
A new three-point linearized conservative compact difference scheme based on
reduction order method for the RLW equation

Ruihua Zhonga, Xiaofeng Wang∗,a, Yuyu Heb

aSchool of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian 363000, PR China
bSchool of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, PR China

Abstract

In this paper, a new fourth-order compact difference scheme based on the reduction order method is
proposed for solving the regularized long wave (RLW) equation. The compact finite difference scheme
is three-level and linear. The discrete mass and discrete energy, boundedness and uniqueness of the
present compact scheme are proved. Convergence and stability of the compact scheme are also analyzed
by using the discrete energy method. Our compact scheme has the rates of convergence of second-order
in temporal direction and fourth-order in spatial direction, respectively. Numerical examples are carried
out to verify the reliability of the theory analysis.

Key words: RLW equation, compact difference scheme, reduction order method, conservation,
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1. Introduction

In this paper, we consider the following initial boundary problem for the regularized long wave
(RLW) equation [1]

ut − µuxxt + ux + δuux = 0, (x, t) ∈ [xl, xr]× (0, T ], (1)

with the initial condition
u(x, 0) = u0(x), x ∈ [xl, xr], (2)

and the boundary condition
u(xl, t) = u(xr, t) = 0, t ∈ (0, T ], (3)

where µ and δ are non-negative constants, u0(x) is a known smooth function. It is significant to
construct a conservative scheme for solving the nonlinear partial differential equation. The original
differential equation problem (1)-(3) has the following conservation quantities

Q(t) =

∫ xr

xl

u(x, t)dx =

∫ xr

xl

u0(x, t)dx = Q(0), t > 0,

and
E(t) = ∥u∥2L2 + µ∥ux∥2L2 = ∥u0∥2L2 + µ∥(u0)x∥2L2 = E(0), t > 0,

where Q(0) and E(0) are two positive constants which relate to the initial condition.
The RLW equation is also known as Benjamin-Bona-Mahony equation [2], which was first formulated

by Peregrine [3] as an alternative to the Korteweg-de-Vries (KdV) equation to describe the behavior
of the undular bore and as a model for long water waves of small but finite amplitude, generated in a
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uniform open channel by a wavemaker at one end [2]. Many important nonlinear physical phenomena,
such as shallow water and ionic waves, can be described by the RLW equation, which is the one of the
most important nonlinear wave equations.

It is difficult to find the exact solution of RLW equation because of the nonlinear term uux. Thus,
the numerical methods of the initial and boundary conditions for the RLW equation have become the
focus of the investigators. Various numerical techniques including the Galerkin method [4, 5, 6], the
pseudo-spectral method [7], the variational iteration method [8] have been used to solve the RLW
equation. Specially, the study of the finite difference scheme for the initial-boundary value problem
of the RLW has attracted great attention. EL-Danaf et al. [9] solved the generalized RLW equation
using the finite difference method, which shows the linearized scheme is unconditionally by the fourier
stability analysis. The local truncation errors of three schemes are O(τ + h), O(τ + h2), O(τ2 + h2),
respectively. A energy conservative finite difference scheme with local truncation error O(τ2+h2) for a
Cauchy problem of the generalized regularized long-wave (GRLW) equation was considered in [10]. A
Crank-Nicolson-type finite difference scheme for solving the BBM equation was presented in [11], which
has second-order convergence in discrete H1-norm. Zheng [12] studied a conservative Crank-Nicolson
finite difference scheme with the Richardson extrapolation technique for solving the RLW equation.
Wang et al.[13] proposed two conservative fourth-order compact finite difference schemes for the RLW
eqaution, which are fourth-order in spatial direction and second-order in temporal direction. In [14],
a new compact finite difference scheme for solving the GRLW equation was analyzed and the rate of
convergence of the scheme is of order O(τ2 + h4).

The main goals of this paper are to construct a high-order accurate, linearized and conservative
compact difference scheme for solving RLW equation, which needs only three mesh point along the
x-direction based on the reduction order method. A novel fourth-order compact operator is applied to
approximate the strong nonlinear term uux. The method is different from those in [14, 13, 12]. The
optimal convergence order O(τ2 + h4) and stability in discrete L∞-, L2- and H1-norms are completely
overcome by using the sophisticated discrete energy method. Conservations of discrete mass and energy,
boundedness and uniquely solvability are given in detail.

The rest of this paper is arranged as follows. In Section 2, we introduce some notations and lemmas.
The linearized conservative compact difference scheme based on reduction method is proposed for the
RLW equation in Section 3. The discrete mass and energy conservation of the compact difference
scheme are given in Section 4. Furthermore, the boundedness and uniquely solvability of the compact
difference scheme are proved in Sections 5. Convergence and stability of the compact difference scheme
are analyzed by using the discrete energy method in Section 6. The scheme is proved to be convergent
with second-order in time and fourth-order in space, respectively. In Section 7, numerical experiments
are provided to verify the reliability of theoretical analysis by simulating the collision of solitary waves.
Finally, some concluded remarks are given in Section 8.

2. Notations and lemmas

In order to solve the problem (1)-(3), we first divide the domain [xl, xr] × [0, T ]. Taking positive
integers J and N and letting h = (xr − xl)/J, τ = T/N , where h and τ are space-step and time-
step, respectively. Denote u = {unj |0 ≤ j ≤ J, 0 ≤ n ≤ N} as the discrete grid function on Ωh,τ =
{(xj , tn)|xj = xl + jh, tn = nτ, 0 ≤ j ≤ J, 0 ≤ n ≤ N}, we further define the following difference
notations

u
n+ 1

2
j =

1

2
(un+1

j + unj ), unj =
1

2
(un+1

j + un−1
j ), (unj )t =

1

τ
(un+1

j − unj ),

(unj )x =
1

h
(unj+1 − unj ), (unj )t̂ =

1

2τ
(un+1

j − un−1
j ), (unj )x̄ =

1

h
(unj − unj−1),

(unj )x̂ =
1

2h
(unj+1 − unj−1).
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Let
Z0
h = {u|u = (uj), u0 = uJ = 0, j = −1, 0, 1, . . . , J, J + 1}

be the discrete Sobolev space. For any grid functions u, v ∈ Z0
h, we introduce the discrete inner product

and norms

⟨u, v⟩ = h
J−1∑
j=1

ujvj , ∥u∥2 = ⟨u, u⟩, ∥u∥∞ = max
1≤j≤J−1

|uj |,

and define the function Ψ as follows

Ψ(uj , vj) =
1

3
[uj(vj)x̂ + (ujvj)x̂], 1 ≤ j ≤ J − 1.

