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Abstract 20 

The rapid decline in global biodiversity underscores the critical need for comprehensive 21 

monitoring of wildlife distribution and abundance. This study explores the trends in applied 22 

hierarchical modeling, which is an important tool in addressing these conservation challenges. 23 

By analyzing a dataset of 697 peer-reviewed articles published between 2002 and 2022, we 24 

examine the taxonomic focus, detection procedures, study designs, and modeling choices within 25 

the field of population ecology. Our findings revealed that most studies concentrated on single 26 

taxonomic groups, particularly mammals and birds. Data collection methods included visual 27 

surveys, acoustic surveys, camera traps, and traps, with some studies combining multiple 28 

techniques. Notably, the United States dominated the geographical focus, accounting for 46% of 29 

published papers. In terms of modeling approaches, single-season occupancy was the most 30 

prevalent, followed by various other models, including multi-species occupancy and N-mixture 31 

models. While hierarchical modeling has gained popularity, citations for these articles remained 32 

relatively modest, with only a few achieving over 100 citations. Authorship analysis revealed a 33 

highly collaborative network of researchers, with key authors contributing significantly to the 34 

field’s development and dissemination. Co-authorship and co-citation networks highlighted the 35 

importance of authors who can bridge differing scientific groups and those that have made 36 

substantial contributions to hierarchical modeling methods. Despite its growth, the field faces 37 

challenges related to standardization in modeling and reporting practices. While efforts to 38 

address these issues are currently underway, a cohesive framework for occupancy modeling in 39 

ecology is still in an emerging stage. 40 

Introduction 41 

The rapid decline in worldwide biodiversity underscores the critical importance of 42 

comprehensively monitoring species abundance and distribution (Bellard et al., 2012). Global, 43 

regional, and national policies acknowledge the significance of monitoring the abundance and 44 

distribution of plant and animal populations as a key step in halting biodiversity loss (Collen et 45 

al., 2013). Such policies frequently rely on the scientific community to develop robust and user-46 

friendly tools for assessing the status and effectiveness of conservation programs (Gonzalez et 47 

al., 2023; Miu et al., 2020). 48 
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Population parameters estimates such as abundance or probability of occurrence are at the core 49 

of many conservation and management plans. The simplest method to estimate abundance in 50 

wild populations is through a complete census, i.e., counting every single individual within a 51 

specific area. Abundance estimations via census methods are not possible unless the geographic 52 

extent is small, the time frame is short (Henderson, 2021), and the target species is easy to survey 53 

and detect. At coarser scales and across large geographic extents or over long periods of time, 54 

biodiversity data are often collected as detection/non-detection data. Thus, it is more practical to 55 

estimate species occupancy, i.e., the probability of a species being truly present or absent at a 56 

site (MacKenzie et al., 2002; Tyre et al. 2003; MacKenzie et al., 2017). Both occupancy and 57 

abundance may be confounded when the species is not perfectly detected, i.e., when the 58 

detection probability, p, is less than 1 (MacKenzie et al., 2002). To address this issue in 59 

estimating occupancy, models have been developed to account for detectability based on 60 

detection/non-detection data of unmarked individuals, i.e., individuals that cannot be 61 

distinguished from one another, via repeated surveys (MacKenzie et al., 2002; Madsen and 62 

Royle, 2023). These models, known as occupancy models (MacKenzie et al., 2006; MacKenzie 63 

et al., 2017; Altwegg and Nichols, 2019), are particularly useful when it is not practical to detect 64 

or count all individuals, e.g., due to species characteristics (e.g., cryptic or rare species or species 65 

that move large distances) or logistical constraints (e.g., cost or access constraints, and skill 66 

differences among observers in the ability of detecting and identifying species) (Royle and 67 

Dorazio, 2008; MacKenzie et al., 2017). 68 

For abundance estimation using unmarked animals, this challenge is commonly addressed using 69 

repeated counts, although alternative methods, such as distance sampling and double-observer 70 

sampling, are typically used. Abundance can also be derived from capture-recapture methods of 71 

marked animals (Nichols, 1992; Grosbois and Gimenez, 2010; McCrea and Morgan, 2015). Such 72 

methods involve capturing, individually marking, or photographing animals for identification, 73 

and releasing them at the capture site, and incorporate the probability of recapture to estimate 74 

demographic parameters and abundance. However, the intensive work of capturing, marking, 75 

and recapturing animals, which is often high cost and effort, limits applications at broad spatial 76 

scales. This has led to the emergence of abundance modeling approaches from repeated counts of 77 

unmarked individuals (Zipkin et al., 2014; Royle and Kery, 2007; MacKenzie et al., 2003). N-78 

mixture models simultaneously estimate the abundance and detection probability of animals 79 
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from repeated counts of unmarked individuals at multiple survey sites (Royle, 2004). Occupancy 80 

models and N-mixture models fall under the umbrella of hierarchical models, which separate the 81 

state process (e.g., occurrence or abundance of a species) from the observation (detection) 82 

process. For clarity, we will refer to them collectively as hierarchical occupancy-type models, 83 

emphasizing their incorporation of both occupancy and N-mixture models. 84 

Over the last two decades, hierarchical occupancy-type models exploded in popularity as a low-85 

cost/effort but powerful approach for estimating occupied and unoccupied sites using detection 86 

