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Abstract

Most Species Distribution Models include spatial effects to improve
prediction at unsampled locations and reduce Type I errors. Ecologists
tend to try ecologically interpret the spatial patterns displayed by the
spatial effect. However, spatial autocorrelation may be driven by many
different unaccounted drivers, which complicates the ecological interpre-
tation of fitted spatial effects. This study wants to provide a practical
demonstration that spatial effects are able to smooth the effect of mul-
tiple unaccounted drivers. To do so we use a simulation study that fit
model-based spatial models using both geostatistics and 2D smoothing
splines. Results show that fitted spatial effects resemble the sum of the
unaccounted covariate surface(s) in each model.

1 Introduction

Understanding and predicting species spatial patterns through Species Distri-
bution Models (SDM) is pivotal for ecology, evolution and conservation (Zurell
et al., 2020)). SDMs quantify the relationship between species occurrence or
abundance with biotic and abiotic factors in order to gain ecological and evo-
lutionary understanding (Elith and Leathwick| 2009)). This way SDMs allow
us to predict distributions across landscapes and make future predictions based
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on identified drivers, as well as other latent variables such as spatial or spatio-
temporal correlation effects. Generally, a SDM is composed by three types of
predictors: non-spatial covariates; spatially structured covariates; and spatial
or spatio-temporal autocorrelation effects that accommodate the spatial or spa-
tiotemporal autoccorelation of the data that is unaccounted by our covariates.

Spatial autocorrelation refers to the dependence between pairs of observa-
tions in space. In SDMs, spatial effects allow us to predict better and reduce
Type I errors in the presence of covariates (Lennon) [2000; [Legendre et al.|[2002)).
In species distribution, spatial autocorrelation may arise as a combination of
different factors such as: a geographical range dispersion process, e.g. coloni-
sation; unaccounted environmental or biotic drivers; and other highly dynamic
processes such as wind and current (Keitt et al., 2002; |Dormann, 2007; De Knegt|
2010)). These drivers can influence species distribution at all scales, from
micrometres to continental and ocean-wide scales 11993))). However,
the size, spacing and extent of sampling units will constrain the scale of inferable
drivers, and the scale of spatial autocorrelation (Dungan et al., 2002; De Knegt|
). In other words, if we sample at a kilometer scale, we cannot infer
processes at a smaller scale, and inversely, if our study area is one kilometer
long, we cannot infer processes that affect at a larger scale.

The statistical interpretation of a spatial effect is related to the sign and
link function of our linear predictor, but in general terms, positive values refer
to areas where we expect more than that predicted by the rest of the linear
predictor and vice versa. Ecologically, many SDM studies have linked spatial
effects to biological features like home-range (Keitt et al., [2002))), hot-spot size
(Ungaro et all, [2014)) and unaccounted environmental drivers
Legendre, |1994)), providing reasonable arguments. For example, given a species
that is driven by two environmental variables, one that drives the large-scale
variation and another that drives the small-scale variation, the residual spatial
pattern of a SDM that includes one of the two covariates will resemble the
pattern of the unaccounted explanatory variable, either the large-scale or small-
scale one. However, as we mentioned before, reality behind ecological processes
is often high dimensional and variables that drive spatial correlation can occur
at several different scales. In fact, SDMs are seldom able to identify more
than a small portion of all the drivers that influence the distribution of the
species under study. This results on spatial effects that are potentially driven
by many different unaccounted drivers, diluting their interpretability in terms
of an individual process. Although this interpretation issues have sporadically
been addressed in the literature (Perry et al., 2002; Diniz-Filho et al., 2003
Dormann|, 2007, Legendre et all [2009; [De Knegt et all, [2010; [Pasanen et al.
2018} [Flury et al [2021)), many modellers fail to acknowledge this probably due
to the lack of an explicit study that shows this.

The aim of this article was to provide a practical demonstration that spatial
effects are able to smooth the effect of multiple unaccounted drivers, making
the biological interpretation of spatial effects rather complicated. To do so, we
used model-based spatial models applied over simulated species distribution sur-
faces. Simulated fields were based on three spatially structured environmental
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covariates acting at different spatial scales, and a geographical range dispersion
process.