The constant C that appears in the passage is a positive constant independent of τ and h.

Lemma 1. [15] For any grid functions u, v ∈ Z0
h, we have

⟨ux̂, v⟩ = −⟨u, vx̂⟩, ⟨uxx̄, v⟩ = −⟨ux, vx⟩, ⟨Ψ(u, v), v⟩ = 0.

When u = v, we have

⟨ux̂, u⟩ = 0, ⟨uxx̄, u⟩ = −∥ux∥2, ⟨uxx̄, uxx̄⟩ = ∥uxx̄∥2, ⟨uxx̄, ux̂⟩ = 0.

Lemma 2. [16] For any grid function u ∈ Z0
h, we have

∥ux∥ ≤ 2

h
∥u∥, ∥u∥ ≤ L√

6
∥ux∥.

In addition, for any grid function u ∈ Z0
h and arbitrary ε > 0, we have

∥u∥∞ ≤ ε∥ux∥+
1

4ε
∥u∥.

Lemma 3. [17] Let g(x) ∈ C5[xj−1, xj+1] and G(xj) = g′′(xj), 1 ≤ j ≤ J − 1, we have

g′(xj) = (g(xj))x̂ −
h2

6
(G(xj))x̂ +O(h4),

g′′(xj) = (g(xj))xx̄ −
h2

12
(G(xj))xx̄ +O(h4),

g(xj)g
′(xj) = Ψ(g(xj), g(xj))−

h2

2
Ψ(G(xj), g(xj)) +O(h4).

Lemma 4. [17, 18] For any grid functions un, vn, R ∈ Z0
h satisfying

vnj = (unj )xx̄ −
h2

12
(vnj )xx̄ +Rn

j , 1 ≤ j ≤ J − 1,

then we have

⟨vnx̂ , un⟩ =
h2

12
⟨vnx̂ , Rn⟩ − ⟨Rn, unx̂⟩,

⟨vn
t̂
, 2ūn⟩ = −∥unx∥2t̂ −

h2

12
∥vn∥2

t̂
+

h4

144
∥vnx∥2t̂ +

h2

12
⟨vn

t̂
, 2R̄n⟩+ ⟨Rn

t̂
, 2ūn⟩.
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3. Construction of compact difference scheme

Let v = uxx, then the problem (1)-(3) is equivalent to

ut − µvt + ux + δuux = 0, x ∈ [xl, xr], t ∈ (0, T ], (4)

v = uxx, x ∈ [xl, xr], t ∈ (0, T ], (5)

u(x, 0) = u0(x), x ∈ [xl, xr], (6)

u(xl, t) = u(xr, t) = 0, v(xl, t) = v(xr, t) = 0, t ∈ (0, T ]. (7)

Define the grid functions

unj ≈ Un
j = u(xj , tn), vnj ≈ V n

j = v(xj , tn), 0 ≤ j ≤ J, 0 ≤ n ≤ N.

Considering Eq. (4) at the point (xj , t 1
2
) and Eqs. (4)-(5) at the point (xj , tn), respectively, and

applying Lemma 3, we have

(U0
j )t − µ(V 0

j )t + (U
1
2
j )x̂ −

h2

6
(V

1
2
j )x̂ + δΨ(U0

j , U
1
2
j )−

δh2

2
Ψ(V 0

j , U
1
2
j ) = P 0

j ,

1 ≤ j ≤ J − 1, 1 ≤ n ≤ N − 1, (8)

(Un
j )t̂ − µ(V n

j )t̂ + (Ūn
j )x̂ −

h2

6
(V̄ n

j )x̂ + δΨ(Un
j , Ū

n
j )−

δh2

2
Ψ(V n

j , Ūn
j ) = Pn

j ,

1 ≤ j ≤ J − 1, 1 ≤ n ≤ N − 1, (9)

V n
j = (Un

j )xx̄ −
h2

12
(V n

j )xx̄ +Rn
j , 1 ≤ j ≤ J − 1, 0 ≤ n ≤ N, (10)

(U0
j ) = u0(xj), 0 ≤ j ≤ J, (11)

Un
0 = Un

J = 0, V n
0 = V n

J = 0, 0 ≤ n ≤ N, (12)

and there exists a constant C such that

|P 0
j | ≤ C(τ2 + h4), |Pn

j | ≤ C(τ2 + h4), |Rn
j | ≤ C(τ2 + h4), |Rn

t̂
| ≤ C(τ2 + h4).

Ignoring the small terms P 0
j , P

n
j , R

n
j and replacing the grid function Un

j , V
n
j with unj , v

n
j , we construct

a linearized four-order compact finite difference scheme for Eqs. (4)-(7) as follows

(u0j )t − µ(v0j )t + (u
1
2
j )x̂ −

h2

6
(v

1
2
j )x̂ + δΨ(u0j , u

1
2
j )−

δh2

2
Ψ(v0j , u

1
2
j ) = 0,

1 ≤ j ≤ J − 1, 1 ≤ n ≤ N − 1, (13)

(unj )t̂ − µ(vnj )t̂ + (ūnj )x̂ −
h2

6
(v̄nj )x̂ + δΨ(unj , ū

n
j )−

δh2

2
Ψ(vnj , ū

n
j ) = 0,

1 ≤ j ≤ J − 1, 1 ≤ n ≤ N − 1, (14)

vnj = (unj )xx̄ −
h2

12
(vnj )xx̄, 1 ≤ j ≤ J − 1, 0 ≤ n ≤ N, (15)

u0j = u0(xj), 0 ≤ j ≤ J, (16)

un0 = unJ = 0, vn0 = vnJ = 0, 0 ≤ n ≤ N. (17)

Define

un = (un1 , u
n
2 , . . . , u

n
J−1, )

T , vn = (vn1 , v
n
2 , . . . , v

n
J−1, )

T , 0 ≤ n ≤ N,

k1 =
1

2τ
, k2 =

1

12h
, k3 =

h

24
.
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From Eqs. (15)-(16), we get u0 and v0. Let a = 2k1, then we can calculate u1 and v1 for the first level
base on the following matrix-vector form[

A1 B1

−E D

] [
u1

v1

]
=

[
A2 B2

E −D

] [
u0

v0

]
.

