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Abstract. The dynamic transitions of the Brusselator model has been re-
cently analyzed in [1] and [2]. Our aim in this paper is to address the relation

between the pattern formation and dynamic transition results left open in those

papers. We consider the problem in the setting of a 2D rectangular box where
an instability of the homogeneous steady state occurs due to the perturbations

in the direction of several modes becoming critical simultaneously. Our main

results are twofolds: (1) a rigorous characterization of the types and structure
of the dynamic transitions of the model from basic homogeneous states and

(2) the relation between the dynamic transitions and the pattern formations.

We observe that the Brusselator model exhibits different transition types and
patterns depending on the nonlinear interactions of the pattern of the critical

modes.

1. Introduction

Dynamic transitions have been shown to occur in many branches of the non-
linear science [3]. Some recent examples include the thermohaline circulation
[4], chemotatic systems [5], vegetation formation [6], gas dynamics [7] and quasi
geostrophic flows [8, 9]. One of the jewels of the nonlinear science has been the
Brusselator and related chemical reaction models which have received extensive
interest [2, 10, 11]. In this paper, we identify and classify transitions of Turing pat-
terns for the Brusselator model which was introduced initially in [12]. The model
displays some important aspects of the dynamical systems theory such as multi-
stability [13] and irreversibility [14]. Our main paradigm is the dynamic transition
theory originally introduced in [3].

As an example of Belousov–Zhabotinsky reaction, the mechanism of the Brusse-
lator model is based on autocatalytic, oscillating chemical reaction. An autocatlytic
reaction is one in which a species acts to increase the rate of its producing reac-
tion. In many autocatlytic systems, multiple steady-states and periodic orbits are
usually seen [15]. The chemical reaction of the Brusselator model consists of four
irreversible steps, given by

(1)

A→ X
k1

B+ X→ Y +D
k2

2X+ Y → 3X
k3

X→ E
k4

where X and Y are components which vary in time and space, A and B are constant
components while D and E are products.

Turing patterns are natural patterns which arise spontaneously in a number
of natural phenomena such as animal coatings, chemical reactions and patterns of
sand dunes and vegetation patterns in ecology. The formations of these patterns are
described by reaction-diffusion equations. A diffusion-driven instability also called
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the Turing instability occurs in a reaction-diffusion system when a homogeneous
steady state is stable to small perturbation in the absence of diffusion but becomes
unstable to small spatial perturbations when there is diffusion [16] . Mathemati-
cally, these equations possess a stable homogeneous equilibrium which will lose its
stability as a control parameter exceeds some critical threshold. As this basic state
loses stability, the system will move towards a new stable state, often displaying
pattern structure which is known as Turing patterns.

In this article, we address the dynamic transition of Turing patterns of the
Brusselator model by deriving a complete characterization of the transition from
the homogeneous state. Our guiding principle is the dynamic transition theory of
[3]. The key philosophy of dynamic transition theory is to search for the full set of
transition states, giving a complete characterization of stability and transition. The
set of transition states is a local attractor, representing the physical reality after the
transition. As a general principle, dynamic transitions of all dissipative systems are
classified into three categories: continuous (Type-I), catastrophic (Type-II), and
random (Type-III) [17, 3]. In more mathematical intuitive terms, the types are
respectively called continous, jump and mixed. In the Brusselator model, the signs
of some nondimensional computable parameters determine the transition types.

There have been two recent papers [1, 2] which also dealt with the dynamic
transitions of the Brusselator problem in different settings and with a different
perspective. In [2], the emphasis is solely on the dynamic transitions and not on
the pattern formations. More recently in [1] the problem is investigated in a one
spatial variable setting. Although such simplifications are sometimes necessary to
understand the basic mechanisms, to establish the relation between the pattern
formations and dynamic transitions, at least two spatial variables are necessary
which is the case studied in our paper. Thus the goal of the current paper is to
address the shortcomings of these two papers.

The organization of this paper is as follows. Section 2 deals with the mathe-
matical model, Section 3 focuses on the linear stability analysis and the principle
of exchange of stabilities. The main theorems and the dynamic transitions of the
model are addressed in Section 4, while the proofs of the theorems are discussed in
Section 5 with the conclusion in Section 6.

2. The Model And Its Mathematical Setup

In this section, we present the mathematical representation of the Brusselator
model together with the boundary conditions considered and then subsequently put
it into an abstract functional setting. The classical Brusselator model of Prigogine
and Lefever which in the nondimensionalized form reads

(2) ∂tu = a− (b+ 1)u+ u2v+ d∆u

∂tv = bu− u2v+ ∆v

a, b, d > 0. We assume the Neuman boundary conditions on a 2D rectangular box.

(3)
∂u

∂n
= 0, u = (u, v) on ∂Ω, Ω = (0, Lπ)× (0, π)

where n is the outer normal of the domain Ω.
The equations (2) admit the constant solution

(us, vs) = (a, b/a)

The equations for the perturbations

(4)

(
u ′

v ′

)
=

(
u
v

)
−

(
us
vs

)
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around this constant solution are as follows.

(5) ∂t

(
u ′

v ′

)
=

[
(b− 1) + d∆ a2

−b −a2 + ∆

](
u ′

v ′

)
+

[
b
a
u ′2 + 2au ′v ′ + u ′2v ′

−b
a
u ′2 − 2au ′v ′ − u ′2v ′

]
We write (5) in the standard form by first defining the function spaces.

H = L2(Ω,R2)(6)

H1 =

{(
u
v

)
∈ H2(Ω,R2) : ∂u

∂n
=
∂v

∂n
= 0 on ∂Ω

}
∩H,(7)

H1/2 =

{(
u
v

)
∈ H1(Ω,R2) : ∂u

∂n
=
∂v

∂n
= 0 on ∂Ω

}
∩H,(8)

(9)

We also define the operators Lb : H1 7→ H and G : H1/2 7→ H by

Lbu = ((b− 1)u+ a2v+ d∆u,−bu− a2v+ ∆v),(10)

G(u) = (
b

a
u2 + 2auv+ u2v,−

b

a
u2 − 2auv− u2v)(11)

Thus (5) can be written as

(12)
du

dt
= Lbu+G(u)

3. Linear Stability Analysis

In this section, we analyze the linear stability of the basic steady state of the
model. Then we formulate this analysis as principle of exchange of stabilities (PES),
see Theorem 1.

