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ABSTRACT 45 
 46 
Size-scaling relationships generated across huge variation in body mass from zooplankton to 47 

elephants offer critical insight into understanding similarities in species interactions across 48 

ecosystems. Yet to what extent ecologists can borrow from these relationships to effectively 49 

predict interactions between a single species pair remains poorly understood. Here, we combine 50 

experiments and long-term data to test how accurately published size-scaling relationships 51 

predict interactions between an economically and ecologically important predator-prey pair. We 52 

demonstrate that interaction strength is highly dependent on predator size, prey size, and prey 53 

density. We then used this relationship to predict plausible interaction strengths across ten years 54 

of data at five sites. Our analysis reveals that variation in body size accounts for up to 91% of the 55 

variation in interaction strength compared to density. However, predictions generated from even 56 

the closest size-scaling relationship from the literature underestimated the strength of interactions 57 

by a factor of 4. 58 

59 
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I. INTRODUCTION 60 

The complexity and context dependency of species interactions has led numerous ecologists to 61 

argue that prediction in community ecology is impossible (Lawton 1999). Yet, across species 62 

from widely different taxonomic groups there is considerable evidence for general patterns 63 

relating individual traits, like body size, to the strength of species interactions (Brown et al. 64 

2004, Rall et al. 2012, Uiterwaal and DeLong 2020). Despite the power of body size-scaling 65 

relationships across taxa, it is unclear how much can be borrowed from cross-taxa relationships 66 

to predict how strongly a given species pair interacts, and if these predictions might disentangle 67 

complexity in community ecology (e.g. Poisot et al. 2015). In this paper, we empirically test if 68 

general cross-taxonomic patterns relating interacting strength with predator and prey body size 69 

predict interaction strength in a focal predator-prey pair. Understanding if general body size-70 

scaling relationships can be used to predict interactions between focal species would be 71 

powerful, particularly for species of management or conservation concern, whose large size, 72 

rarity, or highly migratory behavior make empirical estimates of interactions challenging (Geary 73 

et al. 2020).  74 

 75 

Ontogenetic increases in body size can drive variation in the strength of interactions (Persson et 76 

al. 1998). As an individual predator grows, the amount, size, and species of prey it consumes 77 

changes (Werner and Gilliam 1984, De Roos et al. 2003, Barnes et al. 2010). Likewise, as an 78 

individual prey grows, its risk of predation can decrease as it outgrows a predator’s gape (Urban 79 

2007), improves predator evasion (Martin et al. 2021), or develops defenses such as spines 80 

(Laforsch and Tollrian 2004). Such changes in feeding behavior or defensive capacity as 81 

predators and prey grow through ontogeny introduces variation in interaction strength, where a 82 
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predator may have a strong interaction with a prey when the prey is small and a weak interaction 83 

when the prey grows larger. Consequently, even if different sites have exactly the same number 84 

of predator and prey individuals, changes in predator and prey size-frequency distributions may 85 

drive differences in the average interaction strength. For instance, sites with large predators and 86 

small prey could have stronger interactions while sites with large predators and small prey could 87 

have weaker interactions (Fig. 1). While previous work has focused on experimentally 88 

quantifying variation in interaction strength with predator and prey body size (Uiterwaal and 89 

DeLong 2020, Brose et al. 2017 for review), a next step in this field is to leverage the 90 

considerable theoretical and empirical evidence for the body size dependence of interactions to 91 

predict when and where predators drive the dynamics of prey populations.   92 

 93 

A strong relationship between predator and prey body size and interaction strength across taxa 94 

could offer a means of predicting interactions for specific species pairs. Metanalyses show that 95 

across taxa larger predators tend to eat more than smaller predators, particularly when prey is 96 

abundant and smaller (Rall et al. 2012, Uiterwaal and DeLong 2020). The generality of these 97 

relationships suggests it may be possible to predict how strongly a given predator-prey pair 98 

interact by knowing only the size-frequency distributions of the predator and prey. However, two 99 

factors complicate this approach. First, there is substantial variation in the relationship between 100 

predator size, prey size, prey density, and interaction strength caused by covariates such as 101 

taxonomy (Rall et al. 2012), temperature (Englund et al. 2011), habitat dimensionality (Pawar et 102 

al. 2012, Barrios-O’Neill et al. 2016), and foraging mode (Barrios-O’Neill et al. 2019). Second, 103 

it is unclear whether general size-scaling relationships based on interspecific variation in body 104 

size are applicable to estimating interactions for a given species pair across intraspecific 105 
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variation in body size (White and Seymour 2003, Dell et al. 2011, Brose et al. 2017). To date, 106 