Similarly, let a = k1, then solving un and vn (n ≥ 1) depends on the following matrix-vector form[
A1 B1

−E D

] [
un+1

vn+1

]
=

[
A2 B2

E −D

] [
un−1

vn−1

]
,

where A1, A2, B1, B2, E,D are J − 1× J − 1 matrices as follows:

A1 =


a a2,1 0 · · · 0

a3,2 a a2,2 · · · 0
...

...
...

. . .
...

0 · · · a3,J−2 a a2,J−2

0 · · · 0 a3,J−1 a

 , A2 =


a −a2,1 0 · · · 0

−a3,2 a −a2,2 · · · 0
...

...
...

. . .
...

0 · · · −a3,J−2 a −a2,J−2

0 · · · 0 −a3,J−1 a

 ,

B1 =


−µa −k3 0 · · · 0
k3 −µa −k3 · · · 0
...

...
...

. . .
...

0 · · · k3 −µa −k3
0 · · · 0 k3 −µa

 , B2 =


−µa k3 0 · · · 0
−k3 −µa k3 · · · 0
...

...
...

. . .
...

0 · · · −k3 −µa k3
0 · · · 0 −k3 −µa

 ,

E =
1

h2


−2 1 0 · · · 0
1 −2 1 · · · 0
...

...
...

. . .
...

0 · · · 1 −2 1
0 · · · 0 1 −2

 , D =
1

12


10 1 0 · · · 0
1 10 1 · · · 0
...

...
...

. . .
...

0 · · · 1 10 1
0 · · · 0 1 10

 ,

where

a2,j = 3k2 + δk2(u
n
j + unj+1)− δk3(v

n
j + vnj+1), a3,j = −3k2 − δk2(u

n
j + unj−1) + δk3(v

n
j + vnj−1).

4. Conservative laws

Theorem 1. Suppose that {unj , vnj |0 ≤ j ≤ J, 0 ≤ n ≤ N} are the numerical solution of scheme (13)-
(17), then the compact scheme (13)-(17) satisfies the discrete mass and energy conservation in the
senses

Qn+1 :=
h

2

J−1∑
j=1

(un+1
j + unj )−

µh

2

J−1∑
j=1

(vn+1
j + vnj ) +

δhτ

6

J−1∑
j=1

unj (u
n+1
j )x̂

−δh3τ

12

J−1∑
j=1

(unj )xx̄(u
n+1
j )x̂ −

δh5τ

144
(vnj )x̂v

n+1
j − δh7τ

1728
(vnj )x̂(v

n+1
j )xx̄

= Qn = . . . = Q1 = Q0, 0 ≤ n ≤ N − 1, (18)

En+1 :=
1

2
(∥un+1∥2 + ∥un∥2) + µ

2
(∥un+1

x ∥2 + ∥unx∥2) +
µh2

24
(∥vn+1∥2 + ∥vn∥2)

−µh4

288
(∥vn+1

x ∥2 + ∥vnx∥2)

= En = . . . = E1 = E0, 0 ≤ n ≤ N − 1, (19)
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where

Q0 = h

J−1∑
j=1

(u0j − µv0j ) +
δhτ

6

J−1∑
j=1

u0j (u
0
j )x̂ −

δh3τ

12

J−1∑
j=1

(u0j )xx̄(u
0
j )x̂

−δh5τ

144
(v0j )x̂v

0
j −

δh7τ

1728
(v0j )x̂(v

0
j )xx̄,

E0 = ∥u0∥2 + µ∥u0x∥2 +
µh2

12
∥v0∥2 − µh4

144
∥v0x∥2.

Proof. Multiplying Eq. (14) with h and summing up j from 1 to J , we have

h

2τ

J−1∑
j=1

(un+1
j − un−1

j )− µh

2τ

J−1∑
j=1

(vn+1
j − vn−1

j ) + δh
J−1∑
j=1

Ψ(unj , ū
n
j )−

δh3

2

J−1∑
j=1

Ψ(vnj , ū
n
j ) = 0.

Applying Lemma 1 and Eq. (15) and taking Rn = 0, we have

δh
J−1∑
j=1

Ψ(unj , ū
n
j ) =

δh

3

J−1∑
j=1

[unj (ū
n
j )x̂ + (unj ū

n
j )x̂]

=
δh

6

J−1∑
j=1

[unj (u
n+1
j )x̂ + unj (u

n−1
j )x̂] =

δh

6

J−1∑
j=1

[unj (u
n+1
j )x̂ − un−1

j (unj )x̂],

and

δh3

2

J−1∑
j=1

Ψ(vnj , ū
n
j ) =

δh3

6

J−1∑
j=1

[vnj (ū
n
j )x̂ + (vnj ū

n
j )x̂]

=
δh3

6

J−1∑
j=1

[(unj )xx̄(ū
n
j )x̂ −

h2

12
(vnj )xx̄(ū

n
j )x̂]

=
δh3

6

J−1∑
j=1

(unj )xx̄(ū
n
j )x̂ +

δh5

72

J−1∑
j=1

(vnj )x̂[v̄
n
j +

h2

12
(v̄nj )xx̄]

=
δh3

12

J−1∑
j=1

(unj )xx̄(u
n+1
j )x̂ +

δh5

144

J−1∑
j=1

(vnj )x̂v
n+1
j +

δh7

1728

J−1∑
j=1

(vnj )x̂(v
n+1
j )xx̄

−δh3

12

J−1∑
j=1

(un−1
j )xx̄(u

n
j )x̂ −

δh5

144

J−1∑
j=1

(vn−1
j )x̂v

n
j − δh7

1728

J−1∑
j=1

(vn−1
j )x̂(v

n
j )xx̄,

then we have
Qn+1 = Qn, 1 ≤ n ≤ N − 1. (20)

