References
Bayle, V., Arrighi, J. F., Creff, A., Nespoulous, C., Vialaret, J., Rossignol, M., Gonzalez, E., Paz-Ares, J., and Nussaume, L. (2011). Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell23:1523–1535.
Chalhoub, B., Denoeud, F., Liu, S., Parkin, I. A. P., Tang, H., Wang, X., Chiquet, J., Belcram, H., Tong, C., Samans, B., et al. (2014). Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science (80-. ). 345:950–953.
Chen, J., Liu, Y., Ni, J., Wang, Y., Bai, Y., Shi, J., Gan, J., Wu, Z., and Wu, P. (2011). OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice. Plant Physiol. 157:269–278.
Chiou, T.-J., and Lin, S.-I. (2011). Signaling Network in Sensing Phosphate Availability in Plants. Annu. Rev. Plant Biol.62:185–206.
Clough, S. J., and Bent, A. F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.Plant J. 16:735–743.
De Block, M., De Brouwer, D., and Tenning, P. (1989). Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Expression of the bar and neo Genes in the Transgenic Plants .Plant Physiol. 91:694–701.
Deng, S., Li, J., Du, Z., Wu, Z., Yang, J., Cai, H., Wu, G., Xu, F., Huang, Y., Wang, S., et al. (2022). Rice ACID PHOSPHATASE 1 regulates Pi stress adaptation by maintaining intracellular Pi homeostasis.Plant Cell Environ. 45:191–205.
Dietz, K. J., and Foyer, C. (1986). The relationship between phosphate status and photosynthesis in leaves - Reversibility of the effects of phosphate deficiency on photosynthesis. Planta 167:376–381.
González, E., Solano, R., Rubio, V., Leyva, A., and Paz-Ares, J. (2005). PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell17:3500–3512.
Hamburger, D., Rezzonico, E., Petétot, J. M. D. C., Somerville, C., and Poirier, Y. (2002). Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem.Plant Cell 14:889–902.
Hawkins, H. J., Hettasch, H., Mesjasz-Przybylowicz, J., Przybylowicz, W., and Cramer, M. D. (2008). Phosphorus toxicity in the Proteaceae: A problem in post-agricultural lands. Sci. Hortic. (Amsterdam).117:357–365.
Huang, T. K., Han, C. L., Lin, S. I., Chen, Y. J., Tsai, Y. C., Chen, Y. R., Chen, J. W., Lin, W. Y., Chen, P. M., Liu, T. Y., et al. (2013). Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots.Plant Cell 25:4044–4060.
Joan, R., José Manuel, B. M., and Xavier, S. F. (2017). Phosphorus mobilization in low-P arable soils may involve soil organic C depletion.Soil Biol. Biochem. 113:250–259.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589.
Lin, W. Y., Huang, T. K., and Chiou, T. J. (2013). NITROGEN LIMITATION ADAPTATION, a target of MicroRNA827, Mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell 25:4061–4074.
Liu, J., Fu, S., Yang, L., Luan, M., Zhao, F., Luan, S., and Lan, W. (2016). Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants. Plant Signal. Behav. 11:e1213474.
Liu, J., Yang, L., Luan, M., Wang, Y., Zhang, C., Zhang, B., Shi, J., Zhao, F. G., Lan, W., and Luan, S. (2015). A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis.Proc. Natl. Acad. Sci. U. S. A. 112:E6571–E6578.
Liu, N., Shang, W., Li, C., Jia, L., Wang, X., Xing, G., and Zheng, W. M. (2018). Evolution of the SPX gene family in plants and its role in the response mechanism to phosphorus stress. Open Biol. 8.
Liu, T. Y., Huang, T. K., Yang, S. Y., Hong, Y. T., Huang, S. M., Wang, F. N., Chiang, S. F., Tsai, S. Y., Lu, W. C., and Chiou, T. J. (2016). Identification of plant vacuolar transporters mediating phosphate storage. Nat. Commun. 7:1–11.
Lotkowska, M. E., Tohge, T., Fernie, A. R., Xue, G. P., Balazadeh, S., and Mueller-Roeber, B. (2015). The arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiol. 169:1862–1880.
Lu, L., Qiu, W., Gao, W., Tyerman, S. D., Shou, H., and Wang, C. (2016). OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus. Plant Cell Environ. 39:2247–2259.
