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ABSTRACT

In this paper, considering the aggregation effect and Allee effect of cyanobacteria
population and the harvesting of both cyanobacteria and fish by human beings, we
put forward a new cyanobacteria-fish model with two harvesting terms and a modi-
fied Holling type IV functional response function. The main purpose of this paper is
to further understand the influence of harvesting terms on the dynamic behavior of
cyanobacteria-fishmodel. Critical conditions for the existence and stability of several
interior equilibria are given. The economic equilibria and the maximum sustainable
total yield problem are also studied. The model exhibits several bifurcations, such as
transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation and Bogdanov-
Takens bifurcation. From the perspective of biology, we conclude that the harvesting
terms can determine the survival mode of cyanobacteria and fish. Finally, concrete
examples of our model are given through numerical simulation to verify and enrich
the theoretical results.
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1 INTRODUCTION

Cyanobacteria are the oldest photosynthesizers and have promoted the formation of biosphere on the earth. However, cyanobac-
teria increasingly become dominant among other phytoplankton with the concentrations of TP and TN increase in the
eutrophication process of rivers and lakes. Compared with other beneficial phytoplankton, cyanobacteria bloom will produce
various toxic secondarymetabolites (for example, cyanotoxins)1,2, which will further cause certain damage to the natural ecosys-
tems and human health. Nevertheless, cyanobacteria can be regarded as a potential solar biorefinery and continuously provide
biofuels and chemicals when used properly3,4,5. Harvesting cyanobacteria can greatly reduce TP, TN and other nutrients then
effectively prevent the deterioration of water eutrophication. The harvested cyanobacteria can be processed into compound
organic fertilizer, organic biogas fertilizer as well as biogas with energy value for power generation or deep comprehensive uti-
lization. Thus, harvesting cyanobacteria artificially can kill two birds with one stone in the aquatic area where cyanobacteria
blooms. Among the various methods to control cyanobacteria bloom, the biological method based on the predation relationship
between fish and cyanobacteria populations is widely used for its effectiveness, harmlessness and economic benefits. In recent
years, researchers have done a lot of research on controlling algae by fish and zooplankton6,7. And mathematical researchers
usually use differential equation model to analyze the dynamic relationship between species, the predator-prey model has been
widely studied by researchers8,9,10 since it was put forward. On the other hand, the extensive demand of human for fish resources
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has also prompted the cultivation and harvesting of fish in as many water ecosystems as possible. Considering the growth rates,
biomasses and harvesting intensities of cyanobacteria and fish, a reasonable harvesting plan should be made by the managers
of biological resource to maintain sustainable fish resources and low density of cyanobacteria population.
The harvesting term is a vital element in ecological models, since it has great significance to the development of species

population and economic growth. The paper11 found that there exists a bistable region of their model when a Michaelis-Menten
harvesting term to the predator population was introduced, they also derived the threshold of harvesting efforts to achieve the
maximum economic benefits under the premise of sustainable development. The paper12 proposed a deterministic and stochastic
fractional-order model of tri-trophic food chain with harvesting term, and concluded that the dynamic of the second predator
can be controlled by the harvesting parameters. The paper13 concluded that the harvesting term plays an important role in the
dynamic properties of a predator-prey model with a nonlinear harvesting term and a square root type functional response for
prey. More influence of harvesting on dynamic behaviors are investigated in papers14,15,16,17.
Furthermore, there are many paper introduced prey refuge term to interaction mathematical model18,19,20. The paper21 pro-

posed a modified algae-fish model, then explained the influence on the dynamic properties of it caused by prey refuge and allee
effect. Functional response function represents the biomass of prey captured by each predator unit time, and it is always used to
express the dynamic of predator and prey. This function represents the flow of matter from the prey population to the predator
population. Amodified Holling type II functional response function was constructed in21 according to the prey refuge. However,
function �(x−m)y

a+b(x−m)+(x−m)2
is more practical, which is an improved Holling type IV and it can show such a phenomenon that the

defense ability of cyanobacteria population is improved after aggregation.It is also worth mentioning that the harvesting terms
of algae and fish by human beings are not considered in21. In this paper, we study the following cyanobacteria-fish model with
two harvesting terms:

⎧

⎪

⎨

⎪

⎩

dx
dt
= r1x

(

1 − x
k

)(

x
n
− 1

)

− �(x−m)y
a+b(x−m)+(x−m)2

− q1
Ex,
dy
dt
= � �(x−m)y

a+b(x−m)+(x−m)2
− d1y − q2Ey,

(1.1)

where E is the harvesting effort of fish, 
 is the proportional coefficient of harvesting effort between fish and cyanobacteria,
and qi(i = 1, 2) represent the catchability coefficients of cyanobactiria and fish respectively. The biological significance of other
parameters in model (1.1) is consistent with that in the paper21. For the convenience of discussion, we do the following parameter
substitutions to reduce the number of parameters:

� = �t, r =
r1
�
, d =

d1
�
, e1 =

q1
E
�

, e2 =
q2E
�
,

retanining t to denote � then model (1.1) can be expressed as:
⎧

⎪

⎨

⎪

⎩

dx
dt
= rx

(

1 − x
k

)(

x
n
− 1

)

− (x−m)y
a+b(x−m)+(x−m)2

− e1x ≜ g1 (x, y),
dy
dt
= � (x−m)y

a+b(x−m)+(x−m)2
− dy − e2y ≜ g2 (x, y) .

(1.2)

The rest of present paper is organized as follows: In Section 2, we give the critical conditions for the existence and stability
of each equilibria. The economic equilibrium and the MSTY problem for model (1.2) are studied in Section 3. In Section 4,
we discuss the local bifurcations of model (1.2), such as transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation and
Bogdanov-Takens bifurcation. With the help of numerical simulation, the dynamic behaviors of model (1.2) are studied when
bifurcation occurs in Section 5. Finally, the paper ends with brief concluding remarks in Section 6.