Multiplying Eq. (13) with h and summing up j from 1 to J − 1, we have

h

τ

J−1∑
j=1

(u1j − u0j )−
µh

τ

J−1∑
j=1

(v1j − v0j ) + δh
J−1∑
j=1

Ψ(u0j , ū
1
2
j )−

δh3

2

J−1∑
j=1

Ψ(v0j , ū
1
2
j ) = 0.
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Thus, we have

h
J−1∑
j=1

(u1j + u0j )− µh
J−1∑
j=1

(v1j + v0j ) +
δhτ

3

J−1∑
j=1

u0j (u
1
j )x̂ −

δh3τ

6

J−1∑
j=1

(u0j )xx̄(u
1
j )x̂

−δh5τ

72
(v0j )x̂v

1
j −

δh7τ

864
(v0j )x̂(v

1
j )xx̄

= 2h
J−1∑
j=1

(u0j − µv0j ) +
δhτ

3

J−1∑
j=1

u0j (u
0
j )x̂ −

δh3τ

6

J−1∑
j=1

(u0j )xx̄(u
0
j )x̂

−δh5τ

72
(v0j )x̂v

0
j −

δh7τ

864
(v0j )x̂(v

0
j )xx̄,

and hence Q1 = Q0.
Taking the inner product of Eq. (14) with 2ūn, applying Lemma 1, we have

∥un∥2
t̂
− µ⟨vn

t̂
, 2ūn⟩ − h2

6
⟨vnx̂ , 2ūn⟩ = 0.

According to Lemma 4 and taking R = 0, we have

∥un∥2
t̂
+ µ∥ux∥2t̂ +

µh2

12
∥v∥2

t̂
− µh4

144
∥vx∥2t̂ = 0,

and hence
En+1 = En, 1 ≤ n ≤ N − 1. (21)

Taking the inner product of Eq. (13) with 2u
1
2 , we have

∥u0∥2t + µ∥u0x∥2t +
µh2

12
∥v0∥2t −

µh4

144
∥v0x∥2t = 0,

which gives

∥u1∥2 + ∥u0∥2 + µ∥u1x∥2 + µ∥u0x∥2 −
µh2

12
(∥v1∥2 + ∥v0∥2)− µh4

144
(∥v1x∥2 + ∥v0x∥2)

= 2(∥u0∥2 + µ∥u0x∥2) +
µh2

6
∥v0∥2 − µh4

72
∥v0x∥2,

which is E1 = E0. This completes the proof.

5. Boundedness and uniqueness

Theorem 2. Suppose that u0(x) ∈ H1
0 [xl, xr] and u(x, t) ∈ C5,3

x,t ([xl, xr]× (0, T ]), then the numerical
solution {unj |0 ≤ j ≤ J, 0 ≤ n ≤ N} of the compact difference scheme (13)-(17) satisfies

∥un∥ ≤ C, ∥unx∥ ≤ C, ∥un∥∞ ≤ C, 0 ≤ n ≤ N.

Proof. Assume that there exists a positive constant ĉ such that

max
x∈Ω

{
|u(x, t)| ,

∣∣∣∣∂u(x, t)∂x

∣∣∣∣ , ∣∣∣∣∂2u(x, t)

∂x2

∣∣∣∣ , |v(x, t)| , ∣∣∣∣∂v(x, t)∂x

∣∣∣∣ , ∣∣∣∣∂2v(x, t)

∂x2

∣∣∣∣} ≤ ĉ.

From Eq. (19) and Lemma 2, we have

E0 = En+1 ≥ 1

2
(∥un+1∥2 + µ∥un+1

x ∥2) + µh2

36
∥vn+1∥2, 0 ≤ n ≤ N − 1.
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There exists a positive constant h0 such that when h ≤ h0 and E0 ≤ (1 + µ+
µh2

0
12 )ĉ2 ≤ C, we have

∥un∥ ≤
√
2E0, ∥unx∥ ≤

√
2E0

µ
, ∥vn∥ ≤ 6

h

√
E0

µ
, 1 ≤ n ≤ N.

Thus, according to Lemma 2, we obtain

∥un∥∞ ≤
√
L

2
∥unx∥ ≤

√
LE0

2µ
, 1 ≤ n ≤ N.

This completes the proof.

Theorem 3. The compact difference scheme (13)-(17) is uniquely solvable.

Proof. We can easily know that u0, v0 have been determined from Eqs. (15)-(16). The first level u1, v1

are computed by Eqs. (13) and (15). Now, we consider its homogenous system

1

τ
(u1j − µv1j ) +

1

2
(u1j )x̂ −

h2

12
(v1j )x̂ +

δ

2
Ψ(u0j , u

1
j )−

δh2

4
Ψ(v0j , u

1
j ) = 0, 1 ≤ j ≤ J − 1, (22)

v1j = (u1j )xx̄ −
h2

12
(v1j )xx̄, 1 ≤ j ≤ J − 1. (23)

Taking the inner product of Eq. (22) with u1 and applying Lemma 1, we have

1

τ
∥u1∥2 − µ

τ
⟨v1, u1⟩ − h2

12
⟨v1x̂, u1⟩ = 0.

Using Lemmas 2, 4 and taking R = 0, we have

0 =
1

τ

(
∥u1∥2 − µ⟨v1, u1⟩

)
≥ 1

τ

(
∥u1∥2 + µ∥u1x∥2 +

µh2

18
∥v1∥2

)
. (24)

Thus, we get ∥u1∥ = ∥v1∥ = 0, which implies that u1 and v1 have been determined by Eqs. (13) and
(15) uniquely.

Now, we suppose that uk, vk with 0 ≤ k ≤ n have been determined uniquely. Since un+1, vn+1 are
computed by Eqs. (14)-(15), we consider its homogenous system

1

2τ
(un+1

j − µvn+1
j ) +

1

2
(un+1

j )t̂ −
h2

12
(vn+1

j )x̂ +
δ

2
Ψ(unj , u

n+1
j )− δh2

4
Ψ(vnj , u

n+1
j ) = 0,

1 ≤ j ≤ J − 1, (25)

vn+1
j = (un+1

j )xx̄ −
h2

12
(vn+1

j )xx̄, 1 ≤ j ≤ J − 1. (26)

Taking the inner product of Eq. (25) with un+1, and applying Lemma 1, we have

1

2τ
∥un+1∥2 − µ

2τ
⟨vn+1, un+1⟩ − h2

12
⟨vn+1

x̂ , un+1⟩ = 0.

According to Lemma 4, we have

0 =
1

2τ
(∥un+1∥2 − µ⟨vn+1, un+1⟩) ≥ 1

2τ
(∥un+1∥2 + µ∥un+1

x ∥2 + µh2

18
∥vn+1∥2).

