References
Bayle, V., Arrighi, J. F., Creff, A., Nespoulous, C., Vialaret, J.,
Rossignol, M., Gonzalez, E., Paz-Ares, J., and Nussaume, L. (2011).
Arabidopsis thaliana high-affinity phosphate transporters exhibit
multiple levels of posttranslational regulation. Plant Cell23:1523–1535.
Chalhoub, B., Denoeud, F., Liu, S., Parkin, I. A. P., Tang, H., Wang,
X., Chiquet, J., Belcram, H., Tong, C., Samans, B., et al. (2014). Early
allopolyploid evolution in the post-neolithic Brassica napus oilseed
genome. Science (80-. ). 345:950–953.
Chen, J., Liu, Y., Ni, J., Wang, Y., Bai, Y., Shi, J., Gan, J., Wu, Z.,
and Wu, P. (2011). OsPHF1 regulates the plasma membrane localization of
low- and high-affinity inorganic phosphate transporters and determines
inorganic phosphate uptake and translocation in rice. Plant
Physiol. 157:269–278.
Chiou, T.-J., and Lin, S.-I. (2011). Signaling Network in Sensing
Phosphate Availability in Plants. Annu. Rev. Plant Biol.62:185–206.
Clough, S. J., and Bent, A. F. (1998). Floral dip: A simplified method
for Agrobacterium-mediated transformation of Arabidopsis thaliana.Plant J. 16:735–743.
De Block, M., De Brouwer, D., and Tenning, P. (1989). Transformation of
Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and
the Expression of the bar and neo Genes in the Transgenic Plants .Plant Physiol. 91:694–701.
Deng, S., Li, J., Du, Z., Wu, Z., Yang, J., Cai, H., Wu, G., Xu, F.,
Huang, Y., Wang, S., et al. (2022). Rice ACID PHOSPHATASE 1 regulates Pi
stress adaptation by maintaining intracellular Pi homeostasis.Plant Cell Environ. 45:191–205.
Dietz, K. J., and Foyer, C. (1986). The relationship between phosphate
status and photosynthesis in leaves - Reversibility of the effects of
phosphate deficiency on photosynthesis. Planta 167:376–381.
González, E., Solano, R., Rubio, V., Leyva, A., and Paz-Ares, J. (2005).
PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific
SEC12-related protein that enables the endoplasmic reticulum exit of a
high-affinity phosphate transporter in Arabidopsis. Plant Cell17:3500–3512.
Hamburger, D., Rezzonico, E., Petétot, J. M. D. C., Somerville, C., and
Poirier, Y. (2002). Identification and characterization of the
Arabidopsis PHO1 gene involved in phosphate loading to the xylem.Plant Cell 14:889–902.
Hawkins, H. J., Hettasch, H., Mesjasz-Przybylowicz, J., Przybylowicz,
W., and Cramer, M. D. (2008). Phosphorus toxicity in the Proteaceae: A
problem in post-agricultural lands. Sci. Hortic. (Amsterdam).117:357–365.
Huang, T. K., Han, C. L., Lin, S. I., Chen, Y. J., Tsai, Y. C., Chen, Y.
R., Chen, J. W., Lin, W. Y., Chen, P. M., Liu, T. Y., et al. (2013).
Identification of downstream components of ubiquitin-conjugating enzyme
PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots.Plant Cell 25:4044–4060.
Joan, R., José Manuel, B. M., and Xavier, S. F. (2017). Phosphorus
mobilization in low-P arable soils may involve soil organic C depletion.Soil Biol. Biochem. 113:250–259.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko,
A., et al. (2021). Highly accurate protein structure prediction with
AlphaFold. Nature 596:583–589.
Lin, W. Y., Huang, T. K., and Chiou, T. J. (2013). NITROGEN LIMITATION
ADAPTATION, a target of MicroRNA827, Mediates degradation of plasma
membrane-localized phosphate transporters to maintain phosphate
homeostasis in Arabidopsis. Plant Cell 25:4061–4074.