(presence) / non-detection (pseudo-absence) data (i.e., imperfect detection) and count data (i.e., 87 

incomplete census) of unmarked animals (MacKenzie et al., 2017; MacKenzie and Royle, 2005). 88 

Hierarchical occupancy modeling allows unbiased estimation of abundance or occupancy (or 89 

measures of population size, such as the relative abundance or density and the proportion of area 90 

occupied) and facilitates the inclusion of covariates to account for survey-specific detection 91 

probability (Royle and Dorazio, 2008). The increased interest in creating more robust and 92 

complex models to account for imperfect detection can also be attributed to the advancement of 93 

sampling technologies (Silvy, 2020). In particular, the availability of equipment, such as camera 94 

traps and bioacoustic recorders, and the advent and the cost-effectiveness of environmental DNA 95 

(eDNA) sampling and processing have motivated the development of many occupancy model 96 

variants for unmarked individuals. These models can answer a wide range of questions, from 97 

population and community assessment to interspecific interactions across many spatial and 98 

temporal scales (Zipkin et al., 2014; Royle and Kery, 2007; MacKenzie et al., 2003; Kellner et 99 

al., 2023; Kery and Royle, 2021; Kery and Royle, 2016). 100 

The advancement of hierarchical modeling may also be attributed to the development of 101 

dedicated applications such MARK (White and Burnham, 1999) and Presence (Hines, 2006) and 102 

of the R program (R Core Team, 2023) packages available for occupancy modeling such 103 

as unmarked (Fiske and Chandler, 2011). New fitting strategies are available via packages 104 

spOccupancy (Doser et al., 2022), and complex and computationally intensive models may be 105 

built using implementations of the BUGS language, such as NIMBLE (de Valpine et al., 2017; 106 

Goldstein et al., 2021), JAGS (Plummer, 2003), and BUGS (Kery and Royle, 2016; Kery and 107 

Royle, 2021), or Stan platform (Carpenter et al., 2017), such as ubms (Kellner et al., 2021). 108 
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The advancement of sampling technologies, coupled with the availability of ready-to-use 109 

models, contributed to an increase in scientific productivity in the field of occurrence and 110 

abundance modeling (Kellner et al., 2023;  Iknayan et al. 2014; Madsen and Royle (2023). 111 

However, to our best knowledge, a review of the literature on the use of occupancy modeling to 112 

answer animal and plant ecology research questions is lacking. Other modeling options have 113 

been extensively studied, including by using bibliometric reviews. For example, de Rivera and 114 

McCrea (2021) conducted a review of removal modeling and concluded that the field becomes 115 

more complex yet remains accessible to applied ecologists. Similarly, Tourani (2022) explored 116 

uses, limitations, and progress in spatial capture-recapture modeling approaches. 117 

With the advent and diversification of hierarchical occupancy model types and their 118 

implementation, we aim to evaluate their use in the peer-reviewed literature to identify target 119 

taxa and data types, study designs, and types of models adopted by researchers, as well as to 120 

examine scientometric trends. We aim to provide a general overview of hierarchical occupancy 121 

model types used by researchers for applied ecology questions in order to enhance and refine 122 

future applications by serving as a valuable reference for researchers in ecology and related 123 

fields. The objectives of the study are: 1) to provide a synthesis of taxa, geographic focus, scale, 124 

data types, and hierarchical occupancy model variants to date; 2) to identify key contributors to 125 

hierarchical occupancy literature and generate research insights using a scientometrical 126 

perspective and mapping the co-authorship network and co-citation network; and 3) to identify 127 

recommendations to promote occupancy modeling methods as a robust choice for biodiversity 128 

monitoring. 129 

Methods 130 

Literature search and inclusion criteria 131 

We reviewed English-written scientific literature (i.e., peer-reviewed articles) published up to 132 

December 2022 (excluding early access articles) that apply hierarchical occupancy models to 133 

address research questions in population and community ecology, such as to understand patterns 134 

of species abundance, occupancy, co-occurrence of communities and meta-communities. Article 135 

selection was conducted according to the Preferred Reporting Items for Systematic Reviews and 136 
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Meta-Analyses (PRISMA) guidelines, which provide a transparent workflow to report systematic 137 

literature reviews (Page et al., 2021). The workflow is presented in Figure 1. 138 