studies that focus on intraspecific variation in body size have typically found different 107 

relationships between body size and interaction strength than theoretical expectations or analyses 108 

of interspecific variation in body size (Wahlström et al. 2000, Aljetlawi et al. 2004, Uiterwaal et 109 

al. 2017). Yet, borrowing from general size-scaling relationships to naively predict interactions 110 

would be powerful (Andersen and Beyer 2015) considering the challenges and associated 111 

uncertainty in estimating interactions for species of management or conservation concern (Geary 112 

et al. 2020). 113 

 114 

Here, we explore the size-dependence of interaction strength for two economically and 115 

ecologically important species: the California spiny lobster (Panulirus interruptus, hereafter 116 

“lobster”) – a predator, and the purple sea urchin (Strongylocentrotus purpuratus, hereafter 117 

“urchin”) – a prey. Understanding when and where lobster impact urchin populations is critical 118 

because increases in urchin abundance can drive communities to switch from kelp to urchin 119 

dominated states (Filbee-Dexter and Scheibling 2014, Ling et al. 2015). Previous studies have 120 

shown that a high abundance of urchin predators can increase the resistance of kelp communities 121 

to urchin-driven phase shifts (Hamilton and Caselle 2015). Yet, empirical evidence for urchin 122 

regulation by lobsters remains equivocal, with some studies pointing towards a strong top-down 123 

effect of lobsters (Lafferty 2004) and others suggesting that lobsters have only a weak impact on 124 

urchin populations (Guenther et al. 2012, Dunn and Hovel 2019, Malakhoff and Miller 2021). 125 

Previous work on California spiny lobster and other lobster species shows that larger lobster 126 

consume more and larger urchins (Tegner and Levin 1983, Ling et al. 2009), yet the relative role 127 
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of lobster size, urchin size, and urchin density in driving interaction strength remains poorly 128 

understood.  129 

 130 

In this manuscript, we test the hypothesis that general size-scaling relationships can be used to 131 

predict intraspecific variation in lobster-urchin interactions. To test this hypothesis, we first ask, 132 

how does the body size and density of lobster and urchins vary across space and through time? 133 

We then ask, how does urchin size, lobster size, and urchin density alter consumption rates of 134 

urchins—a measure of interaction strength—in experimental mesocosms? We then combine our 135 

empirical estimates of urchin consumption rates with observational data to map spatiotemporal 136 

variation in interaction strength. Using these predictions, we disentangle the effects of lobster 137 

size, urchin size, and urchin density as drivers of variation in interaction strength. Finally, we ask 138 

how well do general size-scaling relationships from the literature predict lobster-urchin 139 

interaction strength across natural variation in body size and density? 140 

 141 

II. METHODS 142 

 143 

How do lobsters and urchins vary in body size and density across space and through time? 144 

 145 

We used 9-years of spatially explicit observational data collected by the Santa Barbara coastal 146 

long-term ecological research program (SBC LTER) to explore how lobster and urchin density 147 

(ind. m-2) and body size varied across space and time. The SBC LTER collects annual data on 148 

the abundance and size distribution of lobsters and urchins at five sites in the Santa Barbara 149 

Channel. Briefly, divers count the number of urchins greater than 20 mm in six quadrats 150 
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uniformly spaced along 40 m transects at each site (3-8 transects per site) (Santa Barbara Coastal 151 

LTER et al. 2021a). Along a single transect, a diver estimates the test diameter of the first ~50 152 

urchins to the nearest 0.5 cm (Santa Barbara Coastal LTER et al. 2021b). Divers count and 153 

estimate the carapace length to the nearest mm of all lobsters in 1200 m2 plots centered around 154 

each transect (Santa Barbara Coastal LTER et al. 2021c). 155 

 156 

How does lobster predation on urchins vary with lobster size, urchin size, and urchin density?  157 

 158 

To estimate how strongly lobster and urchin interact, we quantified the size-dependence of the 159 

lobster functional response. A predator’s functional response determines how consumption rates 160 

change as a function of prey density. Typically, consumption rates increase with prey density 161 

until predator satiation, at which point consumption becomes density-independent (Jeschke et al. 162 

2002). The initial increase in consumption approximates the rate that a predator searches space 163 

and finds new prey items (i.e. the attack rate), while the predator’s maximum consumption rate is 164 

limited by the time it takes to manipulate and digest prey (i.e. the handling time) (Holling 1959). 165 

Together, these relationships describe a type II functional response, such that 166 

