gołdyn R., Kozak A. & Messyasz B. (2018). Internal phosphorus loading from the bottom sediments of a dimictic lake during its sustainable restoration. Water, Air, & Soil Pollution , 229(8), 1-18. https://doi.org/10.1007/s11270-018-3937-4
Lan C., Chen J. A., Wang J. F., Guo J. Y., Yu J., Yu P. P., Yang H. Q. & Liu Y. (2017). Application of circular bubble plume diffusers to restore water quality in a sub-deep reservoir. Int. J. Environ. Res. Public Health , 14(11), 1298. https://doi.org/10.3390/ijerph14111298
Lan C., Ji Y., Wang J. & Yang H. (2021). Water Quality Restoration of a Drinking Water Outlet Area in a Eutrophic Reservoir Using Hypolimnetic Oxygenation in Southwest China.Polish Journal of Environmental Studies , 30(2), 1237-1246. https://doi.org/10.15244/pjoes/124776
Lee C. g., Fletcher T. D. & Sun G. (2009). Nitrogen removal in constructed wetland systems.Engineering in Life Sciences , 9(1), 11-22. https://doi.org/10.1002/elsc.200800049
Li H., Hu L., Song D. & Lin F. (2014). Characteristics of micro‐nano bubbles and potential application in groundwater bioremediation. Water Environment Research , 86(9), 844-851. https://doi.org/10.2175/106143014x14062131177953
Li J., Hansson L.-A. & Persson K. M. (2018). Nutrient control to prevent the occurrence of cyanobacterial blooms in a eutrophic lake in Southern Sweden, used for drinking water supply. Water , 10(7), 919. https://doi.org/10.3390/w10070919
Li N., Huang T., Mao X., Zhang H., Li K., Wen G., Lv X. & Deng L. (2019). Controlling reduced iron and manganese in a drinking water reservoir by hypolimnetic aeration and artificial destratification. Science of the Total Environment , 685, 497-507. https://doi.org/10.1016/j.scitotenv.2019.05.445
Li Y., Wang L., Chao C., Yu H., Yu D. & Liu C. (2021). Submerged macrophytes successfully restored a subtropical aquacultural lake by controlling its internal phosphorus loading. Environmental Pollution , 268, 115949. https://doi.org/10.1016/j.envpol.2020.115949
Liu Z., Hu J., Zhong P., Zhang X., Ning J., Larsen S. E., Chen D., Gao Y., He H. & Jeppesen E. (2018). Successful restoration of a tropical shallow eutrophic lake: strong bottom-up but weak top-down effects recorded. Water Research , 146, 88-97. https://doi.org/10.1016/j.watres.2018.09.007
Lu H.-L., Ku C.-R. & Chang Y.-H. (2015). Water quality improvement with artificial floating islands.Ecological Engineering , 74, 371-375. https://doi.org/10.1016/j.ecoleng.2014.11.013
Lynch J., Fox L. J., Owen Jr J. S. & Sample D. J. (2015). Evaluation of commercial floating treatment wetland technologies for nutrient remediation of stormwater. Ecological Engineering , 75, 61-69. https://doi.org/10.1016/j.ecoleng.2014.11.001
Malecki‐Brown L. M., White J. R. & Sees M. (2009). Alum application to improve water quality in a municipal wastewater treatment wetland. Journal of Environmental Quality , 38(2), 814-821. https://doi.org/10.1016/j.chemosphere.2010.02.006
Martín M., Oliver N., Hernández-Crespo C., Gargallo S. & Regidor M. (2013). The use of free water surface constructed wetland to treat the eutrophicated waters of lake L’Albufera de Valencia (Spain). Ecological Engineering , 50, 52-61. https://doi.org/10.1016/j.ecoleng.2012.01.019
Mehner T., Benndorf J., Kasprzak P. & Koschel R. (2002). Biomanipulation of lake ecosystems: successful applications and expanding complexity in the underlying science.Freshwater Biology , 47(12), 2453-2465. https://doi.org/10.1046/j.1365-2427.2002.01003.x
Mehner T., Diekmann M., Gonsiorczyk T., Kasprzak P., Koschel R., Krienitz L., Rumpf M., Schulz M. & Wauer G. (2008). Rapid recovery from eutrophication of a stratified lake by disruption of internal nutrient load. Ecosystems , 11(7), 1142-1156. https://doi.org/10.1007/s10021-008-9185-5
Melzer A. (1999). Aquatic macrophytes as tools for lake management. In: The Ecological Bases for Lake and Reservoir Management , Springer, pp. 181-190.