We searched Web of Science Core Collection (Clarivate Plc) by topic (i.e., abstracts, keywords, 139 

and titles) using the following Boolean search string: (((((((((TS=(occupancy)) OR TS=(N-140 

mixture)) OR TS=(multi-state)) OR TS=(”multi state”)) OR TS=(multi-scale)) OR TS=(”multi 141 

scale”)) OR TS=(abundance)) OR TS=(co-occupancy)) OR TS=(co-occurrence )) AND 142 

TS=(hierarchical). To include papers from journals without keywords (e.g., Science, Plos One) 143 

or the terms mentioned above in abstract or titles, we completed the search with Keywords Plus 144 

terms ”occupancy” and “N-mixture”. The search was limited to the following citation topics: 145 

Zoology & Animal Ecology, Entomology, Marine Biology, Soil Science, Zoonotic Diseases, 146 

Phylogenetics & Genomics, Sustainability Science, Environmental Sciences, Climate Change, 147 

Statistical Methods, Applied Statistics & Probability. 148 

Articles were screened by an author of the present paper and considered relevant if they applied 149 

hierarchical occupancy-type modeling for the analysis of ecological data (i.e., model 150 

occupancy/abundance and detection probability of at least one species) and used observational 151 

data. Studies that exclusively used simulation data or those that did not discuss the results 152 

obtained with observational data were excluded after confirmation by a second researcher. When 153 

disagreement occurred, consensus was reached through discussions between the two authors or 154 

by referring to a third researcher. The search yielded 5548 articles, of which 4854 did not meet 155 

the criteria listed above, resulting in a database of 697 articles focused on applied 156 

hierarchical occupancy-type modeling. 157 

Importantly, we acknowledge that, given the goal of this study of evaluating general trends and 158 

patterns in the use of occupancy modeling in ecology, the constraints imposed by our defined 159 

keyword searches, the Web of Science indexing properties, and the ability of co-authors of this 160 

paper to classify a particular type of modeling as relevant for this synthesis, the list of papers 161 

considered in this analysis may not be exhaustive, and the results are not a complete research 162 

landscape ranking of authors and references. 163 
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 164 

Figure 1 PRISMA flow diagram of scientific literature search, screening, and selection process 165 

Data extraction and descriptive statistics 166 

To understand the use of hierarchical occupancy-type modeling in ecology, we extracted several 167 

metadata for each relevant study, i.e., year of publication, location (country/countries/territories 168 
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where that study was carried out), taxa (i.e., mammals, amphibians, reptiles, invertebrates, fish, 169 

birds), type of study (i.e., single-season occupancy, single-season N-mixture, multiple-season 170 

(dynamic) occupancy, multiple season (dynamic) N-mixture, multi-state (single or multiple 171 

seasons), multi-scale (single season), multi-species (community) occupancy single-season, multi-172 

species (community) occupancy multiple season, co-occupancy), type of data (i.e., camera traps, 173 

tracks, acoustic surveys, visual surveys, eDNA, traps, interviews, online databases), study design 174 

(i.e., grid, transect, feature-based such as surveys at ponds or other discrete patches in the 175 

environment, territorial units such as counties or game management units, opportunistic 176 

collection), number of sampling units, and duration of study. 177 

We analyzed article metadata using descriptive statistics, including the frequency of articles per 178 

metadata category. Chi-square tests were performed to determine if observed frequencies in a 179 

category matched the expected frequencies. Furthermore, changes in frequencies across 180 

categories (taxa, data, and modeling choice) were visualized multi-dimensionally using alluvial 181 

plots. To quantify the strength and direction of the correlation between the number of citations 182 

and the year of publication, we used the Spearman rank correlation coefficient. We expect that 183 

the number of citations decreases as the year of publication increases for several reasons: (i) 184 

citations tend to accumulate gradually over time, (ii) seminal papers often continue to be 185 

referenced, while newer ones may focus on recent developments that are not yet widely 186 

recognized, (iii) with more papers published, new citations of any given article decreases, and 187 

(iv) older publications may benefit from increased availability and visibility over time, especially 188 

if they have become “go-to” references in the field. 189 

These analyses were performed using the base, dplyr, and ggalluvial R packages (Wickham, 190 

2016; R Core Team, 2023; Wickham et al., 2023; Brunson, 2020). Graphs, excluding network 191 

and alluvial plots, were generated using the ggpubr package (Kassambara, 2023). 192 

Scientometric and network analyses 193 

Authorship and citation data were analyzed using descriptive statistics, scientometric indices, 194 

and network analysis methods (Nita et al., 2019; Barabási et al., 2002; Aria et al., 2020). For 195 

scientometric data, we considered the following metrics: (1) the number of articles published by 196 

an author, (2) the number of citations received by the analyzed papers in Web of Science, (3) the 197 

local h-index of an author (indicating the number of publications for which an author has been 198 
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cited by articles in our database at least that same number of times), and (4) the number of 199 

citations received by the analyzed papers from other paper included our database (Aria and 200 

Cuccurullo, 2017). We also calculated these metrics at the journal level (i.e., for papers included 201 

in the same journals). 202 

To understand co-authorship and co-citation patterns, we used network analysis (Borgatti et al., 203 