𝐶 =	
𝛼𝑁

1 + 𝛼ℎ𝑁 	 𝐸𝑞. 1 167 

where C is the consumption rate of prey, N is the initial density of prey, α is the attack rate of the 168 

predator, and h is the handling time, or the inverse of the maximum consumption rate (1/Cmax). 169 

 170 

The metabolic theory of ecology (MTE) predicts that maximum consumption rates (i.e. 1/h) 171 

scale with consumer body size at the same rate that metabolism scales with body size (Yodzis 172 

and Innes 1992, Brown et al. 2004). Therefore, handling time (1/Cmax) will decrease with 173 
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consumer body size according to a negative power law function (ℎ	 ∝ 	𝑚/
01 , where 𝛽 = 0.75 174 

based on MTE). A predator’s handling time may also be a function of prey size. Larger prey can 175 

be more challenging to manipulate or digest resulting in longer handling times (Rall et al. 2012). 176 

Together, consumption rates at saturating prey densities are expected to vary according to: 177 

1
𝐶345	

= ℎ = 	ℎ6𝑚/
17,9𝑚:

17,;	 𝐸𝑞. 2	 178 

where mc and mr are predator and prey mass, respectively, h0 is a constant, and βh,c and βh,r are 179 

scaling coefficients (Uiterwaal and DeLong 2020, Table S1).  180 

 181 

Foraging theory and biomechanical arguments also provide expectations for how a predator’s 182 

attack rate should vary with body size. Larger predators have higher mobility and larger prey are 183 

more easily detected (McGill and Mittelbach 2006). Therefore, theory predicts that attack rates 184 

should increase according to power law functions of predator and prey size, according to  185 

𝛼 =	𝛼6𝑚/
1=,9𝑚:

1=,;	 𝐸𝑞. 3		 186 

where α0 is a constant, and βα,x are scaling exponents (Rall et al. 2012, Uiterwall and DeLong 187 

2020, Table S1). Previous work suggests that attack rates increase and then decrease as a 188 

function of predator size for a given prey size (Wahlström et al. 2000, Kalinkat et al. 2013, 189 

Uiterwaal et al. 2017). However, in preliminary analyses we found no evidence for a hump 190 

shaped relationship between attack rates and size (see Supplement 1.2). Therefore, we focus on 191 

the power-law scaling relationship (Eq. 3).  192 

 193 

To determine the size-dependence of the lobster functional response, we conducted a factorial 194 

experiment where we manipulated urchin density, urchin size, and lobster size in mesocosms. 195 

The lobsters and urchins used in these experiments spanned the size range of local populations 196 
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surveyed by the SBC LTER. We placed a single lobster in an experimental arena, and fed each 197 

lobster one of three size classes of urchin at six different densities (N = 2,3,5,10,16,26 ind. arena-198 

1). We selected urchin densities such that the highest density in experimental trials was 199 

representative of that in urchin-dominated areas (Rennick et al. 2022). We conducted all foraging 200 

trials for 48 hours in 200 L foraging arenas. Prior to a trial, we fed lobsters ad libitum for 48 201 

hours and then starved the predators for 48 hours. For more detail on the specifics of mesocosm 202 

experiments refer to Supplement 2.  203 

 204 

To understand the relationship between a lobster’s size, urchin density, and urchin size, we then 205 

estimated the parameters of the size-dependent functional response using a Bayesian hierarchical 206 

model. Specifically, we combined equations 1-3 and fit the resulting equation to the number of 207 

urchins eaten as a function of the number of urchins offered, lobster size (g), and urchin size (g). 208 

We assumed that the number of urchins consumed in trial i by lobster j (𝐶?,@) followed a Poisson 209 

distribution such that 210 

𝐶?,@	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛G𝜆?,@I	 	𝐸𝑞. 4 211 

𝜆?,@ =
𝛼?,@𝑁?

1 + 𝑎@ℎ@𝑁?
	212 

log	(αQ) = log(𝛼6) +	𝛽S,/log	(𝑚/,@) + 𝛽S,:log	(𝑚:,@) +	µU,Q		213 

log	(ℎ@) = log(ℎ6) +	𝛽V,/log	(𝑚/,@) + 𝛽V,:log	(𝑚:,@) + 𝜇V,@	214 

	215 

where, 𝛼@ is the attack rate (d-1 m-2), ℎ@ is the handling time (d) of lobster j, and 𝑚: was the 216 

average mass of the urchin size class that lobster j foraged on. We constructed informed priors 217 

on all 𝛽5 parameters, where 𝛽5 was normally distributed with a mean based on theoretical 218 
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predictions (Table S2). We assumed gamma distributions for the prior variances. We included a 219 

random effect of individual lobster (𝜇5,@) on the estimation of α and h, assuming that errors 220 

between individuals were normally distributed with mean 0. 221 

 222 

We implemented the model in Stan (Stan Development Team 2022) which uses a Hamiltonian 223 