For this purpose, we start with defining the index set

(13) K = (k1, k2) ∈ Z2≥0,

the wavenumber

k2 =
k21
L2

+ k22, k ∈ K,

and the modes

ek1,k2
(x, y) = cos

k1

L
x cosk2y, (k1, k2) ∈ K.

The mode is said to have a rectangular pattern if k1 6= 0, k2 6= 0 and a roll
pattern if either k1 = 0 or k2 = 0. The particular case k1 = k2 6= 0 of a rectangular
pattern is called a square pattern.

For k = (k1, k2) ∈ K, plugging the ansatz

(14)

[
uk
vk

]
ek1,k2

(x, y)

into the eigenvalue problem

(15) Lbek = βkek,

yields the eigenvalue relation

(16) βk

[
uk
vk

]
= A

[
uk
vk

]
− k2D

[
uk
vk

]
where the operators A and D stand for

A =

[
b− 1 a2

−b −a2

]
, D =

[
d 0
0 1

]
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We can easily show that the eigenvectors are given by

(17)

[
uk
vk

]
=

[
1
−b

βk+a2+k2

]
and the eigenvalues satisfy

(18) det(βkI− (A− k2D)) = β2k − τkβk + ∆k = 0

where

(19) τk = tr(A− k2D) = b− 1− a2 − (d+ 1)k2

and

(20) ∆k = det(A− k2D) = a2 + (a2d+ 1− b)k2 + dk4

Hence the eigenvalues are

(21) βk =
τk ±

√
τ2k − 4∆k

2

Turing instability is defined as the stability of the equilibrium without diffusion,
i.e. k = 0 case, while instability with diffusion for some k 6= 0. This was the
original idea of Turing which was a novel one since diffusion is often a stabilizing
mechanism.

Since ∆0 = det(A) = a2 > 0, the stability of the equilibrium without diffusion
only requires

(22) τ0 = tr(A) = b− 1− a2 < 0

From (18), the instability in the presence of diffusion means that for some k 6= 0,
exactly one of the following conditions (23), (24) holds:

(23) ∆k < 0

or

(24) ∆k > 0 and τk > 0.

Since τk ≤ τ0, τ0 < 0 implies that τk < 0 for any k, (22) and (24) are incompatible.
Thus for the Turing instability, one requires the following two conditions to hold.

(25) τ0 < 0, and ∆k < 0 for some k ∈ K.
The critical Turing wave number kT ∈ K is determined as

(26) kT = argmink∈K ∆k.

To obtain kT , we first consider the problem

(27) 0 =
d

dk2
∆k =

d

dk2
det(A− k2D) = tr(D−1A− k2I), k2 ∈ R+.

whose solution is

(28) k̃2 =
1

2
tr(D−1A) =

b− 1− a2d

2d
.

The critical transition number bT is now determined by solving b from the
relation

0 = ∆k̃ = −
(b− 1)2 − 2a2(1+ b) + a4d2

4d
and is obtained as

b = (a
√
d± 1)2.

However, only b = (a
√
d+ 1)2 in (28) gives a positive k̃2. Thus we define

bT = (a
√
d+ 1)2
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Suppose that for k1, k2 ∈ K,

k21 ≤ k̃2 |b=bT
=

a√
d
≤ k22.

Then we define kT ∈ K as

(29) k2T = argmink∈{k1,k2}
∆k.

Since
d∆k

db
= −k2 < 0

the following transversality condition is satisfied

(30) ∆kT


> 0 b < bT

= 0 b = bT

< 0 b > bT

which ensures the PES condition given in Theorem 1. Let us define

bH = a2 + 1

so that the condition τ0 < 0 is equivalent to the condition b < bH. Hence Turing
instability is possible if bT < bH which is equivalent to the condition

√
d <

√
1+ a2 − 1

a

In this case, solving βk = 0 which is equivalent to ∆k = 0 gives neutral stability
curves

b =
(a2 + k2)(1+ dk2)

k2
.

This is illustrated in Figure 1.

0 2 4 6

2

4

6

8

a

b

β1,0 = 0

β1,1 = 0

β2,0 = 0

β2,1 = 0

β2,2 = 0

Figure 1. The neutral stability curves above which the eigenvalue
with given wave number k ∈ K is unstable in the a−b plane. Here
d = 0.5, L = 1.

As a result of the above discussion, we can write the following theorem which is
known as the Principle of Exchange of Stabilities (PES).

Theorem 1. Suppose that
√
d <

√
1+a2−1
a

. Then the basic steady state is stable
without diffusion, that is when d = 0. In the presence of diffusion, d 6= 0, the basic
steady state loses its stability as b exceeds bT = (a

√
d+1)2. In particular the linear

operator has finitely many real eigenvalues with wavenumber kT as defined in (29)
which cross the imaginary axis as b exceeds bT while the rest of its spectrum lies in
the negative complex half plane.

Another possibility of transition is the Hopf transition which occurs when tr(A) =
0 while det(A) > 0. In this case a pair of complex eigenvalues cross the imaginary

axis. It can be shown that Hopf bifurcation is possible when
√
d >

√
1+a2−1
a

, see
Figure 2. However we will not discuss this case in this study.
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Hopf
instability
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d

Figure 2. Hopf vs Turing instability in the parameter space.

4. Main Transition Theorems

As illustrated in Figure 1, depending on the parameters of the system, the first
critical mode(s) can have either a roll pattern or a rectangular pattern. We recall
that the first critical modes have roll pattern if its wavenumber is (k, 0), k 6= 0 or
have rectangular pattern if its wavenumber is (j, k), j 6= 0, k 6= 0. Also depending
on the parameters, several of these modes may become unstable simultaneously.
In this paper, our aim is to identify the transitions associated with these critical
crossings.