2018). We generated two undirected, unweighted networks: (1) a co-authorship network, where 204 

authors (nodes) are linked to other authors (edges) directly (if they co-authored at least a paper) 205 

or indirectly by bridge authors (two authors who have not written a paper together but have each 206 

co-authored a paper with a common third party author); the indirect connection can be two steps 207 

such as in the example mentioned above or more, and (2) a co-citation (co-references) network, 208 

where references included in a paper (nodes) relate to other paper references (edges) if they share 209 

at least one reference. Similarly with the co-authorship network, the links can be one step or 210 

more (Aria and Cuccurullo, 2017; Nita et al., 2019). The co-authorship network was used to 211 

identify network leaders, while the co-citation network highlighted the most important papers 212 

referenced in the field (van Eck and Waltman, 2023). For each of the two networks, we 213 

calculated two node-level centrality metrics: degree and normalized betweenness (Borgatti et al., 214 

2018). Degree centrality of an author represents the number of direct connections that the author 215 

has with other authors in the network and helps to identify the most collaborative authors in the 216 

field of occupancy modeling (i.e., the authors with the highest number of connections). 217 

Betweenness centrality measures the extent to which an author lies on paths between other 218 

authors in the network otherwise disconnected (Nita et al., 2019). Such authors may be 219 

considered ”bridge” authors because they have the potential to influence the research landscape 220 

by serving as connectors between otherwise disparate research topics (Borgatti et al., 2018; Nita 221 

et al., 2019). Co-authorship and co-citation networks were calculated using VosViewer (van Eck 222 

and Waltman, 2023) and graphically represented using the NodeXL app (Smith et al., 2023). For 223 

visual representation purposes only, we used a cut-off for co-authorship network of minimum of 224 

3 co-authored papers with at least 30 citations in Web of Science and for co-citation network of 225 

20 articles from the database referencing the respective citation. Node-level metrics were 226 

calculated using R package igraph (Csárdi et al., 2023). Scientometric indices were extracted 227 

using R package bibliometrix (Aria and Cuccurullo, 2017). 228 

 229 
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Results 230 

Hierarchical modeling of species occupancy, abundance, and co-occurrence was used to analyze 231 

biodiversity data in 697 articles published between 2002 and 2022 (median per year = 232 

23, interquartile range IQR = 3 – 56) and indexed in the Web of Science Core Collection. 233 

Research in this field of applied ecology started at a slower pace (1 to 7 articles per yer between 234 

2002 and 2009), surpassing the median of 23 articles in 2012 and reaching its peak in 2022 (116 235 

articles) (Figure 2). 236 

The majority of the published articles were focused on a single taxonomic group (96%). The 237 

proportions of focus taxa were skewed (chi-squared = 672.95, df = 6, p < 0.001). Mammals and 238 

birds were the most modeled taxa (40.46% and 34% of studies, respectively), followed by 239 

amphibians (10.47%), invertebrates (6.31%), reptiles (5.88%), fish (5.45%) and plants (2.15%). 240 

When more than one taxonomic group was modeled, the selected taxa included combinations 241 

such as mammals and birds, amphibians and reptiles, reptiles and plants, or the entire vertebrate 242 

community. 243 

Studies also differed in the types of data used to model occupancy (chi-squared = 883.77, df = 7, 244 

p < 0.001). Almost half of the studies used data obtained from visual surveys (50.37%), followed 245 

by acoustic surveys (28.84%), camera traps (25.62%) and traps (16.69%). Less frequently 246 

used data were obtained by recording tracks (3.81%), online databases (3.66%), eDNA (1.76%), 247 

and interviews (1.76%). Nearly 29% of articles used more than one method for data collection. 248 

Most of such studies combined visual and acoustic surveys (145 out of 197 articles combining 249 

data collection methods), while the remaining studies combined camera traps and track or 250 

physical traps, camera traps with interviews, or visual survey and eDNA. 251 
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 252 

Figure 2 The trend of annual scientific production using hierarchical modeling of occupancy, 253 

abundance, and species co-occurrence between 2002 and 2022  254 

The design of data collection is unbalanced (chi-squared = 243.56, df = 4, p < 0.001). Most data 255 

collection designs were identified as grids (39.74%), followed by transects (25.25%), feature-256 

based (23.24%), opportunistic collection (11.91%), and territorial units (4.45%). Only 5% of 257 

articles combined study designs, with the most common combination being transects inside a 258 

grid or feature-based area. Only seven articles supplemented species data collected from a grid or 259 

transect with online databases or interviews. 260 

Hierarchical occupancy-type modeling studies were implemented across 89 countries and 261 

territories (e.g., Antarctica). Notably, 46.20% of the published papers were conducted in the 262 

USA. The other countries in the top 10 list are Brazil, Canada, Australia, Argentina, India, South 263 