Mercier P. & Perret J. (1949). Aeration station of Lake Bret. Monatsbull. Schweiz. Ver. Gas. u Wasserfachm , 29(1), 25.
Mielczarek A. T., Saunders A. M., Larsen P., Albertsen M., Stevenson M., Nielsen J. L. & Nielsen P. H. (2013). The Microbial Database for Danish wastewater treatment plants with nutrient removal (MiDas-DK)–a tool for understanding activated sludge population dynamics and community stability. Water Science and Technology , 67(11), 2519-2526. https://doi.org/10.2166/wst.2013.151
Montemezzani V., Duggan I. C., Hogg I. D. & Craggs R. J. (2015). A review of potential methods for zooplankton control in wastewater treatment High Rate Algal Ponds and algal production raceways. Algal research , 11, 211-226. https://doi.org/10.1016/j.algal.2015.06.024
Nürnberg G. K. (1987). Hypolimnetic withdrawal as lake restoration technique. Journal of Environmental Engineering , 113(5), 1006-1017. https://doi.org/10.1061/(ASCE)0733-9372(1987)113:5(1006)
Nürnberg G. K. (2007). Lake responses to long-term hypolimnetic withdrawal treatments. Lake and Reservoir Management , 23(4), 388-409. https://doi.org/10.1080/07438140709354026
Nürnberg G. K. (2019). Hypolimnetic withdrawal as a lake restoration technique: determination of feasibility and continued benefits. Hydrobiologia , 1-15. https://doi.org/10.1007/s10750-019-04094-z
Özkundakci D., Duggan I. C. & Hamilton D. P. (2011). Does sediment capping have post-application effects on zooplankton and phytoplankton? Hydrobiologia , 661(1), 55-64. https://doi.org/10.1007/s10750-009-9938-y
Parde D., Patwa A., Shukla A., Vijay R., Killedar D. J. & Kumar R. (2021). A review of constructed wetland on type, treatment and technology of wastewater. Environmental Technology & Innovation , 21, 101261. https://doi.org/10.1016/j.eti.2020.101261
Park G.-S., Khan A. R., Kwak Y., Hong S.-J., Jung B., Ullah I., Kim J.-G. & Shin J.-H. (2016). An improved effective microorganism (EM) soil ball-making method for water quality restoration. Environmental Science and Pollution Research , 23(2), 1100-1107. https://doi.org/10.1007/s11356-015-5617-x.
Patel A. K., Singhania R. R., Chen C.-W., Tseng Y.-S., Kuo C.-H., Wu C.-H. & Di Dong C. (2021). Advances in micro-and nano bubbles technology for application in biochemical processes. Environmental Technology & Innovation , 23, 101729. https://doi.org/10.1016/j.eti.2021.101729
Patmont C. & Palermo M. (2007). Case studies of environmental dredging residuals and management implications. In: Proceedings, 4th International Conference on Remediation of Contaminated Sediments , pp. 22-25.
Pequegnat W. E. (1975). Meiobenthos ecosystems as indicators of the effects of dredging. In: Geology and Engineering , Elsevier, pp. 573-583.