4.1. Single rectangular mode transition. The first case we consider is a single
critical mode with a rectangular spatial pattern with wavenumber kT = (j1, j2),
j1 6= 0, j2 6= 0. Then near the onset of transition, we find that Landau equation for
the amplitude of this critical mode is as follows.

(31)
dx

dt
= βj1,j2x1 +Ax

3
1 + o(3)

(32) A =
c

16

(
4M00 + 2M20 + 2M02 +M22

)
, c > 0.

and x is the time dependent amplitude of the first critical mode, βj1,j2 is the critical
eigenvalue. Moreover, the other terms are defined as follows.

(33) c =
(a2 + k2T + bT )(a

2 + k2T )

((a2 + k2T )
2 + b2T )

and the other parameter as also given by the following,

(34)

Mk =
(φ1φ2 + φ1φ3vk)Vk

βk
,

Vk =
vk − 1

v2k + 1
, vk =

−bT
βk + a2 + k2

, k ∈ K.

(35)

φ1 =
(k2T − a2)bT
a(a2 + k2T )

,

φ2 =
2k2TbT

a(a2 + k2T )
,

φ3 = 2a.
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Theorem 2. Suppose that the conditions of Theorem 1 holds and the first critical
mode has a rectangular pattern with wavenumber kT = (j1, j2), j1 6= 0 and j2 6= 0.
Then the system (2) has a transition at b = bT which depends on the number A
defined in (31) and a special case of which is as shown in Figure 3. The following
conclusions also hold true:

(1) If A > 0 system (2) has a jump transition accompanied by subcritical
pitchfork bifurcation at b = bT . In particular, there are no bifurcated
steady states on b > bT and there are exactly two bifurcated solutions vb+
and vb− which are saddles when b < bT . Also, for b < bT , the stable
manifolds of these bifurcated steady states divide the phase plane H into
three disjoint open sets Ub+, Ub0 and Ub− such that v = 0 ∈ Ub0 is an

attractor, and the orbits in Ub± are far from v = 0.
(2) If A < 0 system (2) has a continuous transition accompanied by su-

percritical pitchfork bifurcation at b = bT . In particular, there are
no bifurcated steady states on b < bT and there are exactly two bifurcated
solutions ub+ and ub− which are attractors when b > bT . Also there is a
neighborhood O ⊆ H of u = 0, such that the stable manifold of u = 0 divides
O into two disjoint open sets Ub+ and Ub− such that ub+ ∈ Ub+, ub− ∈ Ub−
and u± attracts Ub±.

(3) The bifurcated steady state solutions are defined only for βj1,j2A < 0 and
are given by

vb± = ±
√

−βj1,j2
A

cos

(
j1x

L

)
cos j2y+ o(

√
−βj1,j2) or(36)

ub± = ±
√

−βj1,j2
A

cos

(
j1x

L

)
cos j2y+ o(

√
−βj1,j2)(37)

H

b

vb+

vb−

Ub+

Ub−

Ub0

A > 0

H

b

A < 0

ub+

ub−

Ub+

Ub−

Ub0

Figure 3. The bifurcation diagram for the Turing instability
when the first critical wavenumber is kT = (1, 1). The bifurca-
tion is subcritical pitchfork when A > 0 and supercritical pitchfork
when A < 0 where A is given by (31).

Figure 3 in essence summarizes Theorem 2 and displays the types of bifurcation
that occurs depending on the sign of A.

To better understand the dependence of the transition number A in (32) on the
system parameters, we consider a specific case where the domain is a square, the
aspect ratio L = 1 and the first critical mode has patterns with j1 = j2 = 1. In
this specific case, there exist pairs (a, d) ∈ Ω1 on the a−d plane where A > 0 and
pairs (a, d) ∈ Ω2 where A < 0, see Figure 4.
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1 2 3 4 5
1

2

3

4

5

6

d

a

A < 0

Figure 4. The transition type for single rectangular mode tran-
sition in the a−d parameter space for the special case j1 = j2 = 1
and aspect ratio L = 1. The unshaded region represents jump
transition while the shaded region represents continuous tran-
sition.

4.2. Single roll mode transition. Next, we turn to the transition scenario of a
single critical roll pattern mode with wavenumber

kT = (j1, 0), j1 6= 0

. In this case, our analysis shows that the Ginzburg Landau equation for this single
mode is given by

(38)
dx1

dt
= βj1,0x1 + Bx

3
1 +O(4)

where x1 is the time dependent amplitude of the first critical mode and βj1,0 is the
critical eigenvalue. The coefficient of the cubic term is as follows.

(39) B =
c

4

(
2M00 +M20

)
The transition theorem in this case is similar to that of Theorem 2 and the

bifurcation diagram for the transition number B is similar to that of A. The system
(2) exhibits continuous transition when B < 0 and jump transition when B > 0
see Figure 5 .

The bifurcated steady state solutions defined only when βj1,0B < 0 can be
expressed as

wb± = ±
√

−βj1,0
B

cos

(
j1x

L

)
+ o(

√
−βj1,0)(40)

4.3. Double roll mode transition. We consider the critical crossing of two roll
modes with common wavenumber

k2T = k2j1,0 = k
2
0,j2

and the critical length scale

L =
j1

j2
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1 2 3 4 5
1

2

3

4

5

6

d

a

B < 0

Figure 5. The transition type for single roll mode in the pa-
rameter space a − d for the special case j1 = 1 and aspect ratio
L = 1. The unshaded region represents jump transition while
the shaded region represents continuous transition.

Then near the onset of transition, we find the Landau equations for the ampli-
tudes of these modes as

(41)

dx1

dt
= βj1,0x1 +D1x1x

2
2 +D2x

3
1 + o(3)

dx2

dt
= β0,j2x2 +D1x

2
1x2 +D3x

3
2 + o(3)

where x1 and x2 are the time dependent amplitudes of the critical modes and βj1,0,
β0,j2 are the critical eigenvalues.