Monte Carlo procedure to estimate parameters. We ran three chains for 25,000 iterations with a 224 

burnin of 12,500 iterations and thinned the chains to retain every 3rd iteration. To diagnose model 225 

convergence, we visually assessed mixing of the model chains and confirmed using the Gelman-226 

Rubin convergence diagnostic (𝑅Y < 1.1) (Brooks and Gelman 1998). For more details on our 227 

modeling approach see Supplement 1.3.  228 

 229 

How does lobster-urchin interaction strength vary across space and through time?  230 

 231 

To generate plausible estimates for how strongly lobsters and urchins interact under natural 232 

conditions, we combined observational data on lobster size, urchin size, lobster density, and 233 

urchin density with our experimentally-parameterized functional response. We assumed that 234 

interactions were random at a site in a particular year, such that 1) any predator could interact 235 

with any prey and 2) predator-prey density was homogenous across a site. Specifically, we 236 

resampled with replacement 1000 individual body masses from the size distributions of lobsters 237 

and urchins at each site/year and estimated the interaction strength (IS) between predator i and 238 

prey j as  239 

  240 
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𝐼𝑆?,@ = 		
𝛼6𝑚/

1=,9𝑚:
1=,;𝑁𝑃

1 + 𝛼6𝑚/
1=,9𝑚:

1=,;ℎ6𝑚/
17,9𝑚:

17,;𝑁
	 	𝐸𝑞. 5 241 

 242 

where N and P are the density of urchins and lobsters, respectively, averaged across transects at a 243 

site in a particular year, and mx is the mass of lobster (c) and urchin (r) individuals in a particular 244 

draw from the size-distribution. For simplicity, we set all parameters (α0, ℎ6, βx) as the median 245 

posterior estimate from the Bayesian model. Based on this procedure, IS represents a distribution 246 

of plausible interactions between lobster and urchin individuals at each site and year.  247 

 248 

Disentangling the effects of body size and density as drivers of variation in interaction strength 249 

 250 

Many empirical studies of interaction strength focus on predator and prey density (Paine 1992, 251 

Berlow et al. 1999 and Novak et al. 2016 for reviews). Density may be a misleading metric of 252 

interaction strength, particularly for species that experience nonlinear, indeterminate growth, like 253 

many marine predators, where a single large individual may have the same mass as many 254 

smaller, younger individuals. Recent work highlights the importance of accounting for size-255 

dependent consumption rates in estimating interaction strength (Andersen and Pedersen 2010, 256 

Atkins et al. 2015), yet how much of the variation in interaction strength between a predator-prey 257 

pair is due to variation in predator and prey body size relative to density remains unresolved. 258 

 259 

To determine how much of the total variation in interaction strength was due to lobster and 260 

urchin body size relative to densities, we fixed body size across sites and years and simulated IS 261 

across variation in density. We then estimated the proportion of total variation due to body size 262 

as 1 - R2 of the correlation between the distribution of IS that incorporated both sources of 263 
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uncertainty and the distribution of IS when body size was fixed (see Supplement 3.3 for further 264 

details).  265 

 266 

How well can general size-scaling relationships predict species-specific interactions? 267 

 268 

Resolving how accurately a given predator’s consumption rate can be predicted from general 269 

size-scaling relationships and their covariates is at the crux of integrating our theoretical and 270 

experimental depth of knowledge about the size dependence of predator-prey interactions into 271 

ecosystem-based management practices. Multi-species models—one tool used to determine 272 

management decisions in an ecosystem context—are highly sensitive to uncertainty in how 273 

strongly species interact (Hunsicker et al. 2011). The possibility of using body size and general 274 

size-scaling relationships to parameterize interaction coefficients in multispecies models is 275 

appealing considering the challenges of estimating interaction strength for many species of 276 

management concern. While there have been considerable advances in recent years in the 277 

implementation of size-structured models, these models often rely on theoretical estimates for 278 

how consumption changes with body size to make qualitative predictions for how disturbances, 279 

like harvest, impact communities (Blanchard et al. 2014, Persson et al. 2014). Testing how 280 

accurately general size-scaling relationships from the literature predict interaction between 281 