Luan, M., Zhao, F., Han, X., Sun, G., Yang, Y., Liu, J., Shi, J., Fu, A., Lan, W., and Luan, S. (2019). Vacuolar phosphate transporters contribute to systemic phosphate homeostasis vital for reproductive development in arabidopsis 1[open]. Plant Physiol.179:640–655.
Lv, Q., Zhong, Y., Wang, Y., Wang, Z., Zhang, L., Shi, J., Wu, Z., Liu, Y., Mao, C., Yi, K., et al. (2014). SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice.Plant Cell 26:1586–1597.
Osorio, M. B., Ng, S., Berkowitz, O., De Clercq, I., Mao, C., Shou, H., Whelan, J., and Jost, R. (2019). SPX4 Acts on PHR1-dependent and -independent regulation of shoot phosphorus status in arabidopsis.Plant Physiol. 181:332–352.
Park, B. S., Seo, J. S., and Chua, N. H. (2014). NITROGEN LIMITATION ADAPTATION Recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis. Plant Cell 26:454–464.
Popova, Y., Thayumanavan, P., Lonati, E., Agrochão, M., and Thevelein, J. M. (2010). Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc. Natl. Acad. Sci. U. S. A. 107:2890–2895.
Ried, M. K., Wild, R., Zhu, J., Pipercevic, J., Sturm, K., Broger, L., Harmel, R. K., Abriata, L. A., Hothorn, L. A., Fiedler, D., et al. (2021). Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis. Nat. Commun. 12:1–13.
Schachtman, D. P., Reid, R. J., and Ayling, S. M. (1998). Phosphorus Uptake by Plants: From Soil to Cell. Plant Physiol. 116:447–453.
Stefanovic, A., Ribot, C., Rouached, H., Wang, Y., Chong, J., Belbahri, L., Delessert, S., and Poirier, Y. (2007). Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways.Plant J. 50:982–994.
Veneklaas, E. J., Lambers, H., Bragg, J., Finnegan, P. M., Lovelock, C. E., Plaxton, W. C., Price, C. A., Scheible, W. R., Shane, M. W., White, P. J., et al. (2012). Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 195:306–320.
Wang, C., Huang, W., Ying, Y., Li, S., Secco, D., Tyerman, S., Whelan, J., and Shou, H. (2012). Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytol. 196:139–148.
Wang, C., Yue, W., Ying, Y., Wang, S., Secco, D., Liu, Y., Whelan, J., Tyerman, S., and Shou, H. (2015). OsSPX-MFS3, a vacuolar phosphate efflux transporter, is involved in maintaining Pi homeostasis in rice.Plant Physiol. Advance Access published 2015, doi:10.1104/pp.15.01005.
Wang, Y., Chen, X., Lu, C., Huang, B., and Shi, Y. (2017). Different mechanisms of organic and inorganic phosphorus release from mollisols induced by low molecular weight organic acids. Can. J. Soil Sci.98:15–23.
Wang, Z., Kuo, H. F., and Chiou, T. J. (2021). Intracellular phosphate sensing and regulation of phosphate transport systems in plants.Plant Physiol. 187:2043–2055.
White, P. J. , Hammond, J. P. (2008) Phosphorus nutrition of terrestrial plants. In: The Ecophysiology of Plant-Phosphorus Interactions, pp. 51-81. White PJ, Hammond JP, eds. Springer, Dordrecht. ISBN 978-1-4020-8434-8.
Xing, H. L., Dong, L., Wang, Z. P., Zhang, H. Y., Han, C. Y., Liu, B., Wang, X. C., and Chen, Q. J. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14:1–12.
Xu, L., Zhao, H., Wan, R., Liu, Y., Xu, Z., Tian, W., Ruan, W., Wang, F., Deng, M., Wang, J., et al. (2019). Identification of vacuolar phosphate efflux transporters in land plants. Nat. Plants5:84–94.
Yang, X., Chen, X., Guo, E., and Yang, X. (2019). Path analysis of phosphorus activation capacity as induced by low-molecular-weight organic acids in a black soil of Northeast China. J. Soils Sediments 19:840–847.
Yoo, S. D., Cho, Y. H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2:1565–1572.
Yue, W., Ying, Y., Wang, C., Zhao, Y., Dong, C., Whelan, J., and Shou, H. (2017). OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters.Plant J. 90 :1040–1051.
Zhong, Y., Wang, Y., Guo, J., Zhu, X., Shi, J., He, Q., Liu, Y., Wu, Y., Zhang, L., Lv, Q., et al. (2018). Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. New Phytol. 219 :135–148.