(42)

D1 =
c

2

(
M00 + 2M11

)
D2 =

c

4

(
2M00 +M20

)
D3 =

c

4

(
2M00 +M02

)

Thus

D2 = B.

and in the case j1 = j2, D2 = D3. Figure 6 shows plots of D1, D2 in the a − d
parameter space.

To describe the bifurcated solutions, as in [18], first we assume the following
non-degeneracy conditions.

(43) D2 6= 0, D1 +D2 6= 0, βj1,0D2 < 0, βj1,0(D1 +D2) < 0.
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D1 < 0

1 2 3 4 5
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6

d
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D2 < 0

Figure 6. Plots of D1(left) and D2(right) in the a−d parameter
space for the case j1 = j2 = 1 and hence D2 = D3. The shaded
regions respectively show where D1 and D2 are negative.

ϕi = (−1)i
√
βj1,0

−D2
cos

(
j1x

L

)(
1
vj1,0

)
, i = 1, 2

ϕi = (−1)i
√
β0,j2
−D2

cos j2y

(
1
v0.j2

)
, i = 3, 4

ϕi = ci cos

(
j1x

L

)(
1
vj1,0

)
+ di cos j2y

(
1
v0,j2

)
, i = 5, 6, 7, 8

where

c5 = c6 = −c7 = −c8 =

√
βj1,0

−(D1 +D2)

d5 = −d6 = d7 = −d8 =

√
βj1,0

−(D1 +D2)

Thus ϕ1, ϕ2, ϕ3 and ϕ4 are the roll modes with critical wave number k2T = 1 while
ϕ5, ..., ϕ8 are mixed modes which are the superposition of the roll modes.

Theorem 3. Assume the aspect ratio is L = j1
j2

and the first two critical modes

have wavenumbers kT = (j1, 0) and kT = (0, j2) such that j1 = j2. Then the
system undergoes a first transition as b exceeds bT . Moreover, under the assumption
(43), the system has a continuous (respectively jump) transition accompanied by a
bifurcated attractor (respectively repeller) Σb on b > bT (respectively on b < bT )
depending on D1, D2. Σb is homeomorphic to the circle S1 and contains the steady
states together with connecting heteroclinic orbits.

We let N(Σb) denote the number of steady states on Σb, S denotes stable steady
states, and U denote the unstable steady states on Σb. We have the following
characterization of Σb which is also given in Figure 7 and Figure 8.

(i) If D1 < D2 < 0 then Σb is an attractor such that N(Σb) = 8, S = {ϕi|i =
1, 2, 3, 4}, U = {ϕi|i = 5, 6, 7, 8}.

(ii) If D2 < D1 < 0 or D2 < 0 < D1 D1+D2 < 0 then Σb is an attractor such
that N(Σb) = 8, S = {ϕi|i = 5, 6, 7, 8}, U = {ϕi|i = 1, 2, 3, 4}.
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(iii) If D2 < 0 < D1, D1 +D2 > 0, then Σb is a repeller such that N(Σb) = 4,
U = {ϕi|i = 1, 2, 3, 4}.

(iv) If D2 > D1 > 0, then Σb is a repeller such that N(Σb) = 4, U = {ϕi|i =
5, 6, 7, 8}.

(v) If D2 > 0 > D1, D1 +D2 < 0, then Σb is a repeller such that N(Σb) = 4,
U = {ϕi|i = 5, 6, 7, 8}.

(vi) D2 > 0 > D1 or D2 > D1 > 0, D1 +D2 > 0, then Σb is an attractor such
that N(Σb) = 4, S = {ϕi|i = 5, 6, 7, 8}.

From Theorem 3, the structure of the attractor depends on the signs of D1,
D2. Figure 7 and Figure 8 show the possible transitions from Theorem 3. Table 1
provides the summary of the steady states, condition of existence and stability.

Steady State Existence Stability
ϕ1, ϕ2 βj1,0D2 < 0 D1 < D2 < 0

ϕ3, ϕ4 β0,j2D2 < 0 D1 < D2 < 0

ϕ5, ϕ6, ϕ7, ϕ8 βj1,0(D1 +D2) < 0,
β0,j2(D1 +D2) < 0

D2 < D1 < 0

Table 1. Existence and stability conditions for steady states of
the double roll mode transitions.

ϕ5

ϕ7

ϕ8

ϕ6

ϕ1

ϕ2
x1

ϕ4

x2

ϕ3

Figure 7. D1 < D2 < 0
.

ϕ5

ϕ7

ϕ8

ϕ6

ϕ1

ϕ2

ϕ4

x1

x2

ϕ3

Figure 8. D2 < D1 < 0 (or D2 < 0 < D1), D1 +D2 < 0
.
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D1

D1 = D2D1 = −D2

D2

II1

I1

III1

I2

II3

III2 III3

II2
T

y
p
e

-
II

Type-II
I

Type - I

T
y
p
e

-I
I

Figure 9. Classification of transition types for the double roll
mode: Continuous Type-I, Jump Type-II, Mixed Type III. See
Figure 7 and Figure 8 for the topological structures of III1, III2
and III3.

4.4. A roll and a rectangular mode transition. Now we consider the interac-
tions of a roll mode with a square mode. To understand the formation of hexagonal
patterns, we let the critical wave number be as follows

(44) k2T = k22j1,0 = k
2
j1,j2

Such that the critical length scale,

L =
j1
√
3

j2
.

Moreover, we assume that one of the first two critical modes has a square pattern
and the other has a roll pattern.

Under the above assumptions and near b = bT , we let βj1,0 = βj1,j2 = β, then
we obtain that the dynamics of the system is dictated by the following ODE system

(45)

dx1

dt
= βx1 +A1x1x2 + x1(A2x

2
1 +A3x

2
2) +O(4)

dx2

dt
= βx2 + B1x

2
1 + x2(B2x

2
1 + B3x

2
2) +O(4)

(46)

A1 = cφ1, A2 =
c

16

(
M22 + 4M00

)
, A3 =

c

2

(
M00 + 2M31

)
B1 =

cφ1

4
, B2 =

c

2

(
M00 + 2M31

)
, B3 =

c

4

(
2M00 +M40

)
Thus from (46), we observe that A1 = 4B1 and A3 = B2.