2 ANALYSIS OF EQUILIBRIA

In this section, we will discuss the critical conditions for the existence and stability of potential equilibria in model (1.2).
It is obvious that the trivial equilibrium E0 (0, 0) of model (1.2) is always exist, and there exists a predator-free equilibrium

(

x1, 0
) [

res.
(

x2, 0
)]

when Δ1 ≥ 0 and x1 ≥ m
[

res. x2 ≥ m
]

, where

x1 =
kr + nr −

√

Δ1
2r

, x2 =
kr + nr +

√

Δ1
2r

, Δ1 = r2 (k − n)
2 − 4re1nk.
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Otherwise, model (1.2) will exist two interior equilibria
(

x∗1, y
∗
1

)

and
(

x∗2, y
∗
2

)

when Δ2 ≥ 0, x∗1 and x
∗
2 are the zeros of the

function f (x), where
f (x) = −

(

d + e2
)

(x − m)2 +
[

� −
(

d + e2
)

b
]

(x − m) − a
(

d + e2
)

,
and the expression of the two interior equilibria can be written as:

x∗1 = m −
b
2
+
� −

√

Δ2
2
(

d + e2
) , x∗2 = m −

b
2
+
� +

√

Δ2
2
(

d + e2
) ,

where
Δ2 =

(

bd + be2 − �
)2 − 4a

(

d + e2
)2,

corresponding, the expression of y∗i (i = 1, 2) can be expressed as:

y∗i =

[

a + b
(

x∗i − m
)

+
(

x∗i − m
)2
] [

rx∗i
(

1 − x∗i
k

)(

x∗i
n
− 1

)

− e1x∗i
]

x∗i − m
.

It is worth mentioning that y∗i > 0 satisfy the biological significance when x1 < x
∗
1 ≤ x∗2 < x2.

The interior equilibriumE∗
1

(

x∗1, y
∗
1

) [

res. E∗
2

(

x∗2, y
∗
2

)]

exists under the biological significances when (1), (2) and (3)[res. (4)]
of the following conditions are satisfied:
(1). � > b

(

d + e2
)

,
(2). Δ1 > 0, Δ2 > 0,
(3). k + n + b − 2m −

√

Δ1
r
< �−

√

Δ2
d+e2

< k + n + b − 2m +
√

Δ1
r
,

(4). k + n + b − 2m −
√

Δ1
r
< �+

√

Δ2
d+e2

< k + n + b − 2m +
√

Δ1
r
.

By model (1.2), the Jacobian matrix at E (x, y) can be expressed as:

JE(x,y) =
[

a11(x, y) a12(x)
a21(x, y) a22(x)

]

,

where

a11 (x, y) = −
3r
nk
x2 + 2r

(1
n
+ 1
k

)

x − r +
y
(

m2 − 2mx + x2 − a
)

[

(x − m)2 + b (x − m) + a
]2
− e1,

a12 (x) = −
x − m

(x − m)2 + b (x − m) + a
,

a21 (x, y) = −
�y

(

m2 − 2mx + x2 − a
)

[

(x − m)2 + b (x − m) + a
]2
,

a22 (x) =
� (x − m)

(x − m)2 + b (x − m) + a
− d − e2.

Based on the above analysis, we have the following theorems about the stability of the equilibria from the viewpoint of
mathematics.

Theorem 1. Trivial extinction equilibrium E0 (0, 0) always exists and is a stable equilibrium.

Proof. The value of m must be equal to zero when x = 0 according to our previous assumptions, therefore the Jacobian matrix
of E0 can be written as:

JE0(0,0) =
[

−r − e1 0
0 −d − e2

]

,

it is obvious that matrix JE0(0,0) has two negative characteristic roots �1 = −r − e1 and �2 = −d − e2. Therefore E0 is stable
according to the Routh-Hurwitz criterion.

Theorem 2. The predator-free equilibrium E1
(

x1, 0
)

is always unstable whenever it exists. E1 is an unstable node or focus
when the following three conditions are satisfied:
(1). Δ1 > 0,
(2). Δ2 > 0,
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(3). x1 ∈ [m, k] ∩
[

x∗1, x
∗
2

]

,
otherwise E1 is a saddle under the following three conditions:
(4). Δ1 > 0,
(5). x1 ∈ [m, k],
(6). Δ2 < 0 ∨ x1 ∉

[

x∗1, x
∗
2

]

.

Proof. We know that x1 is one of the roots of the equation g1 (x, 0) = 0 according to the previous definition. It can be easily
obtained that a11

(

x1, 0
)

= dg1(x,0)
dx

|

|

|x=x1
> 0 for 0 < x1 < x2 based on the properties of the cubics function g1 (x, 0). Since

a21
(

x1, 0
)

= 0, then a11
(

x1, 0
)

is one of the characteristic root of the Jacobianmatrix JE1(x1,0) and the another root is a22
(

x1, 0
)

.
Only when the two conditions (2) and (3) are satisfied, a22

(

x1, 0
)

> 0, which means both the two characteristic roots of JE1(x1,0)
are positive, then E1 is an unstable node or focus. Otherwise, a22

(

x1, 0
)

< 0 when the conditions (5) and (6) are satisfied, then
the equilibrium E1 is a saddle since the two roots have opposite signs.

Theorem 3. The other predator-free equilibrium E2
(

x2, 0
)

is a saddle when the following three conditions are satisfied:
(1). Δ1 > 0,
(2). Δ2 > 0,
(3). x2 ∈ [m, k] ∩

[

x∗1, x
∗
2

]

,
otherwise it is a locally asymptotically stable node or focus under the following three conditions:
(4). Δ1 > 0,
(5). x2 ∈ [m, k],
(6). Δ2 < 0 ∨ x2 ∉

[

x∗1, x
∗
2

]

.

Proof. Obviously, x2 is also a root of equation g1 (x, 0) = 0, and we can obtain a11
(

x2, 0
)

= dg1(x,0)
dx

|

|

|x=x2
< 0 through the

similiar analysis. The element a11
(

x2, 0
)

is one of the characteristic roots of the Jacobian matrix JE2(x2,0) since a21
(

x2, 0
)

= 0,
and the other root is a22

(

x2, 0
)

. The inequation a22
(

x2, 0
)

> 0 will hold if and only if the conditions (2) and (3) are satisfied,
in which case the Jacobian matrix JE2(x2,0) has two characteristic roots have opposite signs then E2 is a saddle. Otherwise, both
the two roots are negative under the conditions (4)-(6), then E2 is a stable node or focus.

Theorem 4. The interior equilibrium E∗
1

(

x∗1, y
∗
1

)

is a saddle when it exists and x∗1 > m +
√

a. As for x∗1 < m +
√

a, E∗
1 is a

locally asymptotically stable equilibrium when a11
(

x∗1, y
∗
1

)

< 0, while E∗
1 is an unstable node or focus when a11

(

x∗1, y
∗
1

)

> 0.
The other interior equilibrium E∗

2

(

x∗2, y
∗
2

)

is a saddle whenever it exists.