Liu, J., Fu, S., Yang, L., Luan, M., Zhao, F., Luan, S., and Lan, W.
(2016). Vacuolar SPX-MFS transporters are essential for phosphate
adaptation in plants. Plant Signal. Behav. 11:e1213474.
Liu, J., Yang, L., Luan, M., Wang, Y., Zhang, C., Zhang, B., Shi, J.,
Zhao, F. G., Lan, W., and Luan, S. (2015). A vacuolar phosphate
transporter essential for phosphate homeostasis in Arabidopsis.Proc. Natl. Acad. Sci. U. S. A. 112:E6571–E6578.
Liu, N., Shang, W., Li, C., Jia, L., Wang, X., Xing, G., and Zheng, W.
M. (2018). Evolution of the SPX gene family in plants and its role in
the response mechanism to phosphorus stress. Open Biol. 8.
Liu, T. Y., Huang, T. K., Yang, S. Y., Hong, Y. T., Huang, S. M., Wang,
F. N., Chiang, S. F., Tsai, S. Y., Lu, W. C., and Chiou, T. J. (2016).
Identification of plant vacuolar transporters mediating phosphate
storage. Nat. Commun. 7:1–11.
Lotkowska, M. E., Tohge, T., Fernie, A. R., Xue, G. P., Balazadeh, S.,
and Mueller-Roeber, B. (2015). The arabidopsis transcription factor
MYB112 promotes anthocyanin formation during salinity and under high
light stress. Plant Physiol. 169:1862–1880.
Lu, L., Qiu, W., Gao, W., Tyerman, S. D., Shou, H., and Wang, C. (2016).
OsPAP10c, a novel secreted acid phosphatase in rice, plays an important
role in the utilization of external organic phosphorus. Plant Cell
Environ. 39:2247–2259.
Luan, M., Zhao, F., Han, X., Sun, G., Yang, Y., Liu, J., Shi, J., Fu,
A., Lan, W., and Luan, S. (2019). Vacuolar phosphate transporters
contribute to systemic phosphate homeostasis vital for reproductive
development in arabidopsis 1[open]. Plant Physiol.179:640–655.
Lv, Q., Zhong, Y., Wang, Y., Wang, Z., Zhang, L., Shi, J., Wu, Z., Liu,
Y., Mao, C., Yi, K., et al. (2014). SPX4 negatively regulates phosphate
signaling and homeostasis through its interaction with PHR2 in rice.Plant Cell 26:1586–1597.
Osorio, M. B., Ng, S., Berkowitz, O., De Clercq, I., Mao, C., Shou, H.,
Whelan, J., and Jost, R. (2019). SPX4 Acts on PHR1-dependent and
-independent regulation of shoot phosphorus status in arabidopsis.Plant Physiol. 181:332–352.
Park, B. S., Seo, J. S., and Chua, N. H. (2014). NITROGEN LIMITATION
ADAPTATION Recruits PHOSPHATE2 to target the phosphate transporter PT2
for degradation during the regulation of Arabidopsis phosphate
homeostasis. Plant Cell 26:454–464.
Popova, Y., Thayumanavan, P., Lonati, E., Agrochão, M., and Thevelein,
J. M. (2010). Transport and signaling through the phosphate-binding site
of the yeast Pho84 phosphate transceptor. Proc. Natl. Acad. Sci.
U. S. A. 107:2890–2895.
Ried, M. K., Wild, R., Zhu, J., Pipercevic, J., Sturm, K., Broger, L.,
Harmel, R. K., Abriata, L. A., Hothorn, L. A., Fiedler, D., et al.
(2021). Inositol pyrophosphates promote the interaction of SPX domains
with the coiled-coil motif of PHR transcription factors to regulate
plant phosphate homeostasis. Nat. Commun. 12:1–13.