Podsiadłowski S., Osuch E., Przybył J., Osuch A. & Buchwald T. (2018). Pulverizing aerator in the process of lake restotation. Ecological Engineering , 121, 99-103. https://doi.org/10.1016/j.ecoleng.2017.06.032
Preece E. P., Moore B. C., Skinner M. M., Child A. & Dent S. (2019). A review of the biological and chemical effects of hypolimnetic oxygenation. Lake and Reservoir Management , 35(3), 229-246. https://doi.org/10.1080/10402381.2019.1580325
Rydin E. & Welch E. B. (1998). Aluminum dose required to inactivate phosphate in lake sediments.Water Research , 32(10), 2969-2976. https://doi.org/10.1016/S0043-1354(98)00055-4
Søndergaard M., Jeppesen E., Lauridsen T. L., Skov C., Van Nes E. H., Roijackers R., Lammens E. & Portielje R. (2007). Lake restoration: successes, failures and long‐term effects. Journal of Applied Ecology , 44(6), 1095-1105. https://doi.org/10.1111/j.1365-2664.2007.01363.x
Søndergaard M., Liboriussen L., Pedersen A. R. & Jeppesen E. (2008). Lake restoration by fish removal: short-and long-term effects in 36 Danish lakes. Ecosystems , 11(8), 1291-1305. https://doi.org/10.1111/j.1365-2664.2007.01363.x
Saeed T., Majed N., Khan T. & Mallika H. (2019). Two-stage constructed wetland systems for polluted surface water treatment. Journal of Environmental Management , 249, 109379. https://doi.org/10.1016/j.jenvman.2019.109379
Shalaby E. A. (2011). Prospects of effective microorganisms technology in wastes treatment in Egypt.Asian Pacific journal of tropical biomedicine , 1(3), 243-248. https://doi.org/10.1016/S2221-1691(11)60035-X
Shapiro J. (1975). Biomanipulation, an ecosystem approach to lake restoration. In: In: PL Brezonik & JL Fox, Proc. Symp. Water Quality Management Through Biological Control , pp. 85-96.
Sharip Z., Razak S. B. A., Noordin N. & Yusoff F. M. (2020). Application of an effective microorganism product as a cyanobacterial control and water quality improvement measure in Putrajaya Lake, Malaysia. Earth Systems and Environment , 4(1), 213-223. https://doi.org/10.1007/s10452-015-9563-y
Shi W., Pan G., Chen Q., Song L., Zhu L. & Ji X. (2018). Hypoxia remediation and methane emission manipulation using surface oxygen nanobubbles. Environmental Science & Technology , 52(15), 8712-8717. https://doi.org/10.1021/acs.est.8b02320
Sillanpaa M., Ncibi M. C. & Matilainen A. (2018). Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. Journal of Environmental Management , 208, 56-76. https://doi.org/10.1016/j.jenvman.2017.12.009
Sinha E., Michalak A. & Balaji V. (2017). Eutrophication will increase during the 21st century as a result of precipitation changes. Science , 357(6349), 405-408. https://doi.org/10.1126/science.aan2409
Sitarek M., Napiórkowska-Krzebietke A., Mazur R., Czarnecki B., Pyka J. P., Stawecki K., Olech M., Sołtysiak S. & Kapusta A. (2017). Application of effective microorganisms technology as a lake restoration tool a case study of muchawka reservoir. J. Elem , 22, 529-543. https://doi.org/10.5601/jelem.2016.21.2.1196
Skariyachan S., Mahajanakatti A. B., Grandhi N. J., Prasanna A., Sen B., Sharma N., Vasist K. S. & Narayanappa R. (2015). Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka, India. Environmental Monitoring and Assessment , 187(5), 1-13. https://doi.org/10.1007/s10661-015-4488-4
Sojka M., Siepak M., Jaskuła J. & Wicher-Dysarz J. (2018). Heavy Metal Transport in a River-Reservoir System: a Case Study from Central Poland. Polish Journal of Environmental Studies , 27(4), 1725-1734. https://doi.org/10.15244/pjoes/76916
Spears B. M., Maberly S. C., Pan G., Mackay E., Bruere A., Corker N., Douglas G., Egemose S., Hamilton D. & Hatton-Ellis T. (2014). Geo-engineering in lakes: a crisis of confidence? In, ACS Publications. https://doi.org/10.1021/es5036267
Speece R. E., Madrid M. & Needham K. (1971). Downflow bubble contact aeration. Journal of the Sanitary Engineering Division , 97(4), 433-441.