Proof. The Jacobian matrix of model (1.2) evaluated at the equilibrium E∗
i (i = 1, 2) can be written as:

JE∗i (x∗i ,y∗i ) =

⎡

⎢

⎢

⎢

⎣

− 3r
nk
x∗2i + 2r

(

1
n
+ 1

k

)

x∗i − r +
y∗i (m2−2mx∗i +x∗2i −a)

[

(x∗i −m)
2+b(x∗i −m)+a

]2 − e1 −
d+e2
�

−� y∗i (m2−2mx∗i +x∗2i −a)
[

(x∗i −m)
2+b(x∗i −m)+a

]2 0

⎤

⎥

⎥

⎥

⎦

,

then the trace and the determinant of the Jacobian matrix can be written as:

T r
(

JE∗i
)

= a11
(

x∗i , y
∗
i

)

, Det
(

JE∗i
)

= −
y∗i

(

m2 − 2mx∗i + x
∗2
i − a

) (

d + e2
)

[

(

x∗i − m
)2 + b

(

x∗i − m
)

+ a
]2

.

The sign of T r
(

JE∗i
)

cannot be directly obtained since the expression is too complicated, while the sign for Det
(

JE∗i
)

is

determined by the relationship between the values of x∗i and m +
√

a. It can be easily obtained that Det
(

JE∗1

)

> 0 when

x∗1 < m +
√

a and Det
(

JE∗1

)

< 0 when x∗1 > m +
√

a. Furthermore, the Jacobian matrix has two characteristic roots with
opposite signs and E∗

1 is a saddle as x∗1 > m +
√

a. As for x∗1 < m +
√

a is satisfied, the Jacobian matrix has two negative
characteristic roots and E∗

1 is a locally asymptotically stable equilibrium when a11
(

x∗1, y
∗
1

)

< 0, but the Jacobian matrix has two
positive characteristic roots and E∗

1 is an unstable node or focus when a11
(

x∗1, y
∗
1

)

> 0. However, it can be easily judged that
the sign of Det

(

JE∗2

)

is negative under the necessary condition for the existence of E∗
2 : � > b

(

d + e2
)

. Thus, E∗
2 is always a

saddle whenever it exists.
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3 ANALYSIS OF HARVESTING

In this section, we will investigate the existence of economic equilibriua and discuss the MSTY problem in model (1.2).

3.1 Economic equilibrium
The economic equilibrium can be obtained by the definition of TC = TR, where TC represents the cost for harvesting and
TR refers to the full economic return on the obtained through harvesting. It is of great significance to study the existence
of economic equilibrium since the total profit is directly determined by the relationship between TC and TR. Let c1 and c2
represent the cost of unit effort e1 and e2, respectively. Let p1 represents the sum of the direct economic value generated by the
comprehensive utilization of cyanobacteria per unit and the indirect economic value generated by the environmental quality
improvement brought by harvesting cyanobacteria per unit. p2 represents the economic benifit of unit population of fish. Then
we have the following theorem.

Theorem 5. Model (1.2) has a non-trivial economic equilibrium when harvesting cyanobacteria and fish is profitable and the
following condition is satisfied.

rc1p2
(

kp1 − c1
) (

c1 − np1
)

knc2p31
>

c2p1
(

c1 − mp1
)

p2
[

ap21 + bp1
(

c1 − mp1
)

+
(

c1 − mp1
)2
] > d

�
.

Proof. The possible economic equilibria are determined by the following equations:

⎧

⎪

⎨

⎪

⎩

rx
(

1 − x
k

)(

x
n
− 1

)

− (x−m)y
a+b(x−m)+(x−m)2

− e1x = 0,
� (x−m)y
a+b(x−m)+(x−m)2

− dy − e2y = 0,
S =

(

p1x − c1
)

e1 +
(

p2y − c2
)

e2 = 0.
From the above equations, we can obtain

x∞ =
c1
p1
, y∞ =

c2
p2
,

e1∞ = r
(

1 −
x∞
k

)(x∞
n
− 1

)

−

(

x∞ − m
)

y∞
[

a + b
(

x∞ − m
)

+
(

x∞ − m
)2
]

x∞
,

e2∞ = �
x∞ − m

a + b
(

x∞ − m
)

+
(

x∞ − m
)2
− d,

and the efforts are positive when the above condition is satisfied, therefore there exists a non-trival econimic equilibrium
(

x∞, y∞, e1∞, e2∞
)

in model (1.2).

3.2 Maximum sustainable total yield
For a multi-species model with several harvesting terms, we always tend to gain the maximum sustainable total yield
(MSTY)22,23, which is the maximum biomass of total harvested populations varies with harvesting efforts under the premise of
ensuring that all species can survive continuously. It is necessary to ensure the persistence of the populations, however interior
equilibrium E∗

2 is a saddle whenever it exists, thus we analysis the existence of MSTY in model (1.2) at interior equilibrium E∗
1 .

The expression of the total yield function at E∗
1 can be written as follows:

Y
(

e1, e2
)

= e1x∗1 + e2y
∗
2 = e1x

∗
1 +

e2
[

a + b
(

x∗1 − m
)

+
(

x∗1 − m
)2
] [

rx∗1
(

1 − x∗1
k

)(

x∗1
n
− 1

)

− e1x∗1
]

x∗1 − m
.

The two efforts of harvesting e∗1 and e
∗
2 should satisfy )Y

(

e∗1, e
∗
2

)

∕)e1 = )Y
(

e∗1, e
∗
2

)

∕)e2 = 0 or Y
(

e∗1, e
∗
2

)

is the nondif-
ferentiable point of function Y

(

e1, e2
)

when the MSTY exists. It is obvious that Y
(

e1, e2
)

is a linear function with respect to
e1, which means )2Y

(

e1, e2
)

∕)e21 = 0. Therefore, we can not directively tell the exsitence of the MSTY through the Hessian
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FIGURE 1 (a) The biomass of prey at E∗
1 with varying harvesting efforts. (b) The biomass of predator at E∗

1 with varying
harvesting efforts. (c) The total yield biomass of predator and prey at E∗

1 with varying harvesting efforts. (d) The stable area of
interior equilibrium E∗

1 , in this area Det
(

E∗
1

)

is always positive.

matrix. We give a numerical simulation since the expression of the yield function is too complex to analysis, and the values are
taken as:

k = 100, n = 3, m = 6, � = 3, r = 1.5, d = 1, a = 0.2, b = 0.3.
The biomasses of prey and predator at equilibrium E∗

1 and the total yield varie with harvesting efforts e1 and e2 are shown
as Fig.1. It can be seen from Fig.1 (a) that the influences of e1 and e2 on the biomass of cyanobacteria at E∗

1 are very small
firstly, but cyanobacteria will be extinct when e2 > 1.5117 or fish is extinct. With the increase of the harvesting efforts e1 and
e2, the biomass of fish at E∗

1 gradually decreases and tends to become extinct, as is shown in Fig.1 (b). From fig.1 (c), we can
get that the total yield biomass reaches the maximum at the nondifferentiable point (0, 1.5117, 18.7706). However, the interior
equilibrium E∗

1 is unstable at this point according to Fig.1 (d), which implies that there is no MSTY in model (1.2). We always
harvest both cyanobacteria and fish at different efforts in real life. Moreover, we study the MSTY problem of model (1.2) when
the two harvesting efforts are in a certain proportion. Assuming that the harvesting efforts e1 = �e2, then the total yield function
can be expressed as:

H (e) = Y
(

e, e
�

)

.

