
Understanding spatial effects in species1

distribution models2

Iosu Paradinas∗1,2, Janine Illian 3, and Sophie Smout 1
3

1Scottish Ocean’s Institute. University of St Andrews. East sands,4

St Andrews, UK.5

2AZTI, Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Bizkaia,6

Spain7

3School of Mathematics and Statistics, University of Glasgow,8

Glasgow, G12 8QQ, UK9

January 202210

Abstract11

12

Most Species Distribution Models include spatial effects to improve13

prediction at unsampled locations and reduce Type I errors. Ecologists14

tend to try ecologically interpret the spatial patterns displayed by the15

spatial effect. However, spatial autocorrelation may be driven by many16

different unaccounted drivers, which complicates the ecological interpre-17

tation of fitted spatial effects. This study wants to provide a practical18

demonstration that spatial effects are able to smooth the effect of mul-19

tiple unaccounted drivers. To do so we use a simulation study that fit20

model-based spatial models using both geostatistics and 2D smoothing21

splines. Results show that fitted spatial effects resemble the sum of the22

unaccounted covariate surface(s) in each model.23

1 Introduction24

Understanding and predicting species spatial patterns through Species Distri-25

bution Models (SDM) is pivotal for ecology, evolution and conservation (Zurell26

et al., 2020)). SDMs quantify the relationship between species occurrence or27

abundance with biotic and abiotic factors in order to gain ecological and evo-28

lutionary understanding (Elith and Leathwick, 2009)). This way SDMs allow29

us to predict distributions across landscapes and make future predictions based30
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on identified drivers, as well as other latent variables such as spatial or spatio-31

temporal correlation effects. Generally, a SDM is composed by three types of32

predictors: non-spatial covariates; spatially structured covariates; and spatial33

or spatio-temporal autocorrelation effects that accommodate the spatial or spa-34

tiotemporal autoccorelation of the data that is unaccounted by our covariates.35

Spatial autocorrelation refers to the dependence between pairs of observa-36

tions in space. In SDMs, spatial effects allow us to predict better and reduce37

Type I errors in the presence of covariates (Lennon, 2000; Legendre et al., 2002)).38

In species distribution, spatial autocorrelation may arise as a combination of39

different factors such as: a geographical range dispersion process, e.g. coloni-40

sation; unaccounted environmental or biotic drivers; and other highly dynamic41

processes such as wind and current (Keitt et al., 2002; Dormann, 2007; De Knegt42

et al., 2010)). These drivers can influence species distribution at all scales, from43

micrometres to continental and ocean-wide scales (Legendre, 1993)). However,44

the size, spacing and extent of sampling units will constrain the scale of inferable45

drivers, and the scale of spatial autocorrelation (Dungan et al., 2002; De Knegt46

et al., 2010)). In other words, if we sample at a kilometer scale, we cannot infer47

processes at a smaller scale, and inversely, if our study area is one kilometer48

long, we cannot infer processes that affect at a larger scale.49

The statistical interpretation of a spatial effect is related to the sign and50

link function of our linear predictor, but in general terms, positive values refer51

to areas where we expect more than that predicted by the rest of the linear52

predictor and vice versa. Ecologically, many SDM studies have linked spatial53

effects to biological features like home-range (Keitt et al., 2002)), hot-spot size54

(Ungaro et al., 2014)) and unaccounted environmental drivers (Borcard and55

Legendre, 1994)), providing reasonable arguments. For example, given a species56

that is driven by two environmental variables, one that drives the large-scale57

variation and another that drives the small-scale variation, the residual spatial58

pattern of a SDM that includes one of the two covariates will resemble the59

pattern of the unaccounted explanatory variable, either the large-scale or small-60

scale one. However, as we mentioned before, reality behind ecological processes61

is often high dimensional and variables that drive spatial correlation can occur62

at several different scales. In fact, SDMs are seldom able to identify more63

than a small portion of all the drivers that influence the distribution of the64

species under study. This results on spatial effects that are potentially driven65

by many different unaccounted drivers, diluting their interpretability in terms66

of an individual process. Although this interpretation issues have sporadically67

been addressed in the literature (Perry et al., 2002; Diniz-Filho et al., 2003;68