Africa, Spain, China, and France, each accounting for only 2% -5 % of the studies. Many of the 264 

studies focused on specific regions within a single country, with only 4% of papers involving 265 

research conducted in more than one country. 266 



12 
 

When analyzing the hierarchical modeling approach used in selected papers, we found a heavy 267 

focus on single species models (chi-square = 387.17, df = 8, p < 0.001). Almost 31% of studies 268 

employed single-season single species occupancy models, followed by single-season multi-269 

species (community) occupancy (17.65%), single-season N-mixture (14.78%), multi-season 270 

(dynamic) occupancy (14.63%), multi-season multi-species (community) occupancy (9.04%), 271 

multi-season (dynamic) N-mixture (6.74%), multi-state (single or multi-season) (4.16%), multi-272 

scale (single or multi-season) (4.16%), and co-occupancy 3.30%). Nearly all studies used only 273 

one hierarchical modeling approach, with only 5.73% (40 articles out of 697) involving a 274 

secondary method (e.g., occupancy and N-mixture models for abundant species). 275 

Data collection methods were taxon-specific; most bird data were obtained from acoustic and 276 

visual surveys and analyzed using a wide range of models. Data for mammals were mainly based 277 

on camera traps and tracks and were largely modeled using single-season occupancy and multi-278 

species (community) occupancy. Amphibian data were mostly collected via acoustic monitoring 279 

and visual survey and were modeled using the entire spectrum of models (Figure 3). 280 
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 281 

Figure 3 Alluvial plot showing the frequencies of the relationships between taxa, methods for 282 

data collection, and modeling approaches used in the analyzed applied hierarchical modeling 283 

paper. The width of the colored lines is proportional to the flow quantity. 284 

 285 

The median number of citations received by occupancy modeling papers within our database is 8 286 

(IQR = 2-17). Overall, the number of citations is negatively correlated with the year of 287 

publication (rho = -0.74, p < 0.001). However, as expected, several papers are more frequently 288 

cited compared to articles published in the same period (Figure 4). The most cited paper in our 289 

database is MacKenzie et al. (2002), with 3108 citations, followed by MacKenzie et al. (2003) 290 

with 1197 citations, Tyre et al. (2003) with 545 citations, Powney et al. (2019) with 359 291 

citations, MacKenzie et al. (2004) with 312 citations, Mackenzie et al. (2005) with 309 citations, 292 

Soroye et al. (2020) with 304 citations, Royle and Kery (2007) with 302 citations in Web of 293 

Science, and Woodcock et al. (2016) with 265 citations. Other papers with more than 200 294 
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citations are e.g., Nichols et al. (2008), Dail and Madsen (2011), van Strien et al. (2013), 295 

and Zipkin et al. (2009). 296 

 297 

Figure 4 The relationship between the number of citations of a paper and its publication year 298 

(blue line = LOESS regression curve; gray area = 95% confidence interval)  299 

 300 

The 697 papers on occupancy modeling included 2624 authors (median number of authors per 301 

paper = 3, IQR = 2-5). The top 10 most productive authors are listed in Table 1. Most authors 302 

(50.30%) were affiliated with institutions in the USA. UK (4.34%), Australia (3.65%), Canada 303 

(3.58%), Brazil (2.78%), Germany (2.66%), Italy (2.32%), South Africa (2.21%), Spain (1.94%), 304 

and France (1.82%) complete the top 10 countries by number of authors. 305 

Table 1 Most productive authors (>7 papers in our database) of applied occupancy modeling  306 
Authors Number of articles 

in database 

Local h-

index 

Number of 

citations 

Year of first 

occupancy article 

published 

Royle JA 19 16 4773 2002 

Zipkin EF 13 10 588 2009 
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Kery M 12 9 818 2007 

Nichols JD 10 10 5501 2002 

Furnas BJ 10 8 204 2015 

Hines JE 9 8 1803 2003 

Miller DAW 9 8 390 2012 

Macdonald 

DW 

8 7 193 2012 

McShea WJ 8 6 271 2016 

Bailey LL 7 7 1122 2004 

Siegel RB 7 7 144 2011 

Gardner B 7 6 466 2009 

MacKenzie DI 7 6 5099 2002 

Rota CT 7 5 490 2009 

 307 

When analyzing co-authorship using the network analysis (Figure 5), several authors have 308 

emerged as central in the network. These authors have either a high degree centrality (highly 309 

productive authors), betweenness centrality (collaborative authors that can bridge separate 310 

groups of authors), or both (Figure 6). 311 
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 312 

Figure 5 Core co-authorship network in applied occupancy modeling papers. Authors are 313 

connected if they share the authorship of a paper. We included only the authors with a minimum 314 

of 3 papers in our database and at least 30 citations in Web of Science for the respective articles. 315 

Nodes (circles) size = the number of citations per author (max = 5476; min = 30); edges (lines) 316 

size = number of co-authorship. Isolated authors are directly connected only with co-authors 317 

who are not included in the core co-authorship network. 318 
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 319 