Let’s take different value of � and analyze it by numerical simulation. It can be seen from Fig. 2 that with the increase of
harvesting effort e, the fish population decreases sharply and tends to be extinct at E∗

1 , while the cyanobacteria population
keep steady, and the total yield biomass increases firstly and then changes smoothly, the interior equilibrium E∗

1 disappears
with the extinction of fish finally. In addition, the solid line in Fig. 2 indicates stability and the dashed line indicates instability
based on Theorem 4. The total yield function reaches its sustainable maximum at H (1.0389) = 10.8641 when � = 1, and at
H (1.2701) = 9.2723 when � = 2.
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FIGURE 2 The population densities and total yield biomassH (e)with varying harvesting efforts atE∗
1 . (a) � = 0.5. (b) � = 1.

(c) � = 2.

4 LOCAL BIFURCATION

In this section, we will discuss the local bifurcation in model (1.2) theoretically. We take the aggregration parameter m and
harvesting efforts e1 and e2 as the bifurcation parameters, transcritical bifurcation, saddle-node bifurcation and Hopf bifurcation
with codimension 1 and Bogdanov-Takens bifurcation with codimension 2 are analyzed successively.

4.1 Transcritical bifurcation
Transcritical bifurcation always occurs at the boundary equilibria, since the equiulibrium E1 is unstable whenever it exists,
therefore transcritical bifurcation will only happen at E2. The transcritical bifurcations are caused by the collisions of interior
equilibriaE∗

1 orE
∗
2 withE2, choosing aggregration parameterm as the bifurcation parameter, then we can obtain the expressions

of the critical value correspondingly

m1 =
b + k + n

2
+

√

Δ1
2r

+

√

Δ2 − �

2
(

d + e2
) , m2 =

b + k + n
2

+

√

Δ1
2r

−

√

Δ2 + �

2
(

d + e2
) .

Then, if m1 or m2 are in the set [0, k], the predator-free equilibrium E2 will translate its stability as the value of parameter m
passes through m1 or m2.

Theorem 6. The model (1.2) will undergo a transcritical bifurcation at the equilibrium E2 when m = m1 ∈ [0, k] or m = m2 ∈
[0, k].

Proof. When m = m1 ∈ [0, k], the elements of Jacobian matrix J(E2;m1) are

a11
(

x2, 0
)

, a12
(

x2
)

|m=m1 , a21
(

x2, 0
)

= a22
(

x2
)

|m=m1 = 0,

letting V andW are eigenvectors of zero eigenvalues of J(E2;m1) and J
T
(E2;m1)

respectively. Without loss of generality, we can take

V =
(

v1
v2

)

=

(

−a12
(

x2
)

|

|

|m=m1
a11

(

x2, 0
)

)

, W =
(

w1
w2

)

=
(

0
1

)

,
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then

W TFm
(

E2;m1
)

=
(

0 1
)

⎛

⎜

⎜

⎜

⎝

− y
[

(x−m)2−a
]

[

a+b(x−m)+(x−m)2
]2

�y
[

(x−m)2−a
]

[

a+b(x−m)+(x−m)2
]2

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|(E2;m1)

=
(

0 1
)

(

0
0

)

= 0,

W T [DFm
(

E2;m1
)

V
]

=
(

0 1
)

⎛

⎜

⎜

⎜

⎝

0 − (x−m)2−a
[

a+b(x−m)+(x−m)2
]2

0 �
[

(x−m)2−a
]

[

a+b(x−m)+(x−m)2
]2

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|(E2;m1)

(

−a12
(

x2
)

|

|

|m=m1
a11

(

x2, 0
)

)

=
a11 (x, y) �

[

(x − m)2 − a
]

[

a + b (x − m) + (x − m)2
]2

|

|

|

|

|

|(E2;m1)

W T [D2Fm(E2;m1) (V , V )
]

=
(

w1 w2
)

(

g1xx g
1
xy g

1
yx g

1
yy

g2xx g
2
xy g

2
yx g

2
yy

)

|

|

|

|

|

|(E2;m1)

⎛

⎜

⎜

⎜

⎜

⎝

v1v1
v1v2
v2v1
v2v2

⎞

⎟

⎟

⎟

⎟

⎠

=
2�

[

a −
(

x2 − m1
)2
]

[

3rx22 − 2r (k + n) x2 + kn
(

r + e1
)] (

m1 − x2
)

nk
[

a + b
(

x2 − m1
)

+
(

x2 − m1
)2
]3

,

Since the conditions for the establishment of equations

W T [DFm(E2;m1)V
]

= 0, W T [D2Fm(E2;m1) (V , V )
]

= 0

are very harsh, therefore the above two equations will not hold within a wide range of parameters, which means that
the model (1.2) undergoes a transcritical bifurcation at equilibrium E1 within these parameter ranges according to the
Sotomayor′s Tℎeorem.
The proof process of the theorem when m = m2 ∈ [0, k] is omitted since it is similar to the above.

4.2 Saddle-node bifurcation
On the basis of the previous analysis of the existence of the equilibria and some right conditions, it is obvious that the predator-
free equilibria E1 and E2 will overlap as an equilibrium Esn

(

xsn, ysn
)

when Δ1 = 0, and the interior equilibria will also overlap
as an equilibrium E∗

sn

(

x∗sn, y
∗
sn

)

when Δ2 = 0. These dynamic phenomenos are caused by two saddle-node bifurcations, then
we have the following two Theorems.

Theorem 7. Model (1.2) will undergo a saddle-node bifurcation at the equilibrium Esn
(

xsn, ysn
)

with respect to e1 as the
bifurcation parameter when the parameters satisfy the two conditions:
(1). 2m < k + n,
(2). e1 = e1sn =

r(k−n)2

4nk
.

