Literature
Belfort, G., Davis, R. H., & Zydney, A. L. (1994). The behavior of suspensions and macromolecular solutions in crossflow microfiltration.Journal of Membrane Science , 96 , 1–58.
Bielser, J. M., Wolf, M., Souquet, J., Broly, H., & Morbidelli, M. (2018). Perfusion mammalian cell culture for recombinant protein manufacturing – A critical review. Biotechnology Advances ,36 (4), 1328–1340. https://doi.org/10.1016/j.biotechadv.2018.04.011
Blaschczok, K., Kaiser, S. C., Löffelholz, C., Imseng, N., Burkart, J., Bösch, P., Dornfeld, W., Eibl, R., & Eibl, D. (2013). Investigations on Mechanical Stress Caused to CHO Suspension Cells by Standard and Single-Use Pumps. Chemie Ingenieur Technik , 85 (1–2), 144–152. https://doi.org/10.1002/cite.201200135
Chew, J. W., Kilduff, J., & Belfort, G. (2020). The behavior of suspensions and macromolecular solutions in crossflow microfiltration: An update. Journal of Membrane Science , 601 (October 2019), 117865. https://doi.org/10.1016/j.memsci.2020.117865
Clincke, M. F., Mölleryd, C., Samani, P. K., Lindskog, E., Fäldt, E., Walsh, K., & Chotteau, V. (2013). Very high density of Chinese hamster ovary cells in perfusion by alternating tangential flow or tangential flow filtration in WAVE bioreactorTM-part II: Applications for antibody production and cryopreservation.Biotechnology Progress , 29 (3), 768–777. https://doi.org/10.1002/btpr.1703
Coffman, J., Brower, M., Connell-Crowley, L., Deldari, S., Farid, S. S., Horowski, B., Patil, U., Pollard, D., Qadan, M., Rose, S., Schaefer, E., & Shultz, J. (2021). A common framework for integrated and continuous biomanufacturing. Biotechnology and Bioengineering ,118 (4), 1721–1735. https://doi.org/10.1002/bit.27690
Coffman, J., Brower, M., Connell‐Crowley, L., Deldari, S., Farid, S. S., Horowski, B., Patil, U., Pollard, D., Qadan, M., Rose, S., Schaefer, E., & Shultz, J. (2021). A common framework for integrated and continuous biomanufacturing. Biotechnology and Bioengineering ,118 (4), 1735–1749. https://doi.org/10.1002/bit.27690
Field, R. (2010). Fundamentals of Fouling. In Membrane Technology(Vol. 44, pp. 1–23). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527631407.ch1
Fisher, A. C., Kamga, M. H., Agarabi, C., Brorson, K., Lee, S. L., & Yoon, S. (2019). The Current Scientific and Regulatory Landscape in Advancing Integrated Continuous Biopharmaceutical Manufacturing.Trends in Biotechnology , 37 (3), 253–267. https://doi.org/10.1016/j.tibtech.2018.08.008
Grzenia, D. L., Carlson, J. O., & Wickramasinghe, S. R. (2008). Tangential flow filtration for virus purification. Journal of Membrane Science , 321 (2), 373–380. https://doi.org/10.1016/j.memsci.2008.05.020
Karst, D. J., Serra, E., Villiger, T. K., Soos, M., & Morbidelli, M. (2016). Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes.Biochemical Engineering Journal , 110 , 17–26. https://doi.org/10.1016/j.bej.2016.02.003
Kelly, W., Scully, J., Zhang, D., Feng, G., Lavengood, M., Condon, J., Knighton, J., & Bhatia, R. (2014). Understanding and modeling alternating tangential flow filtration for perfusion cell culture.Biotechnology Progress , 30 (6), 1291–1300. https://doi.org/10.1002/btpr.1953
Kim, S. C., An, S., Kim, H. K., Park, B. S., Na, K. H., & Kim, B. G. (2016). Effect of transmembrane pressure on Factor VIII yield in ATF perfusion culture for the production of recombinant human Factor VIII co-expressed with von Willebrand factor. Cytotechnology ,68 (5), 1687–1696. https://doi.org/10.1007/s10616-015-9918-1
MacDonald, M. A., Nöbel, M., Roche Recinos, D., Martínez, V. S., Schulz, B. L., Howard, C. B., Baker, K., Shave, E., Lee, Y. Y., Marcellin, E., Mahler, S., Nielsen, L. K., & Munro, T. (2022). Perfusion culture of Chinese Hamster Ovary cells for bioprocessing applications.Critical Reviews in Biotechnology , 42 (7), 1099–1115. https://doi.org/10.1080/07388551.2021.1998821
Matanguihan, C., & Wu, P. (2022). Upstream continuous processing: recent advances in production of biopharmaceuticals and challenges in manufacturing. Current Opinion in Biotechnology , 78 , 102828. https://doi.org/10.1016/j.copbio.2022.102828
Merin, U., & Daufin, G. (1990). Crossflow microfiltration in the dairy industry: state-of-the-art. Le Lait , 70 (4), 281–291. https://doi.org/10.1051/lait:1990421
Metze, S., Ruhl, S., Greller, G., Grimm, C., & Scholz, J. (2020). Monitoring online biomass with a capacitance sensor during scale-up of industrially relevant CHO cell culture fed-batch processes in single-use bioreactors. Bioprocess and Biosystems Engineering , 43 (2), 193–205. https://doi.org/10.1007/s00449-019-02216-4
Pappenreiter, M., Schwarz, H., Sissolak, B., & Jungbauer, A. (2023). Product Sieving of mAb and its High Molecular Weight Species in different modes of ATF and TFF Perfusion Cell Cultures. Journal of Chemical Technology & Biotechnology . https://doi.org/10.1002/jctb.7386
Pavlik, R. (2017). United States Patent (Patent No. US 2019/0201820 A1).