Figure 6 Scatterplot of normalized betweenness and degree centralities of authors. Labeled 320 

authors have the highest degree (>41) and/or normalized betweenness centrality (>0.02) and 321 

can be considered highly collaborative and/or bridge authors in the field of applied occupancy 322 

modeling. 323 

The publishing venues are diverse, with 697 papers published in 143 different scientific journals. 324 

Of these, only 12 journals published more than 15 articles in this field (Table 2). Diversity and 325 

Distributions, Biological Conservation, and Journal of Wildlife Management published the 326 

highest number of occupancy-type articles (36 articles each). Articles published in Ecology and 327 

Journal of Applied Ecology were the most cited when considering the total number of citations. 328 

Furthermore, Biological Conservation has the highest h-index (21 articles cited at least 21 329 

times). 330 

Table 2 Journals publishing more than 15 papers on occupancy modeling between 2002 and 331 

2022 332 
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Journal Number of 

published 

articles 

Total number 

of citations 

Local h-

index 

Year of first 

article published 

Biological Conservation 36 964 21 2005 

Diversity and Distributions 36 640 17 2011 

Journal of Wildlife 

Management 36 877 15 2005 

Ecosphere 35 430 15 2011 

Ecology and Evolution 31 315 11 2013 

Plos One 30 706 15 2012 

Journal of Applied Ecology 25 1705 15 2008 

Forest Ecology and 

Management 24 277 11 2012 

Ecological Applications 21 1090 12 2003 

Ecology 19 5854 16 2002 

Animal Conservation 16 242 10 2012 

Landscape Ecology 16 200 8 2007 

 333 

The analyzed papers include over 27,000 unique references, of which only 85 are cited by more 334 

than 20 papers in our database. When analyzing the co-citation network using the network 335 

analysis (Figure 7), several references clearly emerged as central in the network, highlighting 336 

their importance in the field. For example, several occupancy-related references cited many 337 

times together in the analyzed papers are MacKenzie et al. (2002), MacKenzie et al. 338 

(2017), Royle and Dorazio (2008), Fiske and Chandler (2011), MacKenzie et al. (2003), Royle 339 

(2004), Dorazio and Royle (2005), Kery and Royle (2016), Zipkin et al. (2009) and Royle and 340 

Nichols (2003). Furthermore, the popular references (references with a high normalized degree, 341 

i.e., number of links with other references in the database) and high betweenness (citations that 342 

frequently create the shortest path between different reference lists otherwise disconnected) 343 

reveal a list of 20 references that can be considered as key by the authors publishing in this field 344 

(Figure 8). 345 
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 346 

Figure 7 Co-citation network extracted from analyzed papers (references included in more than 347 

20 articles from the database). Nodes (circles and diamonds) size = the number of times the 348 

reference is included in the database (max = 283; min = 20); circles in blue = articles in 349 

journals, squares in red = books or book chapters, triangles in green = methodological papers, 350 

diamonds in magenta = software; edges (lines) size = number of times the two connected 351 

references co-occur in a paper (max = 126; min = 1). 352 
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 353 

 354 

Figure 8 Scatterplot of normalized betweenness and degree centralities of references included in 355 

the analyzed papers. References that are labeled represent those with the highest degree 356 

(>0.0096) and/or normalized betweenness centrality (>2975), and that can be considered 357 

important references in the field of applied occupancy modeling. 358 

Discussion 359 

The analysis of peer-reviewed research implementing occupancy modeling of wildlife 360 

populations and communities worldwide indicates that this analytical approach is gaining 361 

prominence as a mainstream research field. This can be explained by improvements in the ease 362 

of implementation (e.g., via many R packages), high cost-effectiveness, and increased 363 

availability of data collection equipment such as trail cameras open platform bioacoustics 364 

monitoring such as AudioMoth (Hill et al., 2018). Our results also indicate that despite two 365 

decades of theoretical advances, software availability, and diversification of data collection 366 
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methods, occupancy modeling of wildlife populations and communities remains a domain of 367 

highly specialized researchers from the developed world who use data from their own countries. 368 

To advance this field and create higher impact for biodiversity conservation and monitoring, 369 

there is a need for clearer syntheses of modeling approaches, as well as guidelines for study 370 

designs and parametrization of models that are accessible for a broader scientific audience. 371 

Furthermore, an increase in publications can be achieved through a better standardization of 372 

modeling nomenclature (e.g., model names) and standards for research conduct and reporting. 373 

We found that researchers predominantly used single-season single species occupancy models, 374 

single-season multiple species occupancy models, single-season N-mixture models, and multi-375 

season (dynamic) occupancy models. Collectively, these variants account for almost 80% of the 376 

studies. This finding can likely be attributed to the fact these model variants were among the 377 

initial models to emerge in the peer-reviewed literature between 2002 and 2004 (e.g., MacKenzie 378 

et al., 2002; MacKenzie et al., 2003; Tyre et al., 2003) and have the lowest data requirements. 379 