Proof. Now we verify the transversality condition for the occurrence of saddle-node bifurcation at e1 = e1sn using the
Sotomayor′s Tℎeorem. The equilibrium Esn exists under the conditions (1) and (2) according to the previous analysis, the
Jacobian matrix at Esn can be written as

JEsn =
⎛

⎜

⎜

⎝

0 − xsn−m

(xsn−m)2+b(xsn−m)+a
0 �(xsn−m)
(xsn−m)2+b(xsn−m)+a

− d − e2

⎞

⎟

⎟

⎠

,

where xsn =
k+n
2
, corresponding ysn = 0. It is obvious that Det

(

JEsn
)

= 0, such that zero is one of the eigenvalue of JESn .
Letting V andW represent eigenvertors corresponding to the eigenvalue zero for the matrices JEsn and J

T
Esn

. Assuming that the
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equilibrium Esn do not coincide with E∗
1 or E

∗
2 , such that f

(

xsn
)

≠ 0, then without loss of generality, we can take

V =
(

v1
v2

)

=
(

1
0

)

, W =
(

w1
w2

)

=

(

1
xsn−m
f(xsn)

)

,

such that
W TFe1

(

Esn; e1sn
)

=
(

w1 w2
)

(

−xsn
0

)

= −xsn ≠ 0,

W T [D2Fe1
(

Esn; e1sn
)

(V , V )
]

=
(

w1 w2
)

(

g1xx g
1
xy g

1
yx g

1
yy

g2xx g
2
xy g

2
yx g

2
yy

)

|

|

|

|

|

|(Esn;e1sn)

⎛

⎜

⎜

⎜

⎜

⎝

v1v1
v1v2
v2v1
v2v2

⎞

⎟

⎟

⎟

⎟

⎠

= −
r (k + n)
kn

≠ 0

Hence the eigenvectors V andW satisfy the transversality conditions, such that model (1.2) occurs a saddle-node bifurcation
at Esn when e1 = e1sn..

Theorem 8. Model (1.2) will undergo a saddle-node bifurcation at the equilibrium E∗
sn

(

x∗sn, y
∗
sn

)

with respect to e2 as the
bifurcation parameter when the parameters satisfy the three conditions:
(1). � > b

(

d + e2
)

,
(2). e2 = e2sn =

�
2
√

a+b
− d > 0,

(3).
(

2mr + 2r
√

a − kr − nr
)2
< Δ1.

Proof. Similiar to the proof process about the above theorem, we need to verify the transversality condition for the occurrence
of saddle-node bifurcation at e2 = e2sn. The interior equilibriumE∗

sn

(

x∗sn, y
∗
sn

)

exists under the above three conditions according
to the previous analysis of equilibria, where

x∗sn = m +
√

a, y∗sn =
(

2
√

a + b
)

[

rx∗sn

(

1 −
x∗sn
k

)(x∗sn
n
− 1

)

− e1x∗sn

]

and the Jacobian matrix at E∗
sn can be written as

JE∗sn =

(

a11
(

x∗sn, y
∗
sn

)

− 1
b+2

√

a

0 0

)

,

Letting V and W represent eigenvertors corresponding to the eigenvalue zero for the matrices JE∗sn and J
∗T
Esn

, and without loss
of generality, we can take

V =
(

v1
v2

)

=

( 1
b+2

√

a

a11
(

x∗sn, y
∗
sn

)

)

, W =
(

w1
w2

)

=
(

0
1

)

,

hence
W TFe2

(

E∗
sn; e2sn

)

=
(

w1 w2
)

(

0
−y∗sn

)

= −y∗sn ≠ 0,

W T [D2Fe2
(

E∗
sn; e2sn

)

(V , V )
]

=
(

w1 w2
)

(

g1xx g
1
xy g

1
yx g

1
yy

g2xx g
2
xy g

2
yx g

2
yy

)

|

|

|

|

|

|(E∗sn;e2sn)

⎛

⎜

⎜

⎜

⎜

⎝

v1v1
v1v2
v2v1
v2v2

⎞

⎟

⎟

⎟

⎟

⎠

= −
2�y∗sn

√

a
(

b + 2
√

a
)4

≠ 0.
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Therefor, the eigenvectors V andW satisfy the transversality conditions for the occurrence of saddle-node bifurcation at the
interior equilibrium E∗

sn when e2 = e2sn. In addition, as the value of e2 passes through e2sn, there is an interior equilibrium in
model (1.2) and then it becomes two.

4.3 Hopf bifurcation
In this subsection, we concentrate on the occurrence of Hopf bifurcation at the interior equilibrium E∗

1 of model (1.2) based on
the previous discussion about the stability of the interior equilibria.
In order to study Hopf bifurcation in model (1.2), we take harvesting effort e1 as bifurcation parameter, and require that

e1 = e1ℎp is a positive root of a11
(

x∗1, y
∗
1

)

= 0. The stability of the interior equilibrium E∗
1 changes when e1 passes through

e1ℎp, then we obtain the following theorem.

Theorem 9. Model (1.2) will undergo a Hopf bifurcation at the interior equilibrium E∗
1

(

x∗1, y
∗
1

)

when e1 = e1ℎp and the other
parameters satisfy the following three conditions:
(1). Δ1 > 0,
(2). Δ2 > 0,
(3). max

{

m, x1
}

< x∗1 < min
{

m +
√

a, x2, k
}

.

Proof. It is easy to testify that the interior equilibrium E∗
1 exists and Det

(

JE∗1

)

|e1=e1ℎp > 0 is satisfied under the above three
conditions. Since we have set a11

(

x∗1, y
∗
1

)

|e1=e1ℎp = 0, i.e. the trace of JE∗1 is zero, thus we only need to verify the transversality
condition for Hopf bifurcation. It can be easily obtained that

d
de1

T r
(

JE∗1

)

|

|

|

|e1=e1ℎp

=
−2x∗31 + (5m − b) x

∗2
1 + 2m (b − 2m) x

∗
1 + m

(

m2 − bm + a
)

(

x∗1 − m
)3 + b

(

x∗1 − m
)2 + a

(

x∗1 − m
)

.