specific species could move size-structured food web models from qualitative predictions of 282 

general community phenomena to more quantitative predictions that guide management in data 283 

limited systems (e.g. Spence et al. 2021).    284 

 285 
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To determine how well general size-scaling relationships predict lobster-urchin interactions, we 286 

compared our experimental predictions with estimates from three published size-scaling 287 

relationships. Based on previous work demonstrating that both traits and taxonomy are important 288 

for predicting how strongly species interact (Rall et al. 2011), we hypothesized that size-scaling 289 

relationships from the literature would more precisely match our experimental predictions as 290 

they increased in taxonomic specificity. Therefore, we predicted how strongly lobsters and 291 

urchins interact based on a general cross-taxonomic estimate (Uiterwaal and DeLong 2020), an 292 

estimate for marine invertebrates (Rall et al. 2012), and an estimate for active marine crustaceans 293 

foraging on static prey (Barrios-O’Neill et al. 2019) (Table S1). All analyses were implemented 294 

in R 4.0.4 (R Core Team 2021).  295 

  296 

III. RESULTS 297 

 298 

Size-frequency distributions of lobsters relative to urchins varied widely in space and time 299 

 300 

Lobster size ranged more than three orders of magnitude from 6.2 – 6184.0 g (393.6 [88.8 – 301 

897.8] g, X_ [95% CI] unless otherwise specified), while urchin mass was on average 39.2 [8.1 – 302 

132.2] g (Fig. 1A). The relative difference in body mass between lobsters and urchins changed 303 

from site to site and year to year with some sites at a particular time having relatively large 304 

lobsters and small urchins, while others had relatively small lobsters and large urchins (Fig. S1). 305 

Urchin density ranged from 0.75 – 32.2 ind. m-2 (6.5 [0.8 – 27.8] ind. m-2), while the average 306 

lobster density was 0.03 [0.004 – 0.097] ind. m-2).  307 

 308 
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Interaction strength between lobsters and urchins increased with urchin density and lobster size 309 

but decreased with urchin size 310 

 311 

The consumption rate of urchins by lobster increased with urchin density and lobster size, and 312 

decreased as urchin size increased (Fig. 2, Fig. S2). Only the largest lobsters regularly consumed 313 

the largest urchins, with the smaller 50% of lobsters only consuming < 1% of the large urchins 314 

offered. Alternatively, all size classes of lobster consumed small urchins and maximum 315 

consumption rates were highest for the largest lobsters preying on the smallest urchins. We 316 

found no evidence for variation in attack rates with lobster size or urchin size (Fig. 3a, 𝛽S,/ = 317 

0.025[-0.14 – 0.34], 𝛽S,: = 0.080[-0.16 – 0.43]). However, handling time decreased with lobster 318 

size and increased with urchin size (Fig. 3b, 𝛽V,/ = -1.81[-2.38 – -1.24], 𝛽V,: = 1.29[1.03 – 319 

1.61]). Despite the inclusion of informative priors for the size-scaling exponents, the posterior 320 

estimates for the scaling exponents differed from first principle expectations. Handling time 321 

decreased at a faster rate than expected with lobster size (e.g. 𝛽V,/) and at a higher rate than 322 

expected with urchin size (e.g. 𝛽V,:).   323 

 324 

How does lobster-urchin interaction strength vary across space and through time?  325 

 326 

By integrating our experimental model with long term data on lobster and urchin body sizes and 327 

densities, we generated plausible estimates for historic interaction strengths. We found that the 328 

relative interaction strength between lobsters and urchins varied considerably across narrow 329 

spatial and temporal scales (0.014 [ 0.00020 – 0.061] ind. m-2 d-1, Fig. 4). The variation in 330 
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interaction strength between sites (𝐶𝑉ab4c?4d 	 =	1.34 ± 0.4, X̅ ± 1 SD) was similar to the variation 331 

between years (𝐶𝑉ce3bf:4d	 =	1.25 ± 0.1). 332 

 333 

Variation in lobster-urchin interaction strength is caused by asymmetries in lobster and urchin 334 

body size rather than urchin density 335 

 336 

Considering the extent of variation in predicted interaction strength across space and time, we 337 

tested how much of this variation could be attributed to differences in the body size versus the 338 

density of lobster and urchins.  We found that body size accounted for the majority of the 339 

variation in plausible interaction strength (85-91%) compared to variation in density (Fig. 5a). In 340 

a hypothetical simulation, a 10-fold increase in lobster body size resulted in a ~250% increase in 341 

the median interaction strength, relative to only a 1.5% increase when the density of urchins 342 

increased 10-fold all else being equal (Fig. 5b). Communities characterized by large lobsters 343 

relative to urchin size and high urchin density displayed the highest interaction strength, while 344 

the interactions strength in communities with small lobsters relative to urchins and low urchin 345 

density approached zero (Fig. S4). Across all sites and years, lobster-urchin interactions were 346 

log-distributed with far more weak interactions than strong interactions (Fig. 5 a,c). 347 