2 Simulation

We used an iterative simulation approach to produce spatially aggregated dis-
tributions (link to code in Annex[A]). At each iteration we added a fixed number
of new specimens to the study area based on a probability surface constituted
by three spatially structured covariates, each operating at different scales (i.e.,
small, medium and large scale), plus a spatial aggregation process driven by
the abundance of the neighbouring areas, mimicking the colonization of a plant
species for example. As a result, our simulated species distributions were driven
by the sum of four different effects (Figure: the influence of three explanatory
environmental variables operating at different spatial scales (S = small, M =
medium and L = large) and a spatial dispersal effect that increase the spatial
autocorrelation of the response variable.

We simulated fifty different scenarios, selected 100 random samples for each
scenario and fitted all the possible combinations of model-based spatial models
that ranged from a purely spatial model to a full model that accounted for
the three covariates (see Table [1)). We used two spatial modelling approaches,
geostatistics through the Intergated Nested Laplace Approximation approach
(INLA) (Lindgren et al., 2015))) and 2D smoothing splines through the MGCV
package for R (Augustin et al., 2013} Wood| [2017).

Our aim was to assess the resemblance between fitted spatial effects and un-
accounted covariate surface combinations. Resemblence was assessed through
the similarity in pattern score (SIP) (Jones et al.,[2016])). SIP scores are bound
between zero and one, and high scores denote high similarity in pattern and
vice versa. For each simulated scenario, we calculated the SIP score between
the spatial effect of every fitted model (rows in Table [2)) and all the possible
different combinations of covariate surfaces (columns in Table [2)), and recorded
the absolute difference between the best SIP score and the rest (i.e., SIP dif-
ferences calculated per row in Table . This way, the spatial effect that best
resembled a given combination of covariate surfaces scored a zero and that with
the worst resemblance recorded the highest value (see Annex for a more de-
tailed explanation of the procedure). As a result, we obtained fifty scores per
model and combination of covariate surfaces. Finally, we summarised these
scores by their mean and standard deviation. All the R script is available at
https://tinyurl.com/2p8n3e4r!

3 Results

Results show that fitted spatial effects resemble the sum of the unaccounted
covariate surfaces in each model (see highlighted diagonal scores in Table .
Fitted 2D splines using generalized additive models (GAM) seemed to perform a
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little worse than model based-geostatistics, probably due to the default selection
of knots, but the overall pattern is very similar. This result suggests that spatial
effects are able to smooth complex residual spatial patterns originated by a set
of covariates that operate at very different scales. For example, model M_M,
which only accounts for the mid-scale covariate, estimates a spatial effect that
resembles the aggregation of the small-scale and large-scale covariates (S and
L respectively). Similarly, the spatial effect of model M_0, which is a purely
spatial model (no covariates included), mirrors the combination of all three
covariate surfaces (S, M and L). In the particular cases where we included two
covariates (i.e., only one unaccounted covariate), spatial effects resembled the
missing covariate. At this point, the question is: how many times do SDMs
account for all but one driver? One can only speculate this answer but our
guess would be: hardly ever.

4 Discussion

Many studies have analyzed the characteristics of spatial effects to describe the
unaccounted ecological mechanisms that drive the distribution of species and
try to associate spatial effect patterns to single unaccounted drivers. However,
most species distributions are driven by a large number of factors and we are
seldom able to identify most of these drivers in our statistical models. As a
consequence, SDM spatial effects constitute a combination of many unaccounted
factors (Keitt et al. |2002} Dormannl [2007; De Knegt et al., [2010)).

This study used a simulation study to illustrate the difficulty in interpret-
ing spatial effects with regards to unaccounted environmental drivers. Readers
must realize that did not attempt an exhaustive account of all possible cases, in-
stead, we aimed at illustrating our point using a simple and intuitive approach.
Fitted spatial effects resembled the sum of the unaccounted covariate surfaces,
including spatial patterns originated by covariates that operated at very differ-
ent scales. Therefore the biological interpretation of spatial effects may only be
valid when the unexplained spatial heterogeneity of the data is characterised by
a single dominant driver. However, the environmental and ecological processes
that drive the distribution of species are complex and diverse, and one could
only arbitrarily assume that there is only one covariate missing in our SDM
predictor to make biological interpretations over fitted spatial effects.