Since the condition for the establishment of the equation d
de1
T r

(

JE∗1

)

|

|

|

|e1=e1sn
= 0 is so harsh that the transversality condition

for Hopf bifurcation is satisfied within a wide range of parameters.
In order to evaluate the stability of the interior equilibrium E∗

1 after Hopf bifurcation, we calculate the first Lyapunov number
l1 at the equilibrium E∗

1 of model (1.2). Firstly, translate E∗
1 into the origin (0, 0), letting x∗ = x − x∗1 and y

∗ = y − y∗1, then
model (1.2) can be expressed as

{

ẋ∗ = �10x∗ + �01y∗ + �20x∗2 + �11x∗y∗ + �02y∗2 + �30x∗3 + �21x∗2y∗ + �12x∗y∗2 + �03y∗3 + P1,
ẏ∗ = �10x∗ + �01y∗ + �20x∗2 + �11x∗y∗ + �02y∗2 + �30x∗3 + �21x∗2y∗ + �12x∗y∗2 + �03y∗3 + +P2,

According to the previous content, we can obtain that T r
(

JE∗1

)

= �10 + �01 = 0 and Det
(

JE∗1

)

= �10�02 − �01�10 > 0, the
other parameters �ij and �ij can be seen in the Appendix A. P1 and P2 are the remainder terms in Taylor series of ẋ∗ and ẏ∗.
The first Lyapunov number l1 can be expressed as follows according to the expression of it in paper24.

l1 =
−3�

2
√

−�301�10

(

�11�20 − 3�01�30 − �01�21
)

.

Furthermore, when e1 = e1sn, model (1.2) will undergo a supercritical Hopf bifurcation at the interior equilibrium E∗
1 if

l1 < 0, but the Hopf bifurcation is subcritical if l1 > 0. For the expression of l1 is too cumbersome to determine the sign of it,
we will give a numerical example in the next section to increase its reliability.

4.4 Bogdanov-Takens bifurcation
It is necessary for us to investigate the joint influence of e1 and e2 on model (1.2) since the harvesting efforts of cyanobacteria
and fish are always not constant in real life. In this subsection, we select e1 and e2 as Bogdanov-Takens bifurcation parameters
to study the influence on the dynamic behavior caused by the harvesting efforts theoretically.
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Theorem10. Model (1.2) will undergo aBogdanov-Takens bifurcation at
(

e1bt, e2bt
)

when e1 and e2 are chosen as the bifurcation
parameters. And the two harvesting efforts e1bt and e2bt satisfy the following two conditions:

Det
[

JE∗1

]

|(e1bt,e2bt) = 0, T r
[

JE∗1

]

|(e1bt,e2bt) = 0.

In order to analyze the dynamic behavior of model (1.2) within a small range of B-T point, we firstly calculate the local
expressions of saddle-node bifurcation, Hopf bifurcation and homoclinic bifurcation through translating model (1.2) into a
normal form.
For harvesting efforts, we introduce two small disturbance �1 and �2, i.e., substituting e1 = e1bt + �1 and e1 = e2bt + �2 in

model (1.2), then follows:
⎧

⎪

⎨

⎪

⎩

dx
dt
= rx

(

1 − x
k

)(

x
n
− 1

)

− (x−m)y
a+b(x−m)+(x−m)2

−
(

e1bt + �1
)

x,
dy
dt
= � (x−m)y

a+b(x−m)+(x−m)2
− dy −

(

e2bt + �2
)

y.
(4.1)

After taking the variable substitutions u1 = x − x∗1 and u2 = y − y
∗
1, the equilibrium E∗

1 comes to the origin, and model (4.1)
becomes:

{

du1
dt
= p00

(

�1, �2
)

+ p10
(

�1, �2
)

u1 + �01u2 + �20u21 + �11u1u2 + �02u
2
2,

du2
dt
= q00

(

�1, �2
)

+ �10u1 + q01
(

�1, �2
)

u2 + �20u21 + �11u1u2 + �02u
2
2 + P3,

(4.2)

where p00
(

�1, �2
)

= −�1x∗1, p10
(

�1, �2
)

= −�1, q00
(

�1, �2
)

= −�2y∗1, q01
(

�1, �2
)

= −�2, the other parameters �ij and �ij are
consistent with the previous, and P3 is the remainder term in Taylor series of du2

dt
in model (4.2).

Then we substitute the variables in model (4.2) near the origin as follows:

v1 = u1, v2 = p00
(

�1, �2
)

+ p10
(

�1, �2
)

u1 + �01u2 + �20u21 + �11u1u2,

under the substitutions, model (4.2) becomes
{

dv1
dt
= v2,

dv2
dt
= c00

(

�1, �2
)

+ c10
(

�1, �2
)

v1 + c01
(

�1, �2
)

v2 + c20
(

�1, �2
)

v21 + c11
(

�1, �2
)

v1v2 + c02
(

�1, �2
)

v22 + P4,
(4.3)

the expressions of cij can be seen in the Appendix B and P4 is the remainder term in Taylor series of dv2
dt

in model (4.3).
A new time variable � is introduced to further transform model (4.3) into the normal form, such that

(

1 − c02 (�) v1
)

d� = dt.
We rewrite t to denote � for simplicity. Then, under the change of w1 = v1, w2 = v2

(

1 − c02v1
)

, model (4.3) becomes
{

dw1
dt
= w2,

dw2
dt
= �00

(

�1, �2
)

+ �10
(

�1, �2
)

w1 + �01
(

�1, �2
)

w2 + �20
(

�1, �2
)

w2
1 + �11

(

�1, �2
)

w1w2 + P5,
(4.4)

where
�00

(

�1, �2
)

= c00
(

�1, �2
)

, �10
(

�1, �2
)

= c10
(

�1, �2
)

− 2c00
(

�1, �2
)

c02
(

�1, �2
)

, �01
(

�1, �2
)

= c01
(

�1, �2
)

,
�20

(

�1, �2
)

= c20
(

�1, �2
)

− 2c10
(

�1, �2
)

c02
(

�1, �2
)

+ c00
(

�1, �2
)

c202
(

�1, �2
)

,
�11

(

�1, �2
)

= c11
(

�1, �2
)

− 2c01
(

�1, �2
)

c02
(

�1, �2
)

,

and P5 is the remainder term in Taylor series of dw2
dt

in model (4.4).

let z1 = w1 +
�10(�1,�2)
2�20(�1,�2) , z2 = w2, then model (4.4) has the following new form:

{

dz1
dt
= z2,

dz2
dt
= �00

(

�1, �2
)

+ �01
(

�1, �2
)

z2 + �20
(

�1, �2
)

z21 + �11
(

�1, �2
)

z1z2 + P6,
(4.5)

where

�00
(

�1, �2
)

= �00
(

�1, �2
)

−
�210

(

�1, �2
)

4�20
(

�1, �2
) , �01

(

�1, �2
)

= �01
(

�1, �2
)

−
�10

(

�1, �2
)

�11
(

�1, �2
)

2�20
(

�1, �2
) ,

�20
(

�1, �2
)

= �20
(

�1, �2
)

, �11
(

�1, �2
)

= �11
(

�1, �2
)

,
and P6 is the remainder term in Taylor series of dz2

dt
in model (4.5).