Thus, we have ∥un+1∥ = ∥vn+1∥ = 0, which implies that Eqs. (14)-(15) determine un+1, vn+1 uniquely.
This completes the proof.
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6. Convergence and stability

Theorem 4. Suppose that u0(x) ∈ H1
0 [xl, xr], u(x, t) ∈ C5,3

x,t ([xl, xr] × (0, T ]), then the solution of the
difference scheme (13)-(17) converges to the solution of Eqs. (4)-(7) and the convergence order is
O(τ2 + h4) in discrete norms ∥ · ∥∞ and ∥ · ∥.

Proof. Let enj = Un
j − unj , η = V n

j − vnj for 0 ≤ j ≤ J , 0 ≤ n ≤ N . Then, we obtain the following error
system as

(e0j )t − µ(η0j )t + (e
1
2
j )x̂ −

h2

6
(η

1
2
j )x̂ + δΨ(U0

j , U
1
2
j )− δΨ(u0j , u

1
2
j )−

δh2

2
[Ψ(V 0

j , U
1
2
j )−Ψ(v0j , u

1
2
j )] = P 0

j ,

1 ≤ j ≤ J − 1, (27)

(enj )t̂ − µ(ηnj )t̂ + (ēnj )x̂ −
h2

6
(η̄nj )x̂ + δΨ(Un

j , Ū
n
j )− δΨ(unj , ū

n
j )−

δh2

2
[Ψ(V n

j , Ūn
j )−Ψ(vnj , ū

n
j )] = Pn

j ,

1 ≤ j ≤ J − 1, 1 ≤ n ≤ N − 1, (28)

ηnj = (enj )xx̄ −
h2

12
(ηnj )xx̄ +Rn

j , 1 ≤ j ≤ J − 1, 0 ≤ n ≤ N, (29)

e0j = 0, 0 ≤ j ≤ J, (30)

en0 = enJ = 0, ηn0 = ηnJ = 0, 0 ≤ n ≤ N. (31)

Followings Eqs. (27) and (30), we have

1

τ
(e1j − µη1j ) +

1

2
(e1j )x̂ −

h2

12
(η1j )x̂ + δΨ(U0

j , e
1
j )−

δh2

2
Ψ(V 0

j , e
1
j ) = P 0

j , 1 ≤ j ≤ J − 1. (32)

Taking the inner product of Eq. (32) with e1, and applying Lemma 1, we have

1

τ
∥e1∥2 − µ

τ
⟨η1, e1⟩ − h2

12
⟨η1x̂, e1⟩ = ⟨P 0, e1⟩. (33)

From Lemma 4, we have

⟨η, e1⟩ = −∥e1x∥2 −
h2

12
∥η1∥2 + h4

144
∥ηx∥2 +

h2

12
⟨R1, η1⟩+ ⟨R1, e1⟩, (34)

and

⟨η1x̂, e1⟩ =
h2

12
⟨η1x̂, R1⟩ − ⟨R1, e1x̂⟩. (35)

Thus, from Eqs. (33)-(35), we get

∥e1∥2 + µ∥e1x∥2 +
µh2

12
∥η1∥2 − µh4

144
∥η1x∥2

=
µh2

12
⟨R1, η1⟩+ µ⟨R1, e1⟩+ τh4

144
⟨η1x̂, R1⟩ − τh2

12
⟨R1, e1x̂⟩+ τ⟨P 0, e1⟩. (36)

Applying Lemma 2, we obtain

∥e1∥2 + µ∥e1x∥2 +
µh2

18
∥η1∥2 ≤ ∥e1∥2 + µ∥e1x∥2 +

µh2

12
∥η1∥2 − µh4

144
∥η1x∥2.

9



Using Young inequality, Eq. (36) can be rewritten as

∥e1∥2 + µ∥e1x∥2 +
µh2

18
∥η1∥2

≤ µh2

12
∥R1∥∥η1∥+ µ∥R1∥∥e1∥+ τh4

144
∥η1x∥∥R1∥+ τh2

12
∥R1∥∥e1x∥+ τ∥P 0∥∥e1∥

≤ µh2

24
(∥R1∥2 + ∥η1∥2) + 1

4
∥e1∥2 + 4µ2∥R1∥2 + h4

144

(
µ

4
∥η1x∥2 +

4τ2

µ
∥R1∥2

)
+
µ

2
∥e1x∥2 +

τ2h4

6µ
∥R1∥2 + 1

4
∥e1∥2 + 4τ2∥P 0∥2

≤ 1

2

(
∥e1∥2 + µ∥e1x∥2

)
+

7µh2

144
∥η1∥2 +

(
µh2

24
+ 4µ2 +

7τ2h4

36µ

)
∥R1∥2 + 4τ2∥P 0∥2,

which yields

∥e1∥2 + µ∥e1x∥2 +
µh2

72
∥η1∥2 ≤

(
µh2

12
+ 8µ2 +

7τ2h4

18µ

)
∥R1∥2 + 8τ2∥P 0∥2 ≤ C(τ2 + h4)2.

Thus, we obtain

c̃(∥e1∥2 + ∥e1x∥2 + ∥η1∥2) ≤ ∥e1∥2 + µ∥e1x∥2 +
µh2

72
∥η1∥2 ≤ C(τ2 + h4)2,

where c̃ = min
{
1, µ, µh

2

72

}
. Hence, we have ∥e1∥ ≤ C(τ2 + h4), ∥e1x∥ ≤ C(τ2 + h4), ∥η1∥ ≤ C(τ2 + h4),

which concludes ∥e1∥∞ ≤ C(τ2 + h4) by Lemma 2.
Now, we suppose that

∥ek∥∞ ≤ C(τ2 + h4), ∥ηk∥ ≤ C(τ2 + h4), 0 ≤ k ≤ n.