For the analysis of (45), we assume the following non-degeneracy conditions.

(47) B3 6= 0, A1B1 6= 0.
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To discuss the bifurcated steady states, we define the following pure and mixed
solutions as follows.

ϕi = (−1)i
√

−
β

B3
cos(j2y)

(
1
v0,j2

)
, i = 1, 2

ϕi = (−1)i
1√
A1B1

β cos

(
j1x

L

)
cos(j2y)

(
1

vj1,j2

)
−
1

A1
β cos(j2y)

(
1
v0,j2

)
, i = 3, 4

Thus ϕ1, ϕ2 are the pure modes modes while ϕ3, ϕ4 are the mixed modes. In
what follows, we provide the key aspects of the transition theory of system (45).
We note that the transition of the system depends on the coefficients A1, B2 and
B3 while the rest of the coefficients only play quantitative role. For full details of
the theorem, the stability and existence of the steady states as well as the related
transition diagrams and detailed analysis, we refer the interested reader to [17] and
the proofs there in.

Theorem 4. For A1B1 > 0,

(i) If B3 < 0, then the system (45) undergoes a random (Type - III) transition
near b = bT .

(ii) If B3 > 0, then the system (45) undergoes a catastrophic (Type - II )
transition at b = bT .

For A1B1 < 0,

(i) If B3 < 0, then the system (45) undergoes a continuous (Type - I) transition
near b = bT .

(ii) If B3 > 0, then the system (45) undergoes a catastrophic (Type - II )
transition at b = bT .

Figure 10. Density Plot (left), Contour Plot (right) of Sample

Mixed Mode Patterns, cos
(
x√
3

)
cos(y) + cos

(
2x√
3

)
as applied to Theorem 4.

5. PROOFS

In this section, we present the proofs of our main theorems using the center
manifold reduction criteria to establish amplitude equations for various modes of
transitions.

5.1. CENTER MANIFOLD REDUCTION. We write our solution as follows

(48)

(
u
v

)
=

r∑
k=1

xk

(
uk
vk

)
ek1,k2

+

(
Φu
Φv

)
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where r is the number of critical modes whileΦu andΦv are the u and v components
of the center manifold function.

ek1,k2
= cos

k1

L
x cosk2y

We adopt the following notations for simplicity.

emn = cos(
mj1x

L
) cos(nj2y) m,n ∈ Z+ ∪ {0}

fmn = emn

For example f20 = e2j10, f11 = ej1j2 .

5.1.1. Single rectangular mode transition. We consider a single critical mode with
rectangular pattern

f11 = ej1j2 = cos
j1

L
x cos j2y(

u
v

)
= x(t)

(
uj1,j2
vj1,j2

)
f11 +

(
Φu
Φv

)
(49)

where

(
uj1,j2
vj1,j2

)
f11 is the critical eigenvector and

(50)

(
Φu
Φv

)
= Φ00

(
u0,0
v0,0

)
f00 +Φ20

(
u2j1,0
v2j1,0

)
f20

+Φ02

(
u0,2j2
v0,2j2

)
f02 +Φ22

(
u2j1,2j2
v2j1,2j2

)
f22

where

(51)

Φ00 = q00x
2

Φ20 = q20x
2

Φ02 = q02x
2

Φ22 = q22x
2

By substituting the central part of (49) into (12) we have

(52) f11

(
uj1,j2
vj1,j2

)
dx(t)

dt
= x

(
uj1,j2
vj1,j2

)
βj1,j2f11 +

(
g1(u, v)
g2(u, v)

)
where

G(u) =

(
g1(u, v)
g2(u, v)

)
We take the inner product of (52) with

(
uj1,j2
vj1,j2

)
f11 and obtain the following equa-

tion

(53)

dx(t)

dt
= βj1,j2x(t) +

(
1− vj1,j2
1+ v2j1,j2

)
〈g1(u, v), f11〉
〈f11, f11〉

dx(t)

dt
= βj1,j2x(t) + c

〈g1(u, v), f11〉
〈f11, f11〉

where c is a positive constant given by

c =

(
1− vj1,j2
1+ v2j1,j2

)
=

(a2 + k2T + bT )(a
2 + k2T )

((a2 + k2T )
2 + b2T )
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(54)

g1(u, v) =
b

a
u2 + 2auv+ h.o.t

=

(
b

a
+ 2avj1,j2

)
x21f

2
11 +

(
2
b

a
+ 2avj1,j2

)
x1f11Φu + 2ax1f11Φv

= φ1x
2
1f
2
11 + φ2x1f11Φu + φ3x1f11Φv

φi, i = 1, 2, 3 are as defined in (35) and we have made the substitution u11 = 1.

We define G21 as the quadratic part of g1(u, v) as follows

(55) G21 = φ1x
2
1f
2
11

Also

〈f1, f2, f3〉 =
∫
Ω

(f1f2f3)dµ, 〈f1, f2〉 =
∫
Ω

(f1f2)dµ

(56) 〈g1, f11〉 = φ1x21〈f211, f11〉+ φ2x1〈f11Φu, f11〉+ φ3x1〈f11Φv, f11〉

The inner products in (56) are as follows.
(57)
〈f11Φu, f11〉 = Φ00〈f11f00, f11〉+Φ20〈f11f20, f11〉+Φ02〈f11f02, f11〉

+Φ22〈f11f22, f11〉

=
Lπ2

16
(4Φ0,0 + 2Φ20 + 2Φ02 +Φ22)

〈f11Φv, f11〉 = Φ00v0,0〈f11f00, f11〉Φ20v2j1,0〈f11f20, f11〉+Φ02v0,2j2〈f11f02, f11〉
+Φ22v2j1,2j2〈f11f22, f11〉

=
Lπ2

16
(4Φ0,0v0,0 + 2Φ20v2j1,0 + 2Φ02v0,2j2 +Φ22v2j1,2j2)

〈f211, f11〉 = 0.