In order to simplify the coefficient of term �20
(

�1, �2
)

z21 in model (4.5), we let

s1 = z1, s2 =
z2

√

|

|

|

�20
(

�1, �2
)

|

|

|

, � = t
√

|

|

|

�20
(

�1, �2
)

|

|

|

,
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rewriting t to denote �, then model (4.5) has a new form:
{

ds1
dt
= s2,

ds2
dt
= 
00

(

�1, �2
)

+ 
01
(

�1, �2
)

s2 + 
20
(

�1, �2
)

s21 + 
11
(

�1, �2
)

s1s2 + P7,
(4.6)

where


00
(

�1, �2
)

=
�00

(

�1, �2
)

|

|

|

�20
(

�1, �2
)

|

|

|

, 
01
(

�1, �2
)

=
�01

(

�1, �2
)

√

|

|

|

�20
(

�1, �2
)

|

|

|

,


20
(

�1, �2
)

=
�20

(

�1, �2
)

|

|

|

�20
(

�1, �2
)

|

|

|

, 
11
(

�1, �2
)

=
�11

(

�1, �2
)

√

|

|

|

�20
(

�1, �2
)

|

|

|

,

and P7 is the remainder term in Taylor series of ds2
dt

in model (4.6).
Supposing �11 ≠ 0, then 
11 ≠ 0. Further setting

x =
�20

(

�1, �2
)

|

|

|

�20
(

�1, �2
)

|

|

|


211
(

�1, �2
)

s1, y = 
311
(

�1, �2
)

s2, � =
�20

(

�1, �2
)

|

|

|

�20
(

�1, �2
)

|

|

|


11
(

�1, �2
)

t,

rewriting t to denote �, we obtain the normal form of model (4.1) at B-T point
{

dx
dt
= y,

dy
dt
= $00

(

�1, �2
)

+$01
(

�1, �2
)

y + x2 + xy + P8,
(4.7)

where

$00
(

�1, �2
)

=
�20

(

�1, �2
)

|

|

|

�20
(

�1, �2
)

|

|

|


00
(

�1, �2
)


411
(

�1, �2
)

, $01
(

�1, �2
)

=
�20

(

�1, �2
)

|

|

|

�20
(

�1, �2
)

|

|

|


01
(

�1, �2
)


11
(

�1, �2
)

,

and P8 is the remainder term in Taylor series of d$2

dt
in model (4.7).

Based on the results of25, model (1.2) undergoes a Bogdanov-Takens bifurcation when
(

e1, e2
)

=
(

e1bt, e2bt
)

and
(

�1, �2
)

is
in a small domain of the origin. We obtain the local expressions of the following three bifurcation curves.

(1). The curve of saddle-node bifurcation:
SN =

{(

�1, �2
)

∶ $00
(

�1, �2
)

= 0, $01
(

�1, �2
)

≠ 0
}

;

(2). The curve of Hopf bifurcation:

Hp =
{

(

�1, �2
)

∶ $01
(

�1, �2
)

= �20(�1,�2)
|
�20(�1,�2)|

√

−$00
(

�1, �2
)

, $00
(

�1, �2
)

< 0
}

;

(3). The curve of homoclinic bifurcation:
HL =

{

(

�1, �2
)

∶ $01
(

�1, �2
)

= 5�20(�1,�2)
7
|
�20(�1,�2)|

√

−$00
(

�1, �2
)

, $00
(

�1, �2
)

< 0
}

.

5 NUMERICAL SIMULATION

Although we have obtained some theoretical results of model (1.2) in the previous sections, it is not easy to get intuitional
knowing about the dynamic behaviors of the model since some expressions in the theory analysis are truly complicated. Thus,
we perform some precise numerical simulations to further research the model and investigate the dynamic behavior of it in
this section. Throughout the numerical simulations, we consider a set of hypothetical values of parameters according to their
biological signification in model (1.2):

k = 50, n = 3, m = 30, � = 0.6, r = 1.5, d = 1, a = 0.02, b = 0.1.

Under this parameters, we can obtain the Hopf bifurcation curves of model (1.2) as Fig.3 (a). Then, we fix the harvesting
effort e1 = 3.194748196 additionally, and let the another effort e2 vary within in a small range. We can get a bifurcation diagram
of model (1.2) as Fig.3 (b). There take place a Hopf bifurcation and saddle-node bifurcation when e2 = 0.5672232479 and
e2 = 0.5672232498 respectively. The solid line in Fig. 3 (b) indicates stability and the dashed line indicates instability. Fig.4
reveals the detailed evolution process of Hopf bifurcation.
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The Bogdanov-Takens bifurcation parameters are calculated as e1bt = 3.194748196 and e2bt = 0.5672232498 on the premise
of the above parameters. The biomasses of cyanobacteria at interior equilibria E∗

1 and E∗
2 with varying harvesting efforts are

shown in Fig.5 (a). Although it is not obvious, the curves lying on the curved surface of x∗1 in Fig.5 (a) are saddle-node, Hopf and
homoclinic bifurcation curves respectively. The projections of these curves on e1−e2 plane within a small range of

(

e1bt, e2bt
)

can
be clearly seen in Fig.5 (b). These bifurcation curves divide the left area of Bogdanov-Takens bifurcation point in the �1−�2 plane
into four blocks and named then as I, II, III and IV. Go through the SN curve top-down, there generates an interior equilibrium
and then evolves into two. There appears or disappears a periodic oscillation solution with the transform of the stability of interior
equilibrium E∗

1 when the parameters locate on the Hp curve. Along the HL curve, the limit cycle becomes homoclinic orbit
after connecting with E∗

2 and then disappears. Next, we will investigate the dynamic properties and corresponding biological
significance within the four regions and on the curves through analyzing the phase diagrams at the six locations (a)-(f) in Fig.5
(b).
At location (a): (−0.02, 0.0000000002), there exist trivial equilibrium E0(black dot in Fig.6 (a)) and predator-free equilibria

E1(red dot in Fig.6 (a)) and E2(blue dot in Fig.6 (a)). But only the equilibrium E2 is meaningful in the perspective of biology,
since the biomass of cyanobacteria must be greater than the aggregation amount according to the definition of model (1.2),
and the parameter of aggregation is m=30 at this time. The predator-free equilibrium E2 is a globally stable node here in the
biological sense, which means the population of fish will become extinct eventually and the cyanobacteria will remain at the
corresponding density of E2. The time series evolution and phase portrait of the model at location (a) can be seen as Fig.6 (a).
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FIGURE 3 (a). Hopf bifurcation curves of model (1.2) under the previous parameters. (b). Bifurcation diagram of model (1.2)
under the previous parameters and e1 = 3.174748196.

The location (b): (−0.02, 0), is on the SN curve. There exists a saddle-node equilibrium E∗
sn(blue dot in Fig.6 (b)), which

will evolve into two interior equilibria E∗
1 and E∗

2 as the two parameters enter region II from region I. In addition, the trivial
equilibrium and the two predator-free equilibria are also exist at this time. Similar to location (a), onlyE∗

sn andE2 are meaningful
from the biological point of view. Fish will eventually become extinct and the density of cyanobacteria will remains at the
corresponding density of E2 due to the instability of E∗

sn. The time series evolution and phase portrait near interior equilibrium
E∗
sn are presented in Fig.6 (b).
There arise two interior equilibria E∗

1 (red dot in Fig.6 (c)) and E∗
2 (blue dot in Fig.6 (c)) from E∗

sn at location (c):
(−0.02,−0.0000000016), E∗

1 and E∗
2 are unstable focus and unstable saddle respectively. The remaining equilibrium at this

position has similar dynamic behavior as at position (b). Fig.6 (c) presents the time series evolution and phase portrait around
the interior equilibria. With the evolution of time, the final destiny of the two populations is consistent with the position (b), that
is, the fish is extinct and the population density of cyanobacteria tends to be stable.
The Hp curve has a significant influence on the dynamic behavior of model (1.2). When we move position (c) through Hp

curve to (d): (−0.02,−0.0000000029), a Hopf bifurcation occurs in the model. A semistable limit cycle(red cycle in Fig.6 (d))
arises around the interior equilibrium E∗

1 , the value of first Lyapunov number l1 is −3149722.203� at this time, which indicates
that the interior equilibrium E∗

1 becomes stable after a supercritical Hopf bifurcation. With the evolution of time, the trajectory
within a small range outside the limit cycle tends to the limit cycle, while the trajectory of the inside is far away from it and
converges to the interior equilibriumE∗

1 . Therefore, when the initial population density of fish and cyanobacteria falls in different
areas on the �1−�2 plane, three different biological phenomena may occur. The first destiny is the same as the results in positions
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FIGURE 4 The progresses of homoclinic bifurcation and Hopf bifurcation in model (1.2) with the previous parameters and
e1 = 3.174748196.

(a)-(c), which means the fish will extinct and the population density of cyanobacteria keeps at a stable state. The second result is
that fish and cyanobacteria coexist, and their population densities maintain periodically oscillation with time, but this periodic
oscillation coexistence mode is unstable, which will convert to the third coexistence mode at stable focus E∗

1 under a small
disturbance from outside.
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FIGURE 5 (a) The biomasses of prey at E∗
1 and E∗

2 with varying harvesting efforts. (b) Three bifurcation curves of model
(1.2), which is another manifestation of lines between x∗1 and x

∗
2 in (a).

The limit cycle becomes larger gradually, and then connects with saddle equilibriumE∗
2 to form a homoclinic orbit(red cycle in

Fig.6 (e)) in the process of moving down from position (d) to position (e): (−0.02,−0.0000000037) on curve HL. The remaining
equilibrium at this position has similar dynamic behavior as at position (d). The two species of fish and cyanobacteria will
eventually coexist at the interior equilibriumE∗

1 when the initial density of the two populations falls within the homoclinic orbit.
While on the homoclinic orbit or outside, the fish will eventually become extinct and the population density of cyanobacteria
tends to the predator-free equilibrium of E2 and then remains stable.
When the parameters are located at position (f): (−0.02,−0.0000000048) in region IV, the homoclinic orbit disappears,

where E∗
1 is a stable focus and E∗

2 is a saddle, the properties of other equilibria are consistent with those at position (e). The
two populations will coexist at the interior equilibrium E∗

1 , or the fish will extinct and the cyanobacteria population finally
remains stable depending on the initial population density. Therefore, an ideal ecological pattern can be guided to form through
controlling the initial population density artificially.
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FIGURE 6 Phase portraits and time series evolution of model (1.2) with varying �1 and �2 around Bogdanov-Takens point
(0, 0).

6 CONCLUSIONS

This paper proposed a cyanobacteria-fish model with two harvesting terms and modified Holling type IV functional response
function on the basis of predator-prey model. The critical conditions are analyzed firstly, to make certain the existence and
stability of potential equilibria in model (1.2), which is the preparatory work for the later theoretical analysis. We concluded
that there is an economic equilibrium in model (1.2), and MSTY exists at the interior equilibrium E∗

1 under certain parameters
through analyzing the harvesting efforts. This has an enlightening effect on the managers of water ecological resources. That
is, on the premise of ensuring that cyanobacteria do not break out and fish do not become extinct, they can choose to obtain
the maximum and stable total yield at MSTY point. Harvesting efforts e1 and e2 are chosen as our bifurcation parameters,
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and the existence of saddle-node bifurcation and Hopf bifurcation with codimension 1 and Bogdanov-Takens bifurcation with
codimension 2 in the model are analyzed. The theoretical conditions of their occurrence are given simultaneously.
In the section of simulation analysis, the analysis of bifurcation theory in model (1.2) are further enriched with concrete

numerical examples and corresponding biological explanations. According to the phase portraits and time series evolution of
the model when the parameters are taken in different regions on the bifurcation diagram, we obtained the dynamic behaviors and
explained the corresponding biological significances. This provides an inspiration for the water ecological resources managers
to formulate reasonable harvesting strategies. That is, they can promote the development of the two populations to reach their
expected target, through controlling the initial population densities of cyanobacteria and fish and adopting harvesting efforts
with corresponding intensity. It is also one of the important significances of our paper. In addition, formulating mature and
practical harvesting strategies in the further research is necessary.
The influence of different harvesting terms on the dynamic behaviors of the model needs further consideration, and we will

verify the reliability of the model through experiments in the follow-up work. Of course, in order to make our model reflect the
real situation within a small range of error, we need to improve the model according to many factors. For example, after intro-
ducing other species, multi-preys or multi-predators model is constructed according to a series of survival relationships between
them. We can also analyze the current model in more detail according to the age structure of the populations or considering the
spatial diffusion behavior of the species.
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