Taking the inner product of Eq. (28) with 2ēn, we have

∥en∥2
t̂
− µ⟨ηn

t̂
, 2ēn⟩ − h2

6
⟨η̄n

t̂
, 2ēn⟩+ δ⟨Ψ(Un, Ūn)−Ψ(un, ūn), 2ēn⟩

−δh2

2
⟨Ψ(V n, Ūn)−Ψ(vn, ūn), 2ēn⟩ = ⟨Pn, 2ēn⟩. (37)

Applying Lemma 4, we have

⟨ηn
t̂
, 2ēn⟩ = −∥enx∥2t̂ −

h2

12
∥ηn∥2

t̂
+

h4

144
∥ηnx∥2t̂ +

h2

12
⟨ηn

t̂
, 2R̄n⟩+ ⟨Rn

t̂
, 2ēn⟩, (38)

⟨η̄n
t̂
, 2ēn⟩ = h2

12
⟨η̄nx̂ , Rn⟩ − ⟨Rn, ēnx̂⟩. (39)

Noticing

Ψ(Vj , Uj)−Ψ(vj , uj) =
1

3
[Vj(Uj)x̂ + (VjUj)x̂ − vj(uj)x̂ + (vjuj)x̂]

=
1

3
[(vj + ηj)(Uj)x̂ + ((vj + ηj)Uj)x̂ − vj(uj)x̂ + (vjuj)x̂]

=
1

3
[vj(ej)x̂ + ηj(Uj)x̂ + (vjej + ηjUj)x̂]

=
1

3
[(vj + vj+1)(ej)x̂ + (vj)x̂ej−1 + (ηj + ηj+1)(Uj)x̂ + (ηj)x̂Uj−1],
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using Lemmas 1, 2 and the Cauchy-Schwarz inequality, we have

⟨Ψ(Un, Ūn)−Ψ(un, ūn), 2ēn⟩ = 2

3
⟨enŪn

x̂ + (enŪ)x̂, ē
n⟩

≤ 2

3
(2∥Ūn

x̂ ∥∞∥en∥+ ∥Ūn∥∞∥enx∥)∥ēn∥

≤ 2ĉ

3
(2∥en∥+ ∥enx∥)∥ēn∥,

≤ ĉ
(
∥en∥2 + ∥enx∥2 + ∥ēn∥2

)
, (40)

and

⟨Ψ(V n, Ūn)−Ψ(vn, ūn), 2ēn⟩ = 2

3
⟨ηnŪn

x̂ + (ηnŪ)x̂, ē
n⟩

≤ 2

3
(2∥Ūn

x̂ ∥∞∥ηn∥+ ∥Ūn∥∞∥ηnx∥)∥ēn∥

≤ 2ĉ

3
(2∥ηn∥+ ∥ηnx∥)∥ēn∥,

≤ ĉ
(
∥ηn∥2 + ∥ηnx∥2 + ∥ēn∥2

)
, (41)

⟨Pn, 2x̄n⟩ = ⟨Pn, en+1 + en−1⟩ ≤ ∥Pn∥2 + 1

2

(
∥en+1∥2 + ∥en−1∥2

)
. (42)

Adding Eqs. (38)-(42) into Eq. (37), we obtain

∥en∥2 + µ∥enx∥2t̂ +
µh2

12
∥ηn∥2

t̂
− µh4

144
∥ηnx∥2t̂

≤ µh2

12
⟨ηn

t̂
, 2R̄n⟩+ µ⟨Rn

t̂
, 2ēn⟩+ h4

72
⟨η̄nx̂ , Rn⟩ − h2

6
⟨Rn, ēnx̂⟩

+δĉ
(
∥ēn∥2 + ∥en∥2 + ∥ēnx̂∥2

)
+

δĉh2

2

(
∥ηn∥2 + ∥ηnx∥2 + ∥ēn∥2

)
+ ∥Pn∥2 + 1

2

(
∥en+1∥2 + ∥en−1∥2

)
≤ C

(
∥en+1∥2 + ∥en∥2 + ∥en−1∥2 + ∥en+1

x ∥2 + ∥enx∥2 + ∥en−1
x ∥2 + ∥ηn+1∥2 + ∥ηn∥2 + ∥ηn−1∥2

+∥Rn∥2 + ∥Rn
t̂
∥2 + ∥Pn∥2

)
. (43)

Let

An = ∥en+1∥2 + ∥en∥2 + µ
(
∥en+1

x ∥2 + ∥enx∥2
)
+

µh2

12

(
∥ηn+1∥2 + ∥ηn∥2

)
− µh4

144

(
∥ηn+1

x ∥2 + ∥ηnx∥2
)
.

According to Lemma 2, we have

c
(
∥en+1∥2 + ∥en∥2 + ∥en+1

x ∥2 + ∥enx∥2 + ∥ηn+1∥2 + ∥ηn∥2
)

≤ ∥en+1∥2 + ∥en∥2 + µ
(
∥en+1

x ∥2 + ∥enx∥2
)
+

µh2

18

(
∥ηn+1∥2 + ∥ηn∥2

)
≤ An.

where c = min
{
1, µ, µh

2

18

}
. Summing up Eq. (43) from 1 to n, we have

An ≤ A0 + Cτ

n+1∑
i=0

(
∥ei∥2 + ∥eix∥2 + ∥ηi∥2

)
+ τ

n∑
i=1

(
∥P i∥2 + ∥Ri∥2 + ∥Ri

t̂
∥2
)
. (44)

Note that

τ

n∑
i=1

(
∥P i∥2 + ∥Ri∥2 + ∥Ri

t̂
∥2
)
≤ nτ max

1≤i≤n

(
∥P i∥2 + ∥Ri∥2 + ∥Ri

t̂
∥2
)
≤ T · C(τ2 + h4)2,
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and

A0 = ∥e1∥2 + µ∥e1x∥2 +
µh2

12
∥η1∥2 − µh4

144
∥η1x∥2 ≤ ∥e1∥2 + µ∥e1x∥2 ++

µh2

9
∥η1∥2 ≤ C(τ2 + h4)2.

Then we have

(c− Cτ)(∥en+1∥2 + ∥en∥2 + ∥en+1
x ∥2 + ∥enx∥2 + ∥ηn+1∥2 + ∥ηn∥2)

≤ Cτ

n−1∑
i=0

(∥ei∥2 + ∥eix∥2 + ∥ηi∥2) + C(τ2 + h4)2.

If τ and h are sufficiently small such that c− Cτ ≥ 1/2, we obtain

∥en+1∥2 + ∥en∥2 + ∥en+1
x ∥2 + ∥enx∥2 + ∥ηn+1∥2 + ∥ηn∥2

≤ 2Cτ
n−1∑
i=0

(∥ei∥2 + ∥eix∥2 + ∥ηi∥2) + 2C(τ2 + h4)2.