 348 

General size-scaling relationships failed to quantitatively predict lobster-urchin interactions 349 

 350 

In general, size-scaling relationships from the literature provided similar rank order predictions 351 

for which sites or years displayed the strongest or the weakest interactions compared to our 352 

experimental estimates (Fig. S5, Spearman’s rank order correlation test, p < 0.001). However, 353 
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published size-scaling relationships failed to estimate the magnitude of interactions between 354 

lobster and urchin. Even the closest prediction from the literature was 4.1 times less than the 355 

median interaction strength estimated by our experimental model (Fig. 5c). The precision of the 356 

predictions increased as the taxonomic specificity increased. The cross-taxa estimate performed 357 

the worst at predicting interaction strength, while the estimate for active marine crustacean 358 

predators performed the best. 359 

 360 

IV. DISCUSSION 361 

 362 

Understanding when and where predators will interact strongly with prey is critical to 363 

disentangling context dependency in trophic ecology, and can offer insight into the repercussions 364 

of disproportionate harvesting of species at the top of the food chain. Heterogeneity in predator 365 

and prey size distributions across space and through time caused by demographic variation (De 366 

Roos et al. 2003), spatially explicit size-structured harvest (Kay et al. 2012), and size-structured 367 

predation (Rudolf 2008) may underlie much of the context dependency. Our findings 368 

demonstrate that natural and human-induced variation in body size in the field is a powerful 369 

driver of interaction strength between lobsters and urchins. Our results provide insight into when 370 

and where we expect lobsters to play a dominant predatory role, and suggest that harvest-induced 371 

reductions in lobster size may have significant ecological consequences in kelp forest 372 

ecosystems.  373 

 374 

Body size drives variation in the role of lobsters in the kelp forest 375 

 376 
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In the lobster-urchin study system, the hypothesis that lobsters control urchin populations is 377 

contested, with some research finding evidence for predator-induced declines in urchins (Ling et 378 

al. 2009) and other research finding no evidence at all (Malakhoff and Miller 2021).  Our results 379 

suggest two scenarios when lobsters could potentially impact urchin populations, thereby 380 

potentially buffering macroalgae resources. We found that interaction strength is greatest when 381 

urchin density is high, lobsters are large, and urchins are small. In marine protected areas where 382 

lobsters are protected from fishing, lobster size and density are greater than in fished areas (Kay 383 

et al. 2012, Peters et al. 2019). With a relatively high density of large lobsters our results suggest 384 

that there could be substantial predation pressure on urchins, which is consistent with recent 385 

modeling work that highlights the importance of the size-selective predation on the recovery of 386 

kelp communities under different management strategies (Dunn et al. 2021). Alternatively, our 387 

foraging trials demonstrate that even small lobsters were effective predators of small urchins. 388 

Purple urchins display variable recruitment dynamics and can recruit in large numbers to reefs if 389 

environmental and biological conditions allow (Okamoto et al. 2020). High densities of lobsters, 390 

even if small, may provide a bottleneck of mortality for small urchin recruits effectively reducing 391 

the capacity of the urchin population to consume kelp (e.g. Rennick et al. 2022). However, 392 

strong interactions at one point in time could lead to weak interactions in the future as urchins 393 

grow large enough to experience reduced predation. Accounting for dynamic interactions 394 

between density and size-structure can lead to counterintuitive predictions, such as increases in 395 

total prey biomass even when predator induced mortality increases (Schröder et al. 2009). 396 

Therefore, to understand the long-term dynamics of lobster-urchin interactions a critical next 397 

step is to explicitly model the dynamics of size-structured interactions.  398 

 399 
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Body size – not density – accounts for the majority of variation in interaction strength 400 

 401 

Empirical research on predator-prey interactions has historically focused on estimating 402 

interaction strength based on species abundances (Novak et al. 2016). Typically, interaction 403 

strength is quantified by measuring the abundance of a focal species in the presence or absence 404 

of the interacting species (Wootton and Emmerson 2005). This abundance-based approach 405 

implicitly assumes that intraspecific variation in traits has little impact on how strongly 406 

populations interact. Yet, there is evidence that intraspecific variation in traits can overshadow 407 

interspecific effects (Des Roches et al. 2018). For example, recent work showed that accounting 408 

for size-specific differences in consumption rates using theoretical size-scaling relationships (e.g. 409 