Dormann, 2007; Legendre et al., 2009; De Knegt et al., 2010; Pasanen et al.,69

2018; Flury et al., 2021)), many modellers fail to acknowledge this probably due70

to the lack of an explicit study that shows this.71

The aim of this article was to provide a practical demonstration that spatial72

effects are able to smooth the effect of multiple unaccounted drivers, making73

the biological interpretation of spatial effects rather complicated. To do so, we74

used model-based spatial models applied over simulated species distribution sur-75

faces. Simulated fields were based on three spatially structured environmental76
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covariates acting at different spatial scales, and a geographical range dispersion77

process.78

2 Simulation79

We used an iterative simulation approach to produce spatially aggregated dis-80

tributions (link to code in Annex A). At each iteration we added a fixed number81

of new specimens to the study area based on a probability surface constituted82

by three spatially structured covariates, each operating at different scales (i.e.,83

small, medium and large scale), plus a spatial aggregation process driven by84

the abundance of the neighbouring areas, mimicking the colonization of a plant85

species for example. As a result, our simulated species distributions were driven86

by the sum of four different effects (Figure 1): the influence of three explanatory87

environmental variables operating at different spatial scales (S = small, M =88

medium and L = large) and a spatial dispersal effect that increase the spatial89

autocorrelation of the response variable.90

We simulated fifty different scenarios, selected 100 random samples for each91

scenario and fitted all the possible combinations of model-based spatial models92

that ranged from a purely spatial model to a full model that accounted for93

the three covariates (see Table 1). We used two spatial modelling approaches,94

geostatistics through the Intergated Nested Laplace Approximation approach95

(INLA) (Lindgren et al., 2015)) and 2D smoothing splines through the MGCV96

package for R (Augustin et al., 2013; Wood, 2017)).97

Our aim was to assess the resemblance between fitted spatial effects and un-98

accounted covariate surface combinations. Resemblence was assessed through99

the similarity in pattern score (SIP) (Jones et al., 2016)). SIP scores are bound100

between zero and one, and high scores denote high similarity in pattern and101

vice versa. For each simulated scenario, we calculated the SIP score between102

the spatial effect of every fitted model (rows in Table 2) and all the possible103

different combinations of covariate surfaces (columns in Table 2), and recorded104

the absolute difference between the best SIP score and the rest (i.e., SIP dif-105

ferences calculated per row in Table 2). This way, the spatial effect that best106

resembled a given combination of covariate surfaces scored a zero and that with107

the worst resemblance recorded the highest value (see Annex for a more de-108

tailed explanation of the procedure). As a result, we obtained fifty scores per109

model and combination of covariate surfaces. Finally, we summarised these110

scores by their mean and standard deviation. All the R script is available at111

https://tinyurl.com/2p8n3e4r.112

3 Results113

Results show that fitted spatial effects resemble the sum of the unaccounted114

covariate surfaces in each model (see highlighted diagonal scores in Table 2).115

Fitted 2D splines using generalized additive models (GAM) seemed to perform a116
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little worse than model based-geostatistics, probably due to the default selection117

of knots, but the overall pattern is very similar. This result suggests that spatial118

effects are able to smooth complex residual spatial patterns originated by a set119

of covariates that operate at very different scales. For example, model M M,120

which only accounts for the mid-scale covariate, estimates a spatial effect that121

resembles the aggregation of the small-scale and large-scale covariates (S and122

L respectively). Similarly, the spatial effect of model M 0, which is a purely123

spatial model (no covariates included), mirrors the combination of all three124

covariate surfaces (S, M and L). In the particular cases where we included two125

covariates (i.e., only one unaccounted covariate), spatial effects resembled the126

missing covariate. At this point, the question is: how many times do SDMs127

account for all but one driver? One can only speculate this answer but our128

guess would be: hardly ever.129

4 Discussion130

Many studies have analyzed the characteristics of spatial effects to describe the131

unaccounted ecological mechanisms that drive the distribution of species and132

try to associate spatial effect patterns to single unaccounted drivers. However,133

most species distributions are driven by a large number of factors and we are134

seldom able to identify most of these drivers in our statistical models. As a135

consequence, SDM spatial effects constitute a combination of many unaccounted136

factors (Keitt et al., 2002; Dormann, 2007; De Knegt et al., 2010)).137

This study used a simulation study to illustrate the difficulty in interpret-138

ing spatial effects with regards to unaccounted environmental drivers. Readers139

must realize that did not attempt an exhaustive account of all possible cases, in-140

stead, we aimed at illustrating our point using a simple and intuitive approach.141

Fitted spatial effects resembled the sum of the unaccounted covariate surfaces,142

including spatial patterns originated by covariates that operated at very differ-143

ent scales. Therefore the biological interpretation of spatial effects may only be144

valid when the unexplained spatial heterogeneity of the data is characterised by145

a single dominant driver. However, the environmental and ecological processes146

that drive the distribution of species are complex and diverse, and one could147

only arbitrarily assume that there is only one covariate missing in our SDM148

predictor to make biological interpretations over fitted spatial effects.149

In this regard, one could use a multiresolution decomposition approach to150

identify dominant features within the residual spatial correlation of the data151