Furthermore, they were supported by standalone available software such as Presence (Hines, 380 

2006) or MARK (White and Burnham, 1999). More complex models, such as multi-season multi-381 

species (community) occupancy models, multi-season (dynamic) N-mixture models, multi-state 382 

models, multi-scale models, or co-occupancy, were less frequently included in the articles within 383 

our analyzed database. These variants built on the initial single-season and multi-season 384 

approaches (MacKenzie et al., 2002; MacKenzie et al., 2003; Tyre et al., 2003; Royle, 2004), 385 

and additional complexity was introduced through Bayesian implementations via the R 386 

programming and WinBUGS platforms (Royle and Kery, 2007; Royle and Dorazio, 2008; Kery 387 

and Schaub, 2012). 388 

Birds and mammals emerged as the most extensively studied species, aligning with the 389 

traditional research focus on charismatic taxa or species of high conservation / management 390 

interest (Donaldson et al., 2017). This can also be explained by the predominant use of visual 391 

and acoustic surveys and camera traps for collecting occupancy-type data. The authors’ 392 

taxonomic expertise is unlikely to account for the differences between taxonomic groups. 393 

Instead, the existence of open-source long-term datasets (e.g., North American Breeding Bird 394 

Survey) and the increased availability of camera traps and acoustics recorders (Mandeville et al., 395 

2023) may explain this pattern. Relying on open-source long-term datasets for occupancy 396 

modeling highlights the collaborative and accessible nature of such initiatives, which foster a 397 



22 
 

culture of data-sharing and community involvement in scientific research, emphasizing the 398 

overall importance of long-term monitoring. These findings may motivate researchers working 399 

on other taxa to establish similar initiatives at broad spatial scales (Lindenmayer et al., 2022); for 400 

example, initiatives such as Snapshot USA and Snapshot Europe (Smith and Alvey, 2023; Cove 401 

et al., 2021) or Urban Wildlife Information Network - UWIN (Magle et al. 2019) have started the 402 

creation of extensive camera trap-based databases focused on mammals (eMammal, 403 

MammalWeb). These initiatives are already leading to an upsurge in occupancy-type studies for 404 

inference at broad spatial scales and for multiple species (co-occupancy, multi-species 405 

occupancy). 406 

Environmental (eDNA) biodiversity inventories have become increasingly widespread, covering 407 

diverse habitats and taxa globally. However, a key limitation currently impeding the large-scale 408 

application of eDNA is the incompleteness of species' genomic sequences available in public 409 

databases, such as GeneBank. While some underrepresented taxa will benefit from the expansion 410 

of eDNA approaches (Valdez et al., 2023), others, such as insects, will probably be hindered by 411 

inadequate representation in genomic databases (e.g., for metagenomic-based multi-species 412 

studies) often linked to the lack of taxonomic expertise (Richards et al., 2018; Li et al., 2019). 413 

Artificial intelligence (AI) use in biodiversity monitoring is expected to grow with the advent of 414 

big and open datasets and provide an alternative tool for species identification in the near future. 415 

Similar to camera traps and eDNA data, invertebrate-derived DNA (iDNA or DNA collected via 416 

invertebrate ’samplers’ such as mosquitoes, flies, or terrestrial leeches (Schnell et al., 2015; Ji et 417 

al., 2022) has emerged as a non-invasive and efficient monitoring technique for community-level 418 

biodiversity studies. iDNA has proved especially useful for arboreal species, smaller bodied 419 

species, and non-mammal species, which camera trapping, visual and acoustic surveys, and 420 

eDNA may fail to detect. Thus, to broaden the application of occupancy models to other taxa, 421 

there is a need to make new technological tools more accessible to researchers and develop more 422 

robust models for data collected in a less conventional framework (Gantchoff et al., 2022). For 423 

example, the occupancy framework has been extended to account for imperfect detection in 424 

eDNA studies and sources of error at the PCR stage (eDNAPlus; Diana et al. 2022). 425 

Our analysis reveals that nearly half of the authors are affiliated with US institutions, and almost 426 

half of the studies are focused on US data. The prevalence of US-affiliated authors is not 427 

unexpected and is a common trend in other fields of natural sciences (Nita, 2019; Piguet et al., 428 
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2018). However, the low number of studies in megadiverse regions is a concerning finding. 429 

While the occupancy framework can accommodate biodiversity ”snapshot” surveys that can be 430 

conducted relatively inexpensively (Ji et al., 2022), data collection is just one aspect of this 431 

mismatch. To achieve increased representation of studies beyond the current Western 432 

Hemisphere / Northern latitudes, efforts are required to increase willingness to assist researchers 433 

from other regions in designing and implementing data collection designs and protocols suitable 434 

for occupancy modeling. Additionally, providing modeling training for researchers in less-435 

represented countries/regions is crucial (Mammides et al., 2016; Maas et al., 2021). 436 