In this regard, one could use a multiresolution decomposition approach to
identify dominant features within the residual spatial correlation of the data
(Pasanen et all [2018} [Flury et all [2020])). This method essentially estimates
the range of spatial correlation at different resolutions of the data, or in this case,
residuals of the SDM to help us identify the scale-dependent features within the
spatial effect of the residuals. Then, assuming that each scale is characterized
by a single dominant driver (Perry et al.l [2002))), one could relate them to
underlying process generating mechanisms.
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5 Conclusions

Spatial autocorrelation is a common feature in ecological data. As a conse-
quence, spatial correlation models are important to correctly estimate covariate
standard errors and therefore reduce Type I errors. Additionally, spatial cor-
relation terms estimate the residual spatial structure of the data, improving
the predictive capacity of our models at locations that are within range. In
ecology, residual spatial patterns are potentially driven by complex multivariate
and multi-scaled systems, which can be accommodated by a single spatial ef-
fect. Therefore, the biological interpretation of spatial effects is very difficult. A
multiresolution decomposition of residual spatial patterns (Flury et all 2020))
could help us identify the scale-dependent features within the spatial correlation
structure of the residuals assuming that each scale is characterized by a single
dominant driver.

6 Figure and Tables

Figure 1: Visualization of the different autocorrelated drivers that influence
the abundance pattern in a simulated scenario. S, M and L refer to the small,
medium and large scaled covariate fields, respectively. Residual aggregation
refers to the geographical range dispersion. White crosses refer to the simulated
100 samples.



Model Linear predictor Missing covariates
M.0 Bo+W S, M& L
M_S Bo+S+W M&L
MM Bo+ M+ W S & L
M_L Bo+ L+ W S&M
M_ML Bo+M+L+W S
M_SM Bo+S+M+W L
M_SL Bo+S+L+W M
MSML | o+ S+M+L+W -

Table 1: Summary of fitted models. W refers to a geostatistical spatial corre-
lation term, S, M and L refer to the small, medium and large scale covariates,
respectively.
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A  Annex

The aim of this annex is to explain the procedure that we followed to create
Table [2l To do so we use a single simulated species distribution (as compared
to 50 simulations in the study) that is also driven by three spatially structured
environmental covariates acting at different spatial scales and a geographical
range dispersion process.

We fitted all the models described in Table [If and we computed SIP scores
between each model’s spatial effect and all the possible different combinations
of covariate surfaces. By doing so, we get Table [3] which displays highest SIP
scores along the diagonal, matching the combination of drivers (columns) with
the covariates that are missing in the fitted models (rows).

Combination of drivers

Model Residual S M L S&M S&L M&L S M&L

M_0 -0.01  0.43 0.57 0.49 0.71 0.55 0.73 0.82
M_S 0.12 -0.04 0.73 043 0.49 0.25 0.85 0.59
MM 0.03 0.50 0.19 0.69 0.47  0.72 0.46 0.72
M_L 0.06 0.40 0.75 0.06 0.78 0.33 0.65 0.75
M_SM 0.16 0.03 -0.09 0.81 -0.03 0.48 0.46 0.33
M_SL 0.11 -0.06 0.83 -0.15 0.57 0.01 0.76 0.53
M_ML 0.01 0.64 0.13 0.03 0.57 0.54 0.05 0.57
M_SML 0.22 -0.05 0.17 -0.12 -0.00  -0.12 0.10 0.09

Table 3: SIP scores between fitted spatial effects and all the combinations of
covariate surfaces. Scores must be read by row. Values closer to one reflect
bigger resemblance between spatial fields.

Once we repeat the simulation 50 times we get 50 SIP scores for each position
in the table, which could be summarised by the mean and standard deviation
of these 50 values. However, we decided to use the difference between the best
SIP score for each model and combinations of covariate fields because results
were clearer, i.e. differences by row in the Table [3| This way Table [3| becomes
Table |4 where zero values represents the best SIP score per model (by row) and
the rest of the scores represent the SIP score difference with respect to the best
score by row.

10



Combination of drivers

Model Residual S M L S&M S&L M&L S M&L

M_0 083 039 024 0.32 0.11 0.27 0.08 0.00
M_S 0.74 089 0.13 043 0.36 0.60 0.00 0.26
MM 0.70 023 0.53 0.03 0.26 0.00 0.26 0.01
M_L 0.74 038 0.03 0.72 0.00 0.45 0.13 0.03
M_SM 0.66 0.78 0.90 0.00 0.85 0.33 0.35 0.48
M_SL 0.72 090 0.00 0.99 0.26 0.82 0.07 0.30
M_ML 0.63 0.00 0.51 0.61 0.06 0.10 0.59 0.07
M_SML 0.00 0.28 0.05 0.34 0.23 0.35 0.13 0.13

Table 4: The difference in score between the best SIP score and the rest for
each model (by row). Values closer to zero reflect bigger resemblance between
spatial fields.
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