Schachtman, D. P., Reid, R. J., and Ayling, S. M. (1998). Phosphorus
Uptake by Plants: From Soil to Cell. Plant Physiol. 116:447–453.
Stefanovic, A., Ribot, C., Rouached, H., Wang, Y., Chong, J., Belbahri,
L., Delessert, S., and Poirier, Y. (2007). Members of the PHO1 gene
family show limited functional redundancy in phosphate transfer to the
shoot, and are regulated by phosphate deficiency via distinct pathways.Plant J. 50:982–994.
Veneklaas, E. J., Lambers, H., Bragg, J., Finnegan, P. M., Lovelock, C.
E., Plaxton, W. C., Price, C. A., Scheible, W. R., Shane, M. W., White,
P. J., et al. (2012). Opportunities for improving phosphorus-use
efficiency in crop plants. New Phytol. 195:306–320.
Wang, C., Huang, W., Ying, Y., Li, S., Secco, D., Tyerman, S., Whelan,
J., and Shou, H. (2012). Functional characterization of the rice SPX-MFS
family reveals a key role of OsSPX-MFS1 in controlling phosphate
homeostasis in leaves. New Phytol. 196:139–148.
Wang, C., Yue, W., Ying, Y., Wang, S., Secco, D., Liu, Y., Whelan, J.,
Tyerman, S., and Shou, H. (2015). OsSPX-MFS3, a vacuolar phosphate
efflux transporter, is involved in maintaining Pi homeostasis in rice.Plant Physiol. Advance Access published 2015,
doi:10.1104/pp.15.01005.
Wang, Y., Chen, X., Lu, C., Huang, B., and Shi, Y. (2017). Different
mechanisms of organic and inorganic phosphorus release from mollisols
induced by low molecular weight organic acids. Can. J. Soil Sci.98:15–23.
Wang, Z., Kuo, H. F., and Chiou, T. J. (2021). Intracellular phosphate
sensing and regulation of phosphate transport systems in plants.Plant Physiol. 187:2043–2055.
White, P. J. , Hammond, J. P. (2008) Phosphorus nutrition of terrestrial
plants. In: The Ecophysiology of Plant-Phosphorus Interactions, pp.
51-81. White PJ, Hammond JP, eds. Springer, Dordrecht. ISBN
978-1-4020-8434-8.
Xing, H. L., Dong, L., Wang, Z. P., Zhang, H. Y., Han, C. Y., Liu, B.,
Wang, X. C., and Chen, Q. J. (2014). A CRISPR/Cas9 toolkit for multiplex
genome editing in plants. BMC Plant Biol. 14:1–12.
Xu, L., Zhao, H., Wan, R., Liu, Y., Xu, Z., Tian, W., Ruan, W., Wang,
F., Deng, M., Wang, J., et al. (2019). Identification of vacuolar
phosphate efflux transporters in land plants. Nat. Plants5:84–94.
Yang, X., Chen, X., Guo, E., and Yang, X. (2019). Path analysis of
phosphorus activation capacity as induced by low-molecular-weight
organic acids in a black soil of Northeast China. J. Soils
Sediments 19:840–847.
Yoo, S. D., Cho, Y. H., and Sheen, J. (2007). Arabidopsis mesophyll
protoplasts: A versatile cell system for transient gene expression
analysis. Nat. Protoc. 2:1565–1572.
Yue, W., Ying, Y., Wang, C., Zhao, Y., Dong, C., Whelan, J., and Shou,
H. (2017). OsNLA1, a RING-type ubiquitin ligase, maintains phosphate
homeostasis in Oryza sativa via degradation of phosphate transporters.Plant J. 90 :1040–1051.
Zhong, Y., Wang, Y., Guo, J., Zhu, X., Shi, J., He, Q., Liu, Y., Wu, Y.,
Zhang, L., Lv, Q., et al. (2018). Rice SPX6 negatively regulates the
phosphate starvation response through suppression of the transcription
factor PHR2. New Phytol. 219 :135–148.