Next we substitute (57) into (56) and obtain the following.

(58) 〈g1, f11〉 =
Lπ2

16

[
4(φ2 + φ3v0,0)Φ00 + 2(φ2 + φ3v2j1,0)Φ20

+ 2(φ2 + φ3v0,2j2)Φ02 + (φ2 + φ3v2j1,2j2)Φ22

]
x1

Next we solve for the coefficients of the center manifold functions by first evalu-
ating the following inner products.

(59)

〈G21, f00〉 = 4〈G21, f22〉 =
Lπ2

4
φ1x

2
1

〈G21, f20〉 = 〈G21, f02〉 =
Lπ2

8
φ1x

2
1

〈f11, f11〉 = 〈f22, f22〉 =
Lπ2

4

〈f20, f20〉 = 〈f02, f02〉 =
Lπ2

2

〈f211, f11〉 = 0
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then utilising the equation
dΦ

dt
= L(Φ) +G(u)

that is,

(60)
d

dt

[
Φu
Φv

]
= L

[
Φu
Φv

]
+

[
G21
G22

]
Substituting the terms of the center manifold function in turns we have

(61)

f20

(
u2j1,0
v2j1,0

)
dΦ20

dt
= β2j1,0Φ20

(
u2j1,0
v2j1,0

)
f20 + P2

(
G21
G22

)
dΦ20

dt
= β2j1,0Φ20 +

(
1−v2j1,0

1+v2
2j1,0

) 〈G21, f20〉
〈f20, f20〉

= β2j1,0q20x
2
1 +

(
1−v2j1,0

1+v2
2j1,0

) 〈G21, f20〉
〈f20, f20〉

(62)

dΦ20

dt
=
∂Φ20

dt
.
dx1

dt
= 2q20x1(βj1,j2x1 + ...)

By comparing (61) and (62) and following similar computations we can write the
coefficients as follows

(63)

q00 =
φ1

4β0,0
V0,0, Φ00 =

φ1

4β0,0
V0,0x

2
1

q20 =
φ1

4β2j1,0
V2j1,0, Φ20 =

φ1

4β2j1,0
V2j1,0x

2
1,

q02 =
φ1

4β0,2j2
V0,2j2 , Φ02 =

φ1

4β0,2j2
V0,2j2x

2
1,

q22 =
φ1

4β2j1,2j2
V2j1,2j2 , Φ22 =

φ1

4β2j1,2j2
V2j1,2j2x

2
1

Thus (58) can be simplified to

(64) 〈g1, f11〉 =
Lπ2

64

(
4M00 + 2M20 + 2M02 +M22

)
x31

Where M00,M20,M02 and M22 are as defined in (34). When we substitute (64)
into (53) we obtain (31). This concludes the proof for this case.

5.1.2. Single roll mode transition. We consider a single critical mode with roll pat-
tern

f10 = ej1,0 = cos

(
j1x

L

)
, j1 ∈ N

(
u
v

)
= x1

(
uj1,0
vj1,0

)
f10 +

(
Φu
Φv

)
(65)

(66)

(
Φu
Φv

)
= Φ00

(
u0,0
v0,0

)
f00 +Φ20

(
u2j1,0
v2j1,0

)
f20

+Φ02

(
u0,2j2
v0,2j2

)
f02 +Φ11

(
uj1,j2
vj1,j2

)
f11
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Φ00 = m00x
2
1

Φ20 = m20x
2
1

Φ02 = m02x
2
1

Φ11 = m22x
2
1

By substituting the center part of the solution (65) into (12) we obtain the
following amplitude equations.

(67)
dx1

dt
= βj1,0x1 + c

〈g1, f10〉
〈f10, f10〉

Following similar process as in the single rectangular mode transition, we cans
show that in this case

(68)

g1 = φ1x
2
1f
2
10 + φ2x1f10Φu + φ3x1f10Φv

〈g1, f10〉 = φ1x21〈f210, f10〉+ φ2x1〈f10Φu, f10〉+ φ3x1〈f10Φv, f10〉

〈g1, f10〉 =
Lπ2

4

[
(φ2 + φ3v2j1,0)Φ20 + (φ2 + φ3v0,0)Φ00

]
x1

=
Lπ2

4

(
M00 + 1/2M20

)
x31,

〈f10, f10〉 =
Lπ2

2
, 〈f210, f10〉 = 0, 〈f00, f00〉 = Lπ2.

The coefficients of the center manifold function are computed in a similar fashion
as in the single rectangular mode transition.

(69)

m00 =
φ1

2β00
V00, Φ00 =

φ1

2β00
V00x

2
1,

m20 =
φ1

4β2j1,0
V2j1,0, Φ20 =

φ1

4β2j1,0
V2j1,0x

2
1,

m02 = m22 = 0.

Substituting the results in (68) into (67), we obtain the results in (39). This
concludes the proof.

5.1.3. Transitions from double roll mode. In this case, r = 2 and the critical modes
are

f10 = ej1,0 = cos

(
j1x

L

)
, f01 = e0,j2 = cos j2y, j1, j2 ∈ N

(70)

(
u
v

)
= x1(t)

(
uj1,0
vj1,0

)
f10 + x2(t)

(
u0,j2
v0,j2

)
f01 +

(
Φu
Φv

)
(
Φu
Φv

)
= Φ00

(
u0,0
v0,0

)
f00+Φ20

(
u2j1,0
v2j1,0

)
f20+Φ02

(
u0,2j2
v0,2j2

)
f02+Φ11

(
uj1,j2
vj1,j2

)
f11

Φ20(x1, x2) = a11x
2
1 + a12x1x2 + a22x

2
2

Φ02(x1, x2) = b11x
2
1 + b12x1x2 + b22x

2
2

Φ11(x1, x2) = c11x
2
1 + c12x1x2 + c22x

2
2

Φ00(x1, x2) = d11x
2
1 + d12x1x2 + d22x

2
2
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By substituting the center part of the solution into (12) we obtain the following
amplitude equations.