𝑚6.gh) better predicts empirical interaction strength than density or biomass (Atkins et al. 2015).   410 

 411 

Our study provides additional support for the critical role of accounting for intraspecific 412 

variation in body size in predicting interaction strength by demonstrating that lobster-urchin 413 

interactions are determined by their respective size distributions, more so than density. We 414 

showed that up to 91% of the variation in plausible interaction strength can be attributed to 415 

variation in body size, highlighting the extent to which focusing on species densities or biomass 416 

alone could lead to inaccurate estimates of interactions. Accounting for traits like body size 417 

could resolve long-standing debates on the role of predators in regulating prey populations 418 

(Poisot et al. 2015) and move debates from the static question of if predators impact prey 419 

dynamics, to when and where predators play a strong role in a community. 420 

 421 

Naïve predictions of interaction strength 422 
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 423 

Researchers are increasingly focused on implementing ecosystem-based approaches to 424 

management (EBM), which seeks to examine the effects of human disturbances, such as harvest, 425 

by accounting for species interactions, physical forces, social drivers, and economic 426 

considerations (Long et al. 2015). One challenge to effective implementation of EBM is 427 

uncertainty in the strength of species interactions, particularly when system specific data are 428 

limited (Hunsicker et al. 2011). Previous work in food web ecology has utilized theoretical 429 

scaling relationships to determine the structure and resilience of ecological networks (Brose et al. 430 

2006, Petchey et al. 2008). Recently, applied ecologists have adapted a similar approach to 431 

parameterize stage- or size structured models that assume general size-scaling relationships for 432 

mortality, growth, and reproduction to understand the relative consequences of harvest on 433 

populations (Andersen et al. 2009), communities (Claessen et al. 2009, Andersen et al. 2015), or 434 

whole ecosystems (Fulton et al. 2011, Heymans et al. 2016). However, the assumption of general 435 

size-scaling relationships may be violated in specific ecosystems (Reum et al. 2019, Spence et al. 436 

2021). Our results support the assumption that qualitative predictions for when predators display 437 

strong or weak interactions with their prey are resilient to inaccurate estimates of how 438 

consumption varies with body size for particular species. However, our results suggest that 439 

relying on general size-scaling relationships to parameterize models of a particular system will 440 

likely fail to quantitatively predict the magnitude of trophic interactions. In other words, naïve 441 

estimates of interaction strength may accurately predict the direction and rank order of 442 

interaction strengths but not their magnitude. Failing to quantitatively estimate interactions is a 443 

critical deficiency in predicting harvest quotas in an EBM framework.  444 

 445 
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The likely reason for the difference between our experimental estimates of interaction strength 446 

and estimates based on published size-scaling relationships are discrepancies between 447 

consumption-size relationships within species pairs compared to across species pairs (Brose et al. 448 

2017). Previous metanalyses typically relied on the average body size of a predator and its prey 449 

and the average parameters of the functional response to estimate how the functional response 450 

varies with body size (Rall et al. 2012, Uitterwaal and DeLong 2020). However, body size varies 451 

among individuals, and consumption is a nonlinear function of body size. Therefore, the 452 

consumption rate of the average sized individual, will poorly approximate the average 453 

consumption rate across variation in body size (Bolnick et al. 2011). While size-scaling 454 

relationships generated across the average body size of species may uncover general ecological 455 

patterns (White et al. 2019), our results add to a growing body of evidence that general 456 

relationships may have little bearing on how a particular predator’s consumption rate on a prey 457 

changes with ontogenetic growth (Wahlström et al. 2000, Aljetlawi et al. 2004, Uiterwaal et al. 458 

2017). Exploring if there are any general patterns in the consumption-body size relationship 459 

within species pairs could improve the utility of using body size to estimate ontogenetic variation 460 

in interaction strength in the absence of species-specific data. 461 

 462 

Conclusion 463 

 464 

To sustainably harvest and conserve ecosystems, it is critical to predict how strongly predators 465 

interact with their prey–a challenging task considering the same species of predator can interact 466 

with its prey differently in different spatial or temporal contexts. Here, we demonstrated that 467 

variation in the body size of predator and prey, more so than variation in density, accounted for 468 
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most of the variation in how strongly lobster and urchin interact across narrow spatial and 469 

temporal scales. Our results highlight the importance of accounting for body size when 470 

determining fine-scale variation in interaction strength, as two sites may have the same density 471 

of species, but species may interact strongly at one site and not at all at the other depending on 472 

variation in individual body size. For lobsters and urchins, species-specific estimates for how 473 

consumption changes with body size, rather than general size-scaling relationships, are necessary 474 

to sufficiently predict how changes in size drive changes in interaction strength.  475 