Stuyfzand P. J. & Raat K. J. (2010). Benefits and hurdles of using brackish groundwater as a drinking water source in the Netherlands. Hydrogeology Journal , 18(1), 117-130. https://doi.org/10.1007/s10040-009-0527-y
Szklarek S., Wagner I., Jurczak T. & Zalewski M. (2018). Sequential Sedimentation-Biofiltration System for the purification of a small urban river (the Sokolowka, Lodz) supplied by stormwater. Journal of Environmental Management , 205, 201-208. https://doi.org/10.1016/j.jenvman.2017.09.066
Szymanski N. & Patterson R. A. (2003). Effective microorganisms (EM) and wastewater systems.Future Directions for On-site Systems: Best Management Practice , 347-355. https://doi.org/10.1016/j.hbrcj.2014.06.011
Tang X., Wu M., Dai X. & Chai P. (2014). Phosphorus storage dynamics and adsorption characteristics for sediment from a drinking water source reservoir and its relation with sediment compositions. Ecological Engineering , 64, 276-284. https://doi.org/10.1016/j.ecoleng.2014.01.005
Temesgen T., Bui T. T., Han M., Kim T.-i. & Park H. (2017). Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. Advances in Colloid and Interface Science , 246, 40-51. https://doi.org/10.1016/j.cis.2017.06.011
Terashima S., Yoshio I., Saito Y., Miyata Y., Katayama H. & Terashima M. (1991). Vertical variation and chemical characteristics of elements in bottom sediments from the dredged hollows of lake Biwa and lake Kasumigaura, Japan. Kosho shunsetsuiki no teishitsu ni okeru genso no enchoku bunpu to kagakuteki seishitsu. Chishitsu Chosajo Geppo (Bulletin of the Geological Survey of Japan);(Japan) , 42(8), 387-407.
Vardoulakis S., Oyarce D. A. E. & Donner E. (2022). Transmission of COVID-19 and other infectious diseases in public washrooms: A systematic review. Science of the Total Environment , 803, 149932. https://doi.org/10.1016/j.scitotenv.2021.149932.
Vickie L. S. & John C. L. (2006). Designing hypolimnetic aeration and oxygenation systems-a review.Environmental Science & Technology , 40(24), 7512-7520. https://doi.org/10.1021/es060069s
Vinçon-Leite B. & Casenave C. (2019). Modelling eutrophication in lake ecosystems: A review.Science of the Total Environment , 651, 2985-3001. https://doi.org/10.1016/j.scitotenv.2018.09.320
Wang J., Chen J., Chen Q., Yang H., Zeng Y., Yu P. & Jin Z. (2019). Assessment on the effects of aluminum-modified clay in inactivating internal phosphorus in deep eutrophic reservoirs. Chemosphere , 215, 657-667. https://doi.org/10.1016/j.chemosphere.2018.10.095
Wang J., Chen J., Yu P., Yang X., Zhang L., Geng Z. & He K. (2020a). Oxygenation and synchronous control of nitrogen and phosphorus release at the sediment-water interface using oxygen nano-bubble modified material. Science of the Total Environment , 138258. https://doi.org/10.1016/j.scitotenv.2020.138258
Wang J., Zhong C., Kuang M. & Yang J. (2020b). Application of Lake Wetland Ecological Rehabilitation Technology in Environmental Pollution Control and Ecological Rehabilitation. In: Journal of Physics: Conference Series , IOP Publishing, p. 012002. https://doi.org/10.1088/1742-6596/1649/1/012002
Wang S., Liu Y., Lyu T., Pan G. & Li P. (2020c). Aquatic macrophytes in morphological and physiological responses to the nanobubble technology application for water restoration. ACS ES&T Water , 1(2), 376-387. https://doi.org/10.1021/acsestwater.0c00145
Watson S. B., Miller C., Arhonditsis G., Boyer G. L., Carmichael W., Charlton M. N., Confesor R., Depew D. C., Höök T. O. & Ludsin S. A. (2016). The re-eutrophication of Lake Erie: Harmful algal blooms and hypoxia. Harmful Algae , 56(2), 44-49. https://doi.org/10.1016/j.hal.2016.04.010
Whipple W., Tuffey T. & Ervin E. (1975). lake hypolimnion oxygenation system. Reaeration Research , 91-108.