Occupancy modeling in ecology is not a very popular research topic when compared with other 437 

topics such as species distribution modeling, joint species distribution modeling, and capture-438 

recapture estimation. This is indicated by the relatively low number of citations received by 439 

articles in the Clarivate WOS database, given that few articles surpass 100 citations. This may be 440 

due to a topic-related issue. In most cases, highly cited articles from our database are 441 

methodological or involve larger scales of analysis than what would be addressed by the typical 442 

application of hierarchical modeling. Nevertheless, key authors in the field, as indicated by both 443 

co-authorship and co-reference network analyses, are overall highly cited, and the journals that 444 

publish occupancy-type studies are top journals in their fields (e.g., Diversity and Distributions, 445 

Journal of Wildlife Management, Biological Conservation). This may facilitate bridging 446 

occupancy modeling with more popular subjects (e.g., species distribution modeling, joint 447 

species distribution modeling, capture-recapture) and attract more researchers to the topic. Many 448 

top authors, recognized by their centrality degree (i.e., authors with an extensive network of co-449 

authors) and betweenness (authors who can connect authors otherwise disconnected) have a 450 

robust statistical background; these authors also contributed to the development of the occupancy 451 

framework and model variants, including development of R packages and standalone occupancy 452 

software (e.g., Fiske and Chandler, 2011; Kellner et al., 2021; MacKenzie and Hines, 2022). 453 

Additionally, they have authored important papers and books for this field (e.g., MacKenzie et 454 

al., 2017; Royle and Dorazio, 2008; Burnham and Anderson, 2004; Kery and Schaub, 2012; 455 

Kery and Royle, 2021), securing their position as leaders of the co-citation network. This dual 456 

role of several top authors indicates that the field is still developing and has the potential for 457 

further growth, which may help fill the gaps in covering various taxa and regions. 458 
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The investigated papers undergo peer review, most of them being published in established 459 

journals and are methodologically correct, as indicated by the scarcity of comments and 460 

rebuttals. However, we faced challenges in categorizing modeling and study design approaches 461 

using a standardized nomenclature. Such challenges often arise when the field of study is 462 

relatively new (Davis and Kays, 2023). This is also because, despite the existence of several very 463 

well-cited methodological books and articles, this field lacks clear standards for modeling 464 

workflows and reporting the results. While several papers attempt to fill this gap, e.g., Kellner et 465 

al., (2023), Mackenzie and Royle (2005), Madsen and Royle (2023), more work and clear 466 

guidelines are needed for standardization (including naming of model types) given the 467 

diversification of data types and collection methods used in occupancy modeling and the 468 

increasing number of occupancy model variants. Additionally, there is a need for guidance on 469 

reporting metadata in hierarchical models, which should include details about studied taxa, study 470 

levels, type of sampling designs, study length, model results, and standards of accuracy (Araújo 471 

et al., 2019). 472 

While comprehensive, our study has data-driven limitations. We relied on the Clarivate WOS 473 

database for extracting metadata such as unique authors and references, which, particularly in the 474 

case of references, needs corrections. Although we made efforts to correct the errors, the over 475 

26,000 references likely included many redundancies. We corrected the most cited 50 references, 476 

and combining the co-authorship with co-citation analysis provides a less biased overview of top 477 

authors and references in the field of occupancy modeling. We reiterate that the final list of 478 

occupancy studies included in this analysis is the direct result of the keyword searches and may 479 

not be exhaustive, and we likely omitted some authors and papers. However, our study aimed to 480 

evaluate occupancy modeling applications as an emerging field, and the overall findings on 481 

patterns, trends, co-authorship, and leadership in the field did not change through several 482 

iterations of the analysis. 483 

Our study highlights the growing importance of occupancy modeling in population and 484 

community ecology, providing a powerful tool for monitoring wildlife distribution and 485 

abundance. Despite significant growth, particularly since 2012, this field remains primarily 486 

driven by researchers from developed countries, with a strong focus on mammals and birds. Key 487 

findings emphasize the need for increased collaboration, especially with researchers from 488 

megadiverse regions, to ensure that this powerful set of tools reaches its full potential to 489 
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contribute to our understanding and conservation of global biodiversity. Additionally, efforts to 490 

standardize modeling and reporting practices are crucial for increasing the impact of occupancy 491 

modeling studies. Although occupancy-type articles may not yet receive the high citation counts 492 

of studies in other subfields of ecology, key authors and journals play a pivotal role in bridging 493 

the gap between occupancy modeling and broader ecological topics. This suggests that continued 494 

growth and influence in the field are achievable. Ultimately, this research underscores the 495 

potential of this modeling framework to address critical conservation challenges. To maximize 496 

its impact, researchers, practitioners, and policymakers should work together to fully harness the 497 

potential of this valuable tool for the preservation of global biodiversity. 498 
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