(Pasanen et al., 2018; Flury et al., 2020)). This method essentially estimates152

the range of spatial correlation at different resolutions of the data, or in this case,153

residuals of the SDM to help us identify the scale-dependent features within the154

spatial effect of the residuals. Then, assuming that each scale is characterized155

by a single dominant driver (Perry et al., 2002)), one could relate them to156

underlying process generating mechanisms.157
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5 Conclusions158

Spatial autocorrelation is a common feature in ecological data. As a conse-159

quence, spatial correlation models are important to correctly estimate covariate160

standard errors and therefore reduce Type I errors. Additionally, spatial cor-161

relation terms estimate the residual spatial structure of the data, improving162

the predictive capacity of our models at locations that are within range. In163

ecology, residual spatial patterns are potentially driven by complex multivariate164

and multi-scaled systems, which can be accommodated by a single spatial ef-165

fect. Therefore, the biological interpretation of spatial effects is very difficult. A166

multiresolution decomposition of residual spatial patterns (Flury et al., 2020))167

could help us identify the scale-dependent features within the spatial correlation168

structure of the residuals assuming that each scale is characterized by a single169

dominant driver.170

6 Figure and Tables171

Figure 1: Visualization of the different autocorrelated drivers that influence
the abundance pattern in a simulated scenario. S, M and L refer to the small,
medium and large scaled covariate fields, respectively. Residual aggregation
refers to the geographical range dispersion. White crosses refer to the simulated
100 samples.
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Model Linear predictor Missing covariates
M 0 β0 +W S, M & L
M S β0 + S +W M & L
M M β0 +M +W S & L
M L β0 + L+W S & M
M ML β0 +M + L+W S
M SM β0 + S +M +W L
M SL β0 + S + L+W M
M SML β0 + S +M + L+W –

Table 1: Summary of fitted models. W refers to a geostatistical spatial corre-
lation term, S, M and L refer to the small, medium and large scale covariates,
respectively.
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A Annex236

The aim of this annex is to explain the procedure that we followed to create237

Table 2. To do so we use a single simulated species distribution (as compared238

to 50 simulations in the study) that is also driven by three spatially structured239

environmental covariates acting at different spatial scales and a geographical240

range dispersion process.241

We fitted all the models described in Table 1 and we computed SIP scores242

between each model’s spatial effect and all the possible different combinations243

of covariate surfaces. By doing so, we get Table 3, which displays highest SIP244

scores along the diagonal, matching the combination of drivers (columns) with245

the covariates that are missing in the fitted models (rows).246

Combination of drivers

Model Residual S M L S & M S & L M & L S, M & L

M 0 -0.01 0.43 0.57 0.49 0.71 0.55 0.73 0.82

M S 0.12 -0.04 0.73 0.43 0.49 0.25 0.85 0.59

M M 0.03 0.50 0.19 0.69 0.47 0.72 0.46 0.72

M L 0.05 0.40 0.75 0.06 0.78 0.33 0.65 0.75

M SM 0.16 0.03 -0.09 0.81 -0.03 0.48 0.46 0.33

M SL 0.11 -0.06 0.83 -0.15 0.57 0.01 0.76 0.53

M ML 0.01 0.64 0.13 0.03 0.57 0.54 0.05 0.57

M SML 0.22 -0.05 0.17 -0.12 -0.00 -0.12 0.10 0.09

Table 3: SIP scores between fitted spatial effects and all the combinations of
covariate surfaces. Scores must be read by row. Values closer to one reflect
bigger resemblance between spatial fields.

Once we repeat the simulation 50 times we get 50 SIP scores for each position247

in the table, which could be summarised by the mean and standard deviation248

of these 50 values. However, we decided to use the difference between the best249

SIP score for each model and combinations of covariate fields because results250

were clearer, i.e. differences by row in the Table 3. This way Table 3 becomes251

Table 4, where zero values represents the best SIP score per model (by row) and252

the rest of the scores represent the SIP score difference with respect to the best253

score by row.254
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Combination of drivers

Model Residual S M L S & M S & L M & L S, M & L

M 0 0.83 0.39 0.24 0.32 0.11 0.27 0.08 0.00

M S 0.74 0.89 0.13 0.43 0.36 0.60 0.00 0.26

M M 0.70 0.23 0.53 0.03 0.26 0.00 0.26 0.01

M L 0.74 0.38 0.03 0.72 0.00 0.45 0.13 0.03

M SM 0.66 0.78 0.90 0.00 0.85 0.33 0.35 0.48

M SL 0.72 0.90 0.00 0.99 0.26 0.82 0.07 0.30

M ML 0.63 0.00 0.51 0.61 0.06 0.10 0.59 0.07

M SML 0.00 0.28 0.05 0.34 0.23 0.35 0.13 0.13

Table 4: The difference in score between the best SIP score and the rest for
each model (by row). Values closer to zero reflect bigger resemblance between
spatial fields.
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