Pavlik, R. (2019). Australian Patent (Patent No. W O 2019/133487 A1).
Radoniqi, F., Zhang, H., Bardliving, C. L., Shamlou, P., & Coffman, J. (2018). Computational fluid dynamic modeling of alternating tangential flow filtration for perfusion cell culture. Biotechnology and Bioengineering , 115 (11), 2751–2759. https://doi.org/10.1002/bit.26813
Redkar, S. G., & Davis, R. H. (1993). Crossflow Microfiltration of Yeast Suspensions in Tubular Filters. Biotechnology Progress ,9 (6), 625–634. https://doi.org/10.1021/bp00024a009
Ripperger, S., & Altmann, J. (2002). Crossflow microfiltration – state of the art. Separation and Purification Technology , 26 (1), 19–31. https://doi.org/10.1016/S1383-5866(01)00113-7
Romann, P., Kolar, J., Chappuis, L., Herwig, C., Villiger, T. K., & Bielser, J.-M. (2023). Maximizing yield of perfusion cell culture processes: Evaluation and scale-up of continuous bleed recycling.Biochemical Engineering Journal , 193 (February), 108873. https://doi.org/10.1016/j.bej.2023.108873
Sandblom, R. M. (1978). United States Patent (Patent No. 4,105,547).
Shevitz, J. (2018). United States Patent (Patent No. US 2018/0236407 A1).
Starling, E. H. (1896). On the Absorption of Fluids from the Connective Tissue Spaces. The Journal of Physiology , 19 (4), 312–326. https://doi.org/10.1113/jphysiol.1896.sp000596
Sundar, V., Zhang, D., Qian, X., Wickramasinghe, S. R., Paul, J., Christina, S., Yara, C., Al, J., & Zydney, A. L. (2023). Use of scanning electron microscopy and energy dispersive X-ray spectroscopy to identify key fouling species during alternating tangential filtration .November 2022 , 1–6. https://doi.org/10.1002/btpr.3336
Taddei, C., Aimar, P., Howell, J. A., & Scott, J. A. (1990). Yeast cell harvesting from cider using microfiltration. Journal of Chemical Technology & Biotechnology , 47 (4), 365–376. https://doi.org/10.1002/jctb.280470407
Tanaka, T., Tsuneyoshi, S. I., Kitazawa, W., & Nakanishi, K. (1997). Characteristics in Crossflow Filtration Using Different Yeast Suspensions. Separation Science and Technology , 32 (11), 1885–1898. https://doi.org/10.1080/01496399708000743
Vadi, P. ., & Rizvi, S. S. . (2001). Experimental evaluation of a uniform transmembrane pressure crossflow microfiltration unit for the concentration of micellar casein from skim milk. Journal of Membrane Science , 189 (1), 69–82. https://doi.org/10.1016/S0376-7388(01)00396-9
van Reis, R. (1993). United States Patent (Patent No. 5,256,294).
van Reis, R., Gadam, S., Frautschy, L. N., Orlando, S., Goodrich, E. M., Saksena, S., Kuriyel, R., Simpson, C. M., Pearl, S., & Zydney, A. L. (1997). High performance tangential flow filtration. Biotechnology and Bioengineering , 56 (1), 71–82. https://doi.org/10.1002/(SICI)1097-0290(19971005)56:1<71::AID-BIT8>3.0.CO;2-S
van Reis, R., & Zydney, A. (2007). Bioprocess membrane technology.Journal of Membrane Science , 297 (1–2), 16–50. https://doi.org/10.1016/j.memsci.2007.02.045
Walther, J., McLarty, J., & Johnson, T. (2019). The effects of alternating tangential flow (ATF) residence time, hydrodynamic stress, and filtration flux on high-density perfusion cell culture.Biotechnology and Bioengineering , 116 (2), 320–332. https://doi.org/10.1002/bit.26811
Wang, S., Godfrey, S., Ravikrishnan, J., Lin, H., Vogel, J., & Coffman, J. (2017a). Shear contributions to cell culture performance and product recovery in ATF and TFF perfusion systems. Journal of Biotechnology , 246 (November), 52–60. https://doi.org/10.1016/j.jbiotec.2017.01.020
Wang, S., Godfrey, S., Ravikrishnan, J., Lin, H., Vogel, J., & Coffman, J. (2017b). Shear contributions to cell culture performance and product recovery in ATF and TFF perfusion systems. Journal of Biotechnology , 246 , 52–60. https://doi.org/10.1016/j.jbiotec.2017.01.020
Weinberger, M. E., & Kulozik, U. (2021a). On the effect of flow reversal during crossflow microfiltration of a cell and protein mixture.Food and Bioproducts Processing , 129 , 24–33. https://doi.org/10.1016/j.fbp.2021.07.001
Weinberger, M. E., & Kulozik, U. (2021b). Pulsatile crossflow improves microfiltration fractionation of cells and proteins. Journal of Membrane Science , 629 (March). https://doi.org/10.1016/j.memsci.2021.119295
Weinberger, M. E., & Kulozik, U. (2022). Understanding the fouling mitigation mechanisms of alternating crossflow during cell-protein fractionation by microfiltration. Food and Bioproducts Processing , 131 , 136–143. https://doi.org/10.1016/j.fbp.2021.11.003
Wolf, M., Bielser, J., & Morbidelli, M. (2020). Perfusion cell culture processes for biopharmaceuticals . Cambridge University Press.
Zydney, A. L. (2016). Continuous downstream processing for high value biological products: A Review. Biotechnology and Bioengineering ,113 (3), 465–475. https://doi.org/10.1002/bit.25695