 476 

Humans are driving reductions in the size of predators (Blanchard et al. 2005, Ripple et al. 2014, 477 

Robinson et al. 2017) through the interactive effects of harvest and warming temperatures 478 

(Baudron et al. 2014, Lindmark et al. 2018, Pauly and Cheung 2018). Such reductions in body 479 

size not only alter the economic and cultural value of the target population (Oke et al. 2020), but 480 

also lead to shifts in how strongly species interact in communities. Incorporating body size as a 481 

means of approximating how strongly species interact will improve ecologists’ ability to predict 482 

when and where predators have strong effects on prey, a critical step in clarifying the context-483 

dependence of trophic interactions and understanding the repercussions of the ongoing losses of 484 

large predators.  485 

 486 
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VI. Figure Captions 747 
  748 
Figure 1. Observed body size distributions of a predator (Panulirus interruptus - lobster) (A) 749 

and their prey (Strongylocentrotus purpuratus - urchin) (B) across 5 sites monitored annually 750 

from 2012-2020. Different processes such as variation in recruitment, habitat suitability, or 751 

harvest can cause differences in the size of lobsters relative to their prey independent of density 752 

(C-E). Theory predicts that larger predators will consume more total prey biomass than smaller 753 

predators, and that predators tend to consume more small than large prey. Such size-dependent 754 

foraging at the scale of the individual could result in large variation in interaction strength at the 755 

population-scale at different sites or years (F). 756 

 757 

Figure 2. Purple sea urchin (Strongylocentrotus purpuratus) consumption rates by California 758 

spiny lobster (Panulirus interruptus) predators in mesocosm foraging trials. Individual lobsters 759 

(n = 45) foraged on a single urchin class at six different urchin abundances. Lines are posterior 760 

predictions (𝑋j [95% CI]) from a Bayesian model for the body size dependent functional 761 

response. Prediction are for hypothetical lobsters with body mass set to the 10th percentile, mean, 762 

and 90th percentile (e.g. small, medium, large) of the size distribution of lobster used in the 763 

experiment.  764 

 765 

Figure 3. Body size scaling of the attack rate (A) and handling time (B) parameters of the 766 

functional response of California spiny lobster (Panulirius interruptus) foraging on purple 767 

urchins (Strongylocentrotus purpuratus). Lines are posterior predictions (𝑋j [95% CI]) for the 768 

body size scaling of each parameter according to power law functions of predator and prey mass 769 

(see Methods for details). Data points are 100 sampled draws from the posterior distributions of 770 
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α and h for each individual predator foraging on a particular prey size class using a Bayesian 771 

hierarchical model. Note the log10 transformations of both axes. 772 

 773 

Figure 4. Predicted interaction strength between California spiny lobster (Panulirius interruptus) 774 

predators and purple sea urchin (Strongylocentrotus purpuratus) prey at five sites in the Santa 775 

Barbara Channel, USA from 2012-2020 (A-B). Points and surrounding grayscale circles 776 

represent the median and upper 95% CI of interaction strength simulated for historic 777 

observations of lobster and urchin size-distributions and densities using a body size-dependent 778 

functional response parameterized from mesocosm foraging experiments. Inset plots (C-G) are 779 

the median interaction strength through time at each site. Green polygons along coastline are the 780 

historic extent of giant kelp forests estimated via satellite imagery (Santa Barbara Coastal LTER 781 

et al. 2022).  782 

 783 

Figure 5. (A) Predicted interaction strengths between individual lobster predators (Panulirius 784 

interruptus) and their urchin prey (Strongylocentrotus purpuratus) across five sites and nine 785 

years of observational data. Variation in urchin and lobster body size accounted for 85-91% of 786 

the total variation in interactions, while variation in the density of lobsters and urchins accounted 787 

for the remainder. (B) A hypothetical simulation demonstrating the change in interaction strength 788 

for a 10-fold increase in urchin density compared to a 10-fold increase in lobster body mass 789 

assuming all else being equal. (C) Comparison of three estimates of the size-scaling of 790 

interaction strength from the literature with experimental predictions. Note the log10 791 

transformation on the x-axes in panels A and C. 792 
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