Yang C., Nan J., Yu H. & Li J. (2020a). Embedded reservoir and constructed wetland for drinking water source protection: Effects on nutrient removal and phytoplankton succession. Journal of Environmental Sciences , 87, 260-271. https://doi.org/10.1016/j.jes.2019.07.005
Yang H., He K., Lu D., Wang J., Xu D., Jin Z., Yang M. & Chen J. (2020b). Removal of phosphate by aluminum-modified clay in a heavily polluted lake, Southwest China: Effectiveness and ecological risks. Science of the Total Environment , 705, 135850. https://doi.org/10.1016/j.scitotenv.2019.135850
Yeh N., Yeh P. & Chang Y.-H. (2015). Artificial floating islands for environmental improvement.Renewable and Sustainable Energy Reviews , 47, 616-622. https://doi.org/10.1016/j.rser.2015.03.090
Yu P., Wang J., Chen J., Guo J., Yang H. & Chen Q. (2019). Successful control of phosphorus release from sediments using oxygen nano-bubble-modified minerals. Science of the Total Environment , 663, 654-661. https://doi.org/10.1016/j.scitotenv.2019.01.265
Yunus A. P., Masago Y. & Hijioka Y. (2020). COVID-19 and surface water quality: Improved lake water quality during the lockdown. Science of the Total Environment , 731, 139012. https://doi.org/10.1016/j.scitotenv.2020.139012
Zakaria Z., Gairola S. & Shariff N. M. (2010). Effective microorganisms (EM) technology for water quality restoration and potential for sustainable water resources and management. In: 2010 International Congress on Environmental Modelling and Software Modelling for Environment’s Sake , International Environmental Modelling and Software Society (iEMSs) Ottawa, Canada pp. 1-9.
Zalewski M. (2015). Ecohydrology and hydrologic engineering: regulation of hydrology-biota interactions for sustainability. Journal of Hydrologic Engineering , 20(1), A4014012. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000999
Zeng L., He F., Dai Z., Xu D., Liu B., Zhou Q. & Wu Z. (2017). Effect of submerged macrophyte restoration on improving aquatic ecosystem in a subtropical, shallow lake.Ecological Engineering , 106, 578-587. https://doi.org/10.1016/j.ecoleng.2017.05.018
Zhai H., He X., Zhang Y., Du T., Adeleye A. S. & Li Y. (2017). Disinfection byproduct formation in drinking water sources: a case study of Yuqiao reservoir.Chemosphere , 181, 224-231. https://doi.org/10.1016/j.chemosphere.2017.04.028
Zhan Y., Yu Y. & Lin J. (2019). Impact of application mode on the control of phosphorus release from sediments using zirconium-modified bentonite as geo-engineering material. Science of the Total Environment , 135633. https://doi.org/10.1016/j.scitotenv.2019.135633
Zhang H., Chen J., Han M., An W. & Yu J. (2020). Anoxia remediation and internal loading modulation in eutrophic lakes using geoengineering method based on oxygen nanobubbles.Science of the Total Environment , 714, 136766. https://doi.org/10.1016/j.scitotenv.2020.136766
Zhang H., Lyu T., Bi L., Tempero G., Hamilton D. P. & Pan G. (2018). Combating hypoxia/anoxia at sediment-water interfaces: A preliminary study of oxygen nanobubble modified clay materials. Science of the Total Environment , 637, 550-560. https://doi.org/10.1016/j.scitotenv.2018.04.284
Zhang H., Lyu T., Liu L., Hu Z., Chen J., Su B., Yu J. & Pan G. (2021). Exploring a multifunctional geoengineering material for eutrophication remediation: Simultaneously control internal nutrient load and tackle hypoxia. Chemical Engineering Journal , 406, 127206. https://doi.org/10.1016/j.cej.2020.127206
Table 1. A summary of studies involving the innovative restoration for eutrophic water