(71)

dx1

dt
= βj1,0x1 + c

〈g1, f10〉
〈f10, f10〉

dx2

dt
= β0,j2x2 + c

〈g1, f01〉
〈f01, f01〉

where c is as defined in (33) whereas in this case, g1(u, v) is defined us

(72)
g1(u, v) =

(
x21f

2
10 + 2x1x2f10f01 + x2f

2
01

)
φ1 + (x1f10 + x2f01) (φ2Φu + φ3Φv)

In this case the quadratic part of g1(u, v) is given by

G21 =
(
x21f

2
10 + 2x1x2f10f01 + x

2
2f
2
01

)
φ1

.
Now we evaluate 〈g1, f10〉 and 〈g1, f01〉 as follows.

(73)

〈g1, f10〉 = φ1ρ1 + φ2ρ2 + φ3ρ3
ρ1 = 〈

(
x21f

2
10 + 2x1x2f10f01 + x

2
2f
2
01

)
, f10〉

ρ2 = 〈(x1f10 + x2f01)Φu, f10〉
ρ3 = 〈(x1f10 + x2f01)Φv, f10〉

(74)

〈g1, f01〉 = φ1ρ̃1 + φ2ρ̃2 + φ3ρ̃3
ρ̃1 = 〈

(
x21f

2
10 + 2x1x2f10f01 + x

2
2f
2
01

)
, f01〉

ρ̃2 = 〈(x1f10 + x2f01)Φu, f01〉
ρ̃3 = 〈(x1f10 + x2f01)Φv, f01〉

Hence (73) and (74) evaluate to

(75)

〈g1, f10〉 =
Lπ2

4

[
2(φ2 + φ3v00)Φ00x1 + (φ2 + φ3v2j1,0)Φ20x1

+(φ2 + φ3vj1,j2)Φ11x2
]

〈g1, f01〉 =
Lπ2

4

[
2(φ2 + φ3v00)Φ00x2 + (φ2 + φ3v0,2j2)Φ02x2

+(φ2 + φ3vj1,j2)Φ11x1
]

〈G21, f20〉 = Lπ2

4
φ1x

2
1, 〈f20, f20〉 = Lπ2

2

〈G21, f02〉 = Lπ2

4
φ1x

2
2, 〈f02, f02〉 = Lπ2

2

〈G21, f11〉 = Lπ2

2
φ1x1x2, 〈f11, f11〉 = Lπ2

4

〈G21, f00〉 = Lπ2

4
φ1(x

2
1 + x

2
2), 〈f00, f00〉 = Lπ2

Now we look for the coefficients of the terms in the center manifold function.
We substitute each of the terms of center manifold part of our solution to (12) and
take the inner product with respect to respective eigenfunctions as in the previous
cases, we obtain the following equations.
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(76)

dΦ20(x1, x2)

dt
= β2j1,0Φ20 +

(
1− v20
1+ v220

)
〈G21, f20〉
〈f20, f20〉

dΦ02(x1, x2)

dt
= β0,2j2Φ02 +

(
1− v02
1+ v202

)
〈G21, f02〉
〈f02, f02〉

dΦ11(x1, x2)

dt
= βj1,j2Φ11 +

(
1− v11
1+ v211

)
〈G21, f11〉
〈f11, f11〉

Equation (76) can also be written alternatively as

(77)

dΦ00

dt
=
∂Φ00

∂x1
.
dx1

dt
+
∂Φ00

∂x2
.
dx2

dt

dΦ20

dt
=
∂Φ20

∂x1
.
dx1

dt
+
∂Φ20

∂x2
.
dx2

dt

dΦ02

dt
=
∂Φ02

∂x1
.
x1

dt
+
∂Φ02

∂x2
.
dx2

dt

dΦ11

dt
=
∂Φ11

∂x1
.
dx1

dt
+
∂Φ11

∂x2
.
dx2

dt

By comparing (76) and (77) we obtain the following results for the coefficients.

(78)

d11 = d11 =
φ1

2β0,0
V0,0, d12 = 0

a11 =
φ1

2β2j1,0
V2j1,0, a12 = a22 = 0

b22 =
φ1

2β0,2j2
V0,2j2 , b11 = b12 = 0

c12 =
2φ1

βj1,j2
Vj1,j2 , c11 = c22 = 0

Substituting (78) into (75), We obtain

(79)
〈g1, f10〉 =

Lπ2

4

[
(M00 + 1/2M20)x

3
1 + (M00 + 2M11)x1x

2
2

]
〈g1, f01〉 =

Lπ2

4

[
(M00 + 2M11)x

2
1x2 + (M00 + 1/2M02)x

3
2

]
By putting (79) into (71) simplifies to (41).
The steady states for (41) are as follows,

(80)

P0 = (0, 0)

P±1 ≡

(
0,±

√
−βj1,0
D2

)
, βj1,0D2 < 0

P±2 ≡

(
±
√

−βj1,0
D2

, 0

)
, β10D2 < 0

M± ≡

(
±
√

−βj10
D1 +D2

,±
√

−βj1,0
D1 +D2

)
, βj1,0(D1 +D2) < 0

P±1 and P±2 are steady states for the pure modes while M± represents the steady
states of the mixed modes. We define the Jacobian,

(81) J(x1, x2) =

[
βj1,0 +D1x

2
2 + 3D2x

2
1 2D1x1x2

2D1x1x2 βj1,0 +D1x
2
1 + 3D2x

2
2

]
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(82) J(P0) =

[
βj1,0 0
0 βj1,0

]

P0 is unstable if λ0 = βj1,0 > 0 and stable if λ0 = βj1,0 < 0.

