References
Aiken, G.R., McKnight, D.M., Wershaw, R.L., MacCarthy, P., 1985. In:
Aiken, G.R., McKnight, D.M., Wershaw ,R.L., MacCarthy, P. (eds): Humic
substances in soil, sediment, and water: geochemistry, isolation, and
characterization. Wiley, New York, 1–9.
Almendros, G., González-Vila, F.J., 1987. Degradative studies on a soil
humin fraction—Sequential degradation of inherited humin. Soil Biol.
Biochem. 19, 513–520.
https://doi.org/https://doi.org/10.1016/0038-0717(87)90093-9
Almendros, G., Tinoco, P., De la Rosa, J-M., Knicker, H.,
Gonzáles-Peréz, J-A., Gonzáles-Vila, F.J., 2018. Selective effects of
forest fires on the structural domains of soil humic acids as shown by
dipolar dephasing 13C NMR spectra and
graphical-statistical analysis of pyrolysis compounds. J Soils Sediments
18, 1303–1313 https://doi.org/10.1007/s11368-016-1595-y
Bhattacharyya, S.S., Ros, G.H., Furtak, H., Iqbal, H.M.N.,
Para-Saldivar, R., 2022. Soil carbon sequestration – An interplay
between soil microbial community and soil organic matter dynamics. Sci
Total Environ. 815, 152928.
https://doi.org/10.1016/j.scitotenv.2022.152928
Cambardella, C.A., Elliott, E.T., 1992. Particulate soil organic‐matter
changes across a grassland cultivation sequence. Soil Science Society of
America Journal, 56, 777–783
Chen, Y., Zou, C., Mastalerz, M., Hu S., Gasaway C, Tao, X., 2015,
Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in
the Geological Sciences-A Review. Int J Mol Sci. 18, 16(12), 30223-50.
doi: 10.3390/ijms161226227.
Cieslewicz, J., Gonet, S., Marszelewski ,W., 2008. Differences in the
Properties of the Bottom Sediments in the System of Wdzydze Lakes
(Northern Poland). Soil & Water Res., 3, 2008 (1), 21–30
De Nobili, M., 2019. Comment on “Humic Substances Extracted by Alkali
Are Invalid Proxies for the Dynamics and Functions of Organic Matter in
Terrestrial and Aquatic Ecosystems,” by Kleber and Lehmann. J. Environ.
Qual. 48, 787–789
Dębska, B., Banach-Szott, M., Dziamski, A. Gonet, S.S., 2010.
Chromatographic characteristics (HPLC, HPSEC) of humic acids of soil
fertilised with various organic fertilisers. Chem. Ecol. 26(S2), 49–57.
Gerke, J., 2018. Concepts and misconceptions of humic substances as the
stable part of soil organic matter: a review. Agronomy 8, 76
Gerson, F., Huber. W., 2003. Electron Spin Resonance Spectroscopy of
Organic Radicals. Wiley, Weinheim, 97–164.
Grasset, L., Ambles, A., 1998. Structure of humin and humic acid from an
acid soil as revealed by phase transfer catalyzed hydrolysis Org.
Geochem. 29, 4, 881-891
Hatcher, P., Breger, I., Maciel, G., Szeverenyi, N. ,1985. Geochemistry
of humin. In: Aiken, G.R., McKnight, D.M., Wershaw, R.L., MacCarthy, P.
(Eds.), Humic substances in soil, sediment and water: Geochemistry,
Isolation and Characterization. John Wiley and Sons, New York, 275–302.
Hayes, M.H.B., Mylotte, R., Swift, R.S., 2017. Humin: Its Composition
and Importance in Soil Organic Matter. Adv. Agron., 143, 47-138.
https://doi.org/https://doi.org/10.1016/bs.agron.2017.01.001
Hayes, M.H.B., Swift, R.S., 1978. The chemistry of soil organic
colloids. In: Greenland, D.J., Hayes, M.H.B., (Eds.), The Chemistry of
Soil Constituents. Wiley, Chichester, 175–320.
Hayes, M.H.B., Swift, R.S., 2020. Vindication of Humic Substances as a
Key Component of Organic Matter in Soil and Water. In: Sparks DL (ed)
Advances in Agronomy, Academic Press, 1-40
Hoffland, E., Kuyper, T.W., Comans, R.N.J.,
Creamer,
R.E., 2020. Eco-functionality of organic matter in soils. Plant Soil
455, 1–22 .
Janzen, H., 2019. The future of humic substances research: Preface to a
debate. J. Environ. Qual., 48, 205–206
Jerzykiewicz, M., Drozd, J., Jezierski, A., 1999. Organic radicals and
paramagnetic metal complexes in municipal solid waste composts. An EPR
and chemical study. Chemosphere 39, 253–268.
https://doi.org/10.1016/S0045-6535(99)00107-1
Jezierski, A., Czechowski, F., Jerzykiewicz, M., Chen, Y., Drozd, J.,
2000. Electron paramagnetic resonance (EPR) studies on stable and
transient radicals in humic acids from compost, soil, peat and brown
coal. J. Spectrochim. Acta Part A 56, 379–385.
https://doi.org/10.1016/S1386-1425(99)00249-8
Kibblewhite, M.G., Ritz, K., Swift, M.J., 2008. Soil health in
agricultural systems. Philos. Trans. R. Soc. B, 363, 685–701.
Lavallee, J.M., Soong, J.L., Cotrufo, M.F., 2020. Conceptualizing soil
organic matter into particulate and mineral‐associated forms to address
global change in the 21 st century. Glob. Change Biol. 26, 261-273.