According to the discrete Gronwall inequality, we get

∥en+1∥2 + ∥en∥2 + ∥en+1
x ∥2 + ∥enx∥2 + ∥ηn+1∥2 + ∥ηn∥2

≤ 2C(τ2 + h4)2 · e2CT ≤ C(τ2 + h4)2.

Hence, we obtain ∥en+1∥ ≤ C(τ2+h4), ∥en+1
x ∥ ≤ C(τ2+h4) and ∥ηn+1∥ ≤ C(τ2+h4), which concludes

∥en+1∥∞ ≤ C(τ2 + h4) by Lemma 2. This completes the proof.

Theorem 5. Suppose that u0(x) ∈ H1
0 [xl, xr], u(x, t) ∈ C5,3

x,t ([xl, xr] × (0, T ]), then the solution un of
the difference scheme (13)-(17) is stable with respect to the initial conditions in discrete norm ∥ · ∥∞.

Proof. Assume that {wn
j , z

n
j |0 ≤ j ≤ J, 0 ≤ n ≤ N} is the numerical solution of the following system

(wn
j )t̂ − µ(znj )t̂ + (w̄n

j )x̂ −
h2

6
(z̄nj )x̂ + δΨ(wn

j , w̄
n
j )−

δh2

2
Ψ(znj , z̄

n
j ) = 0,

1 ≤ j ≤ J − 1, 1 ≤ n ≤ N − 1, (45)

znj = (wn
j )xx̄ −

h2

12
(znj )xx̄, 1 ≤ j ≤ J − 1, 0 ≤ n ≤ N, (46)

w0
j = u0(xj) + ε(xj), 0 ≤ j ≤ J, (47)

wn
0 = wn

J = 0, zn0 = znJ = 0, 0 ≤ n ≤ N, (48)

where the initial condition is chosen to be u0(x) + ε(x) and ε(x) is a perturbation function. Setting
ξnj = unj − wn

j , η
n
j = vnj − znj , and substituting Eqs. (45)-(48) from Eqs. (13)-(17), we obtain

(ξnj )t̂ − µ(ηnj )t̂ + (ξ̄nj )x̂ −
h2

6
(η̄nj )x̂ + δΨ(unj , ū

n
j )− δΨ(wn

j , w̄
n
j )

−δh2

2
Ψ(vnj , v̄

n
j ) +

δh2

2
Ψ(znj , z̄

n
j ) = 0,

ηnj = (ξnj )xx̄ −
h2

12
(ηnj )xx̄,

ξ0j = −ε(xj),

ξn0 = ξnJ = 0, ηn0 = ηnJ = 0.

Similar to the proof of Theorem 4, we can conclude that

∥ξn∥∞ ≤ C∥ε∥∞.

This indicates that ξn is controlled by the initial condition ε(x), implying that the scheme (13)-(17) is
stable. This completes the proof.
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7. Numerical examples

In this section, numerical examples are presented to verify the correction of theoretical analysis. For
convenience, we denote the errors and convergence orders as

Ern∞(h, τ) = ∥Un(h, τ)− un(h, τ)∥∞ = max
1≤j≤J−1

|Un
j − unj |,

Ern2 (h, τ) = ∥Un(h, τ)− un(h, τ)∥2 =

√√√√h
J−1∑
j=1

(Un
j − unj )

2,

Erxn2 (h, τ) = ∥Un
x (h, τ)− unx(h, τ)∥2 =

√√√√1

h

J−1∑
j=1

(enj+1 − enj )
2,

Order1 = log2

(
Ern∞(h, τ)

Ern∞(h, τ2 )

)
, Order2 = log2

(
Ern∞(h, τ)

Ern∞(h2 ,
τ
4 )

)
, Order3 = log2

(
Ern2 (h, τ)

Ern2 (h,
τ
2 )

)
,

Order4 = log2

(
Ern2 (h, τ)

Ern2 (
h
2 ,

τ
4 )

)
, Order5 = log2

(
Erxn2 (h, τ)

Erxn2 (h,
τ
2 )

)
, Order6 = log2

(
Erxn2 (h, τ)

Erxn2 (
h
2 ,

τ
4 )

)
,

where enj = Un
j − unj , U

n
j and unj represent the exact solution and the numerical solution, respectively.

Furthermore, Order1, Order3 and Order5 denote the temporal convergence orders and Order2, Order4
and Order6 denote the spatial convergence orders.

Example 1. We consider the following initial condition

u(x, 0) = 3dsech2[k(x− x0)].

The initial-boundary problem (1)-(3) has the exact solution as

u(x, t) = 3dsech2[k(x− x0 − vt)], v = 1 + δd, k =
1

2

√
δd

µ(1 + δd)
.

In this case, we took δ = 1, µ = 1, d = 1, x0 = 0. Numerical traveling solutions at different times
and its profile with h = 0.125, τ = h2 were showed in Fig. 1. We see that numerical solutions agree
with the exact solutions very well. The absolute error comparison at T = 1 with h = 0.1 and τ = h2

were showed in Fig. 2. The comparisons of errors and convergence orders at T = 1 with τ = h
4 and

τ = h2 were reported in Table 1, Table 2 and Table 3, respectively. It is clear that the present difference
scheme has second-order in the temporal direction and fourth-order in the spatial direction in discrete
L2, L∞, and H1-norms in Tables 1-3. Furthermore, the different scheme (13)-(17) has much higher
convergence order and smaller errors than the schemes (Berikelashvili [19]; Shao [20]) in Fig. 2 and
Tables 1-2. The values of discrete mass and discrete energy with h = 0.1 and τ = 0.01 were presented
at different times in Table 4. The absolute errors of long-time discrete conservation at different times
with h = 0.1, τ = h2, T = 500 were plotted in Fig. 3. It is easy to see from Table 4 and Fig. 3 that the
present difference scheme preserves the discrete conservative properties very well, even for long-time
simulations.

Example 2. We consider the following initial condition [21]

u(x, 0) =
2∑

i=1

3disech
2(ki(x− xi)), di = 4k2i /(1− 4k2i ).

13



For simulation computations, we chose δ = µ = 1, and took the parameters k1 = 0.4, k2 = 0.3, x1 = 15,
x2 = 35, h = 0.125, τ = h2, T = 30 with the region 0 ≤ x ≤ 120. The interactions of two solitary waves
were showed at difference times in Fig. 4. From Fig. 4, a higher solitary wave with larger amplitude
is on the left of the other lower solitary wave with smaller amplitude. The higher wave moves and
overtakes the lower wave as time goes on. Both waves eventually return to their original shapes.