(83) J(P±1 ) =

[
(D2−D1)
D2

βj1,0 0

0 −2βj1,0

]
From (80), λP1

1 = 1
D2

(D2 −D1)βj1,0 and λP1

2 = −2βj1,0 and also from (81), λP1

2 =

−2βj1,0 and λP2

1 = 1
D2

(D2 −D1)βj1,0. Therefore P1, P2 are stable when βj1,0 > 0
and D1 < D2 < 0.

(84) J(P±2 ) =

[
−2βj1,0 0

0
(D2−D1)
D2

βj1,0

]

(85) J(M±) =

[
−2D2

D1+D2
βj1,0

2D1

D1+D2
βj1,0

2D1

D1+D2
βj1,0

−2D2

D1+D2
βj1,0

]

To analyze the stability of M± we find the trace and the determinant as follows

τ = −4D2

D1+D2
βj1,0(86)

∆ =
4(D2−D1)β

2
j1,0

(D1+D2)
(87)

Thus M± is stable when τ < 0 and ∆ > 0 and unstable otherwise. From Theorem 3
and from the trace and determinant of the jacobian matrix of the truncated vector
field, we can draw the following conclusions.

(1) The structure of the attractor depends on the signs of the parameters D1,
D2 and on the sum D1 +D2. The signs of D1, D2 can either be negative
or positive.

(2) The trace, τ is negative when D1+D2 < 0 and positive when D1+D2 > 0
since for the existence of the steady states for the pure modes, we require
β10D2 to be negative always.

(3) The determinant, ∆ is positive when both D2 −D1 and D2 +D1 have the
same sign and negative when their signs alternates.

(4) Only cases (i) and (ii) under Theorem 3 are possible because each of cases
(iii), (iv) and (v) lead to four steady states on the attractor which are all
unstable.

5.1.4. Transitions from a roll mode and a rectangular mode. In this case r = 2 and
the critical modes are

f11 = ej1,j2 = cos

(
j1x

L

)
cos (j2y) , f20 = e2j10 = cos

(
2j1x

L

)
j1, j2 ∈ N

(88)

(
u
v

)
= x1(t)

(
uj1,j2
vj1,j2

)
f11 + x2(t)

(
u2j1,0
v2j1,0

)
f20 +

(
Φu
Φv

)
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(89)

(
Φu
Φv

)
= Φ00

(
u0,0
v0,0

)
f00 +Φ40

(
u4j1,0
v4j1,0

)
f40 +Φ31

(
u3j1,j2
v3j1,j2

)
f3j1,j2

+Φ22

(
u2j1,2j2
v2j1,2j2

)
f22

Φ00(x1, x2) = q11x
2
1 + q12x1x2 + q22x

2
2

Φ40(x1, x2) = h11x
2
1 + h12x1x2 + h22x

2
2

Φ31(x1, x2) = m11x
2
1 +m12x1x2 +m22x

2
2

Φ22(x1, x2) = n11x
2
1 + n12x1x2 + n22x

2
2

By substituting the center part of the solution in (12) we obtain the following
amplitude equations as in the previous cases,

(90)

dx1

dt
= βx1 + c

〈g1, f11〉
〈f11, f11〉

dx2

dt
= βx2 + c

〈g1, f20〉
〈f20, f20〉

such that at the critical crossing, we have let

β2j1,0 = βj1,j2 = β

Also, c is as defined in (33) and in this case g1(u, v) is given below

(91)
g1 =φ1(x

2
1f
2
11 + 2x1x2f20f11 + x

2
2f
2
20) + φ2(x1f11 + x2f20)Φu+

φ3(x1f11 + x2f20)Φv

In this case the quadratic part of g1 is given by

(92) G21 = φ1(x
2
1f
2
11 + 2x1x2f20f11 + x

2
2f
2
20)

Now we evaluate 〈g1, f20〉 and 〈g1, f11〉 as follows.

(93)

〈g1, f11〉 = φ1ρ1 + φ2ρ2 + φ3ρ3
ρ1 = 〈(x21f211 + 2x1x2f20f11 + x22f220), f11〉
ρ2 = 〈(x1f11 + x2f20)Φu, f11〉
ρ3 = 〈(x1f11 + x2f20)Φv, f11〉

Therefore

(94)

ρ1 =
Lπ2

4
x1x2

ρ2 =
Lπ2

16
(4Φ00x1 +Φ22x1 + 2Φ31x2)

ρ3 =
Lπ2

16
(4Φ00v00x1 +Φ22v2j1,2j2x1 + 2Φ31x2)

Similarly,

(95)

〈g1, f20〉 = φ1ρ̃1 + φ2ρ̃2 + φ3ρ̃3
ρ̃1 = 〈(x21f211 + 2x1x2f20f11 + x22f220), f20〉
ρ̃2 = 〈(x1f11 + x2f20)Φu, f20〉
ρ̃3 = 〈(x1f11 + x2f20)Φv, f20〉
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Therefore,

(96)

ρ̃1 =
Lπ2

8
x21

ρ̃2 =
Lπ2

8
(4Φ00x2 +Φ31x1 + 2Φ40x2)

ρ̃3 =
Lπ2

8
(4Φ00v00x2 +Φ31v3j1,j2x1 + 2Φ40v4j1,0x2)

〈f20, f20〉 =
Lπ2

2
, 〈f11, f11〉 =

Lπ2

4
Finally,

(97)

〈g1, f11〉 =
Lπ2

16

[
4φ1x1x2 + 2 (M00 +M31) x1x

2
2 +

(
M22

4
+M00

)
x31

]
〈g1, f20〉 =

Lπ2

8

[
φ1x

2
1 + (M00 +M31) x

2
1x2 + (2M00 +M40)x

3
2

]
Such that

(98)

Φ40 =
V4j1,0

2β4j1,0
x22, Φ31 =

V3j1,j2
β3j1,j2

x1x2

Φ22 =
V2j1,2j2
4β2j1,j2

x21, Φ00 =
V0,0

4β0,0
(x21 + 2x

2
2)

Substituting (97) into (90), we obtain the reduced (amplitude) equation (45).
We refer the interested reader to [17] for further detailed analysis on this case.
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