Lehmann, J., Kleber, M., 2015. The contentious nature of soil organic
matter. Nature, 528, 60–68
Liu, W-X., Wei, Y-X., Li, R-C., Chen, Z., Wang, H-D., Virk, A.L., Lal,
R., Zhao, X., Zhang, H-L., 2022. Improving soil aggregates stability and
soil organic carbon sequestration by no-till and legume-based crop
rotations in the North China Plain. Sci Total Environ. 847, 157518.
https://doi.org/10.1016/j.scitotenv.2022.157518
Machado, W., Franchini, J.C., Guimaraes, M. F., Filho, J.T., 2020.
Spectroscopic characterization of humic and fulvic acids in soil
aggregates, Brazil, Heliyon 6(6), e04078. DOI:
10.1016/j.heliyon.2020.e04078.
Matějková, Š., Šimon, T., 2012. Application of FTIR spectroscopy for
evaluation of hydrophobic/hydrophilic organic components in arable soil,
Plant Soil Environ., 58 , (4): 192–195
Minasny, B., McBratney ,A.B., Malone, B.P , Wheeler I., 2013. Digital
Mapping of Soil Carbon, chapter one, Advances in Agronomy, Volume 118,
ISSN 0065-2113,
http://dx.doi.org/10.1016/B978-0-12-405942-9.00001-3, Elsevier
Inc.
Olk, D.C.,Bloom, P.R., Perdue, E.M., McKnight, D.M., Chen, Y.,
Farenhorst, A., Senesi, N., Chin, Y.-P., Schmitt-Kopplin, P., Hertkorn,
N., 2019a. Environmental and agricultural relevance of humic fractions
extracted by alkali from soils and natural waters. J. Environ. Qual. 48,
217–232.
Olk, D.C., Bloom, P.R., de Nobili, M., Chen, Y., McKnight, D.M.;,Wells,
M.J.M., Weber, J., 2019b. Using humic fractions to understand natural
organic matter processes in soil and water: Selected studies and
applications. J. Environ. Qual. 48, 1633–1643
Pham, D.M., Kasai, T., Yamaura, M., Katayama, A., 2021. Humin: No longer
inactive natural organic matter. Chemosphere, 269, 128697.
Pham, D.M., Katayama, A., 2018. Humin as an external electron mediator
for microbial pentachlorophenol dechlorination: exploration of redox
active structures influenced by isolation methods. Int J Environ Res
Public Health. 5,15(12), 2753. doi: 10.3390/ijerph15122753.
Piccolo, A., 2002. The supramolecular structure of humic substances: A
novel understanding of humus chemistry and implications in soil science.
Advances in Agronomy, 75, 57–134.
Pospíšilová, L., Horáková, E., Fišera, M., Jerzykiewicz, M., Menšik L.,
2020. Effect of selected organic materials on soil humic acids chemical
properties. Environmental Research 187, 109663/1-109663/5
10.1016/j.envres.2020.109663
Preston, C.M., 1996. Application of NMR to soil organic matter analysis:
history and prospects. Soil Sci 161, 144–166
Preston, C.M., Newman, R.H., Rother, P., 1994. Using 13C CPMAS NMR to
assess effects of cultivation on the organic matter of particle size
fractions in a grassland soil. Soil Sci 157, 26–35
Rabot, E., Wiesmeier, M., Schlüter, S., Vogel, H.J., 2018. Soil
structure as an indicator of soil functions: A review. Geoderma, 314,
122-137
Rice, J.A., MacCarthy, P., 1988. Comments on the literature of the humin
fraction of humus. Geoderma 43, 65–73.
doi.org/10.1016/0016-7061(88)90055-9
Schnitzer, M., McArthur, D.F.E., Schulten, H-R, Kozak, L.M., Huang,
P.M., 2006. Long-term cultivation effects on the quantity and quality of
organic matter in selected Canadian prairie soils. Geoderma 130, 141−156
Schnitzer, M., Monreal, C.M.,
2011. Chapter Three - Quo Vadis Soil Organic Matter Research? A
Biological Link to the Chemistry of Humification. Advances in Agronomy,
113, 143-217.
Simpson, A.J., Song, G., Smith, E., Lam, B., Novotny, E.H., Hayes,
M.H.B., 2007. Unraveling the Structural Components of Soil Humin by Use
of Solution-State Nuclear Magnetic Resonance Spectroscopy. Environ. Sci.
Technol. 41, 876–883. https://doi.org/10.1021/es061576c
Simpson, M.J., Johnson, P.C.E., 2006. Identification of mobile aliphatic
sorptive domains in soil humin by solid-state 13C nuclear magnetic
resonance. Environmental Toxicology and Chemistry 25, 52-57
Song, G., Hayes, M.H.B., Novotny, E.H., Simpson, A.J., 2011. Isolation
and fractionation of soil humin using alkaline urea and
dimethylsulphoxide plus sulphuric acid. Naturwissenschaften 98, 7–13.
https://doi.org/10.1007/s00114-010-0733-4
Spaccini, R., Piccolo, A., Conte, P., Haberhauer, G., Gerzabek, M.H.,
2002. Increased soil organic carbon sequestration through hydrophobic
protection by humic substances. Soil Biol. & Biochem. 34, 1839–1851.
https://doi.org/10.1016/S0038-0717(02)00197-9
Stevenson, F.J., 1994. