References
Acuna-Hidalgo R, Bo T, Kwint MP, van de Vorst M, Pinelli M, Veltman JA,
Hoischen A, Vissers LELM, Gilissen C. 2015. Post-zygotic Point Mutations
Are an Underrecognized Source of De Novo Genomic Variation. Am J Hum
Genet 97:67–74.
Acuna-Hidalgo R, Veltman JA, Hoischen A. 2016. New insights into the
generation and role of de novo mutations in health and disease. Genome
Biol 17:241.
Aird D, Ross MG, Chen W-S, Danielsson M, Fennell T, Russ C, Jaffe DB,
Nusbaum C, Gnirke A. 2011. Analyzing and minimizing PCR amplification
bias in Illumina sequencing libraries. Genome Biol 12:R18.
Aitken RJ, Baker MA. 2020. The Role of Genetics and Oxidative Stress in
the Etiology of Male Infertility-A Unifying Hypothesis? Front Endocrinol
(Lausanne) 11:581838.
Almobarak S, Hu J, Langdon K, Ang L, Campbell C. 2020. Novel
α-tropomyosin gene (TPM3) in an infant with Nemaline myopathy. Authorea
Prepr.
Awadalla P, Gauthier J, Myers RA, Casals F, Hamdan FF, Griffing AR, Côté
M, Henrion E, Spiegelman D, Tarabeux J, Piton A, Yang Y, et al. 2010.
Direct measure of the de novo mutation rate in autism and schizophrenia
cohorts. Am J Hum Genet 87:316–324.
Campbell IM, Stewart JR, James RA, Lupski JR, Stankiewicz P, Olofsson P,
Shaw CA. 2014. Parent of origin, mosaicism, and recurrence risk:
probabilistic modeling explains the broken symmetry of transmission
genetics. Am J Hum Genet 95:345–359.
Durbin RM, Altshuler D, Durbin RM, Abecasis GR, Bentley DR, Chakravarti
A, Clark AG, Collins FS, La Vega FM De, Donnelly P, Egholm M, Flicek P,
et al. 2010. A map of human genome variation from population-scale
sequencing. Nature 467:1061–1073.
Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D, Bonder MJ,
Sulovari A, Ebler J, Zhou W, Serra Mari R, Yilmaz F, Zhao X, et al.
2021. Haplotype-resolved diverse human genomes and integrated analysis
of structural variation. Science 372:.
Evenson DP, Djira G, Kasperson K, Christianson J. 2020. Relationships
between the age of 25,445 men attending infertility clinics and sperm
chromatin structure assay (SCSA®) defined sperm DNA and chromatin
integrity. Fertil Steril 114:311–320.
Frigola J, Sabarinathan R, Mularoni L, Muiños F, Gonzalez-Perez A,
López-Bigas N. 2017. Reduced mutation rate in exons due to differential
mismatch repair. Nat Genet 49:1684–1692.
Gilissen C, Hehir-Kwa JY, Thung DT, Vorst M van de, Bon BWM van,
Willemsen MH, Kwint M, Janssen IM, Hoischen A, Schenck A, Leach R, Klein
R, et al. 2014. Genome sequencing identifies major causes of severe
intellectual disability. Nature 511:344–347.
Gilpatrick T, Lee I, Graham JE, Raimondeau E, Bowen R, Heron A, Downs B,
Sukumar S, Sedlazeck FJ, Timp W. 2020. Targeted nanopore sequencing with
Cas9-guided adapter ligation. Nat Biotechnol 38:433–438.
Girard SL, Bourassa C V, Lemieux Perreault L-P, Legault M-A, Barhdadi A,
Ambalavanan A, Brendgen M, Vitaro F, Noreau A, Dionne G. 2016. Paternal
age explains a major portion of de novo germline mutation rate
variability in healthy individuals. PLoS One 11:e0164212.
Goldmann JM, Wong WSW, Pinelli M, Farrah T, Bodian D, Stittrich AB,
Glusman G, Vissers LELM, Hoischen A, Roach JC, Vockley JG, Veltman JA,
et al. 2016. Parent-of-origin-specific signatures of de novo mutations.
Nat Genet 48:935–939.
Grégoire M-C, Massonneau J, Simard O, Gouraud A, Brazeau M-A, Arguin M,
Leduc F, Boissonneault G. 2013. Male-driven de novo mutations in haploid
germ cells. Mol Hum Reprod 19:495–499.
Hafford-Tear NJ, Tsai Y-C, Sadan AN, Sanchez-Pintado B, Zarouchlioti C,
Maher GJ, Liskova P, Tuft SJ, Hardcastle AJ, Clark TA, Davidson AE.
2019. CRISPR/Cas9-targeted enrichment and long-read sequencing of the
Fuchs endothelial corneal dystrophy–associated TCF4 triplet repeat.
Genet Med 21:2092–2102.
Haldane JBS. 1947. The mutation rate of the gene for haemophilia, and
its segregation ratios in males and females. Ann Eugen 13:262–271.
Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G,
Gudjonsson SA, Sigurdsson A, Jonasdottir A, Jonasdottir A, Wong WSW,
Sigurdsson G, et al. 2012. Rate of de novo mutations and the importance
of father’s age to disease risk. Nature 488:471–475.
Li H. 2013. Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM. arXiv e-prints arXiv:1303.3997.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25:2078–2079.
Liu G, Zhang Y, Zhang T. 2019. Computational approaches for effective
CRISPR guide RNA design and evaluation. Comput Struct Biotechnol J
18:35–44.
Loman NJ, Watson M. 2015. Successful test launch for nanopore
sequencing. Nat Methods 12:303–304.
Luo R, Wong C-L, Wong Y-S, Tang C-I, Liu C-M, Leung C-M, Lam T-W. 2020.
Exploring the limit of using a deep neural network on pileup data for
germline variant calling. Nat Mach Intell 2:1–8.
Magi A, Semeraro R, Mingrino A, Giusti B, D’Aurizio R. 2018. Nanopore
sequencing data analysis: state of the art, applications and challenges.
Brief Bioinform 19:1256–1272.
Martin M. 2011. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet.journal 17:10–12.
Masella AP, Lalansingh CM, Sivasundaram P, Fraser M, Bristow RG, Boutros
PC. 2016. BAMQL: a query language for extracting reads from BAM files.
BMC Bioinformatics 17:305.
McDonald TL, Zhou W, Castro CP, Mumm C, Switzenberg JA, Mills RE, Boyle
AP. 2021. Cas9 targeted enrichment of mobile elements using nanopore
sequencing. Nat Commun 12:3586.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The
Genome Analysis Toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Res 20:1297–1303.
O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S,
Karakoc E, MacKenzie AP, Ng SB, Baker C, Rieder MJ, Nickerson DA, et al.
2011. Exome sequencing in sporadic autism spectrum disorders identifies
severe de novo mutations. Nat Genet 43:585–589.
Oud MS, Smits RM, Smith HE, Mastrorosa FK, Holt GS, Houston BJ, Vries PF
de, Alobaidi BKS, Batty LE, Ismail H, Greenwood J, Sheth H, et al. 2022.
A de novo paradigm for male infertility. Nat Commun 13:154.
PicardToolkit. 2019. Picard Toolkit. Broad Institute, GitHub Repos.
Player R, Verratti K, Staab A, Bradburne C, Grady S, Goodwin B,
Sozhamannan S. 2020. Comparison of the performance of an amplicon
sequencing assay based on Oxford Nanopore technology to real-time PCR
assays for detecting bacterial biodefense pathogens. BMC Genomics
21:166.
Potapov V, Ong JL. 2017. Examining Sources of Error in PCR by
Single-Molecule Sequencing. PLoS One 12:e0169774.
Sasani TA, Pedersen BS, Gao Z, Baird L, Przeworski M, Jorde LB, Quinlan
AR. 2019. Large, three-generation CEPH families reveal post-zygotic
mosaicism and variability in germline mutation accumulation. Elife
552117.
Scanga H l., Liasis A, Pihlblad MS, Nischal KK. 2021. NYX-related
Congenital Stationary Night Blindness in Two Siblings due to Probable
Maternal Germline Mosaicism. Ophthalmic Genet 42:588–592.
Shagin DA, Shagina IA, Zaretsky AR, Barsova E V, Kelmanson I V, Lukyanov
S, Chudakov DM, Shugay M. 2017. A high-throughput assay for quantitative
measurement of PCR errors. Sci Rep 7:2718.
Smits RM, Xavier MJ, Oud MS, Astuti GDN, Meijerink AM, Vries PF de, Holt
GS, Alobaidi BKS, Batty LE, Khazeeva G, Sablauskas K, Vissers LELM, et
al. 2022. De novo mutations in children born after medical assisted
reproduction. Hum Reprod deac068.
Soifer L, Fong NL, Yi N, Ireland AT, Lam I, Sooknah M, Paw JS, Peluso P,
Concepcion GT, Rank D, Hastie AR, Jojic V, et al. 2020. Fully Phased
Sequence of a Diploid Human Genome Determined de Novo from the DNA of a
Single Individual. G3 (Bethesda) 10:2911–2925.
Taylor JL, Debost J-CPG, Morton SU, Wigdor EM, Heyne HO, Lal D, Howrigan
DP, Bloemendal A, Larsen JT, Kosmicki JA, Weiner DJ, Homsy J, et al.
2019. Paternal-age-related de novo mutations and risk for five
disorders. Nat Commun 10:3043.
Tewhey R, Bansal V, Torkamani A, Topol EJ, Schork NJ. 2011. The
importance of phase information for human genomics. Nat Rev Genet
12:215–223.
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M,
Rozen SG. 2012. Primer3–new capabilities and interfaces. Nucleic
Acids Res 40:e115–e115.
Veltman JA, Brunner HG. 2012. De novo mutations in human genetic
disease. Nat Rev Genet 13:565–575.
Watson M, Warr A. 2019. Errors in long-read assemblies can critically
affect protein prediction. Nat Biotechnol 37:124–126.
Wright CF, Prigmore E, Rajan D, Handsaker J, McRae J, Kaplanis J,
Fitzgerald TW, FitzPatrick DR, Firth H V, Hurles ME. 2019.
Clinically-relevant postzygotic mosaicism in parents and children with
developmental disorders in trio exome sequencing data. Nat Commun
10:2985.
Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, Gogos JA,
Karayiorgou M. 2011. Exome sequencing supports a de novo mutational
paradigm for schizophrenia. Nat Genet 43:864–868.
Ye AY, Dou Y, Yang X, Wang S, Huang AY, Wei L. 2018. A model for
postzygotic mosaicisms quantifies the allele fraction drift, mutation
rate, and contribution to de novo mutations. Genome Res 28:943–951.
Yuen RKC, Merico D, Cao H, Pellecchia G, Alipanahi B, Thiruvahindrapuram
B, Tong X, Sun Y, Cao D, Zhang T, Wu X, Jin X, et al. 2016. Genome-wide
characteristics of de novo mutations in autism. NPJ genomic Med
1:160271–1602710.