Example 3. We investigate the collision of three solitary waves with the different amplitudes and
moving speeds. Considering the following initial condition of RLW equation [13]

u(x, 0) =

3∑
i=1

Aisech
2(Ki(x− xi)), Ai = 3di, Ki =

1

2

√
di

1 + di
, vi = 1 + di.

In order to simulation the collision of three solitary waves, we chose δ = µ = 1, T = 20 and −80 ≤ x ≤
80. Let d1 = 1, d2 = 2, d3 = 3, x1 = −10, x2 = −20, x3 = −30, h = 0.5, τ = 0.05 and the speeds v1 = 2,
v2 = 3, v3 = 4. The collision of three numerical solitary waves with different speed was displayed in
Fig. 5. The speed corresponding to the highest amplitude to the lowest amplitude is v3 = 4, v2 = 3,
v1 = 2, respectively. It is evident that the faster waves with higher amplitudes catch up with the slow
wave. With the change of time, the fastest wave on the far left runs ahead of the two slower waves.
Finally, all the waves regain the original shapes.

Example 4. In this numerical example, we consider the following Maxwellian initial condition of the
RLW equation with different values µ

u(x, 0) = exp(−(x− 7)2), x ∈ [0, 40].

To analyze the influence of the different values µ, we took µ = 0.04, 0.01, 0.004, 0.001, h = 0.1, τ = h2

and δ = 1. The numerical solution curves for different values µ were shown in Figs. 6-9. From Figs.
6-9, we can see that the number of generated soliton waves and its amplitude are highly dependent on
the value of µ. More high-amplitude waves are generated as µ reduces. In addition, the results of the
simulations of multi-wave collisions and Maxwellian initial calculated by our scheme are consistent with
those in [13].

8. Conclusions

In this paper, a new three-point three-level linearized conservative compact difference scheme based
on the reduction order method for the RLW equation is presented. The conservation laws of discrete
mass and energy are given and proved. Boundedness and uniquely solvability of the our scheme are
proved and convergence and stability of the scheme are proved by using the discrete energy method.
The scheme has the accuracy of second-order in time and fourth-order in space. Some physical motions
in numerical experiments such as sine wave, multi-waves collision and Maxwellian initial condition are
simulated. The results show that the presented compact scheme is reliable for solving the RLW equation.
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Table 1: The comparison results of error and convergence order in temporal direction at T = 1 with τ = h
4
and x ∈ [−20, 40]

for Example 1.

Scheme Ern∞ Order1 Ern2 Order3

Present Scheme h = 0.2 1.6554e-03 * 3.3415e-03 *
h = 0.1 4.1466e-04 1.9971 8.3471e-04 2.0011
h = 0.05 1.0382e-04 1.9979 2.0878e-04 1.9993

Berikelashvili [19] h = 0.2 1.7385e-03 * 3.7159e-03 *
h = 0.1 4.3569e-04 1.9964 9.2836e-04 2.0010
h = 0.05 1.0915e-04 1.9970 2.3223e-04 1.9991

Shao [20] h = 0.2 1.4624e-02 * 3.1609e-02 *
h = 0.1 6.5797e-03 1.1523 1.5051e-02 1.0705
h = 0.05 3.2302e-03 1.0264 7.4038e-03 1.0235

Table 2: The comparison results of error and convergence order in spatial direction at T = 1 with τ = h2 and x ∈ [−20, 40]
for Example 1.

Scheme Ern∞ Order2 Ern2 Order4

Present Scheme h = 0.25 2.5821e-03 * 5.2260e-03 *
h = 0.125 1.6346e-04 3.9815 3.3003e-04 3.9850
h = 0.0625 1.0256e-05 3.9944 2.1407e-05 3.9464

Berikelashvili [19] h = 0.25 2.7126e-03 * 5.8122e-03 *
h = 0.125 9.4270e-04 1.5248 1.9003e-03 1.6129
h = 0.0625 2.3555e-04 2.0008 4.7541e-04 1.9990

Shao [20] h = 0.25 1.9225e-02 * 4.0752e-02 *
h = 0.125 4.7092e-03 2.0294 1.0043e-02 2.0206
h = 0.0625 1.1697e-03 2.0094 2.5014e-03 2.0054

Table 3: The results of error and convergence order in H1-norm at T = 1 with x ∈ [−20, 40] for Example 1.

Erxn2 Order5 Erxn2 Order6

h = 4τ = 0.25 3.8105e-03 * h =
√
τ = 0.25 3.8105e-03 *

h = 4τ = 0.125 9.5096e-04 2.0026 h =
√
τ = 0.125 2.4363e-04 3.9672

h = 4τ = 0.0625 2.3763e-04 2.0006 h =
√
τ = 0.0625 1.7446e-05 3.8037
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Table 4: Discrete mass and discrete energy at different times with h = 0.1, τ = h2 and x ∈ [−30, 80] for Example 1.

T Qn En

5 16.970619378024942 37.335238395938731
10 16.970619377287399 37.335238400438300
15 16.970619377490898 37.335238400367615
20 16.970619377172916 37.335238400348437

-20 -10 0 10 20 30 40 50

x

-0.5

0

0.5

1

1.5

2

2.5

3

u
n

T=0
T=10
T=20
T=30
T=40

Figure 1: Numerical solutions at different times (left) and its profile (right) for Example 1.
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Figure 2: The comparison results of the absolute error at T = 1 with h = 0.1, τ = h2 for Example 1.
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Figure 3: The absolute errors of long-time discrete conservation at different times with h = 0.1, τ = h2 and x ∈ [−20, 50]
for Example 1.
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Figure 4: Catch-up collision of two solitons at different times for Example 2.
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Figure 5: Collision of three solitons at different times for Example 3.
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Figure 6: Numerical solution curves for the Maxwellian initial condition at different times with µ = 0.04 for Example 4.
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Figure 7: Numerical solution curves for the Maxwellian initial condition at different times with µ = 0.01 for Example 4.
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Figure 8: Numerical solution curves for the Maxwellian initial condition at different times with µ = 0.004 for Example 4.
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Figure 9: Numerical solution curves for the Maxwellian initial condition at different times with µ = 0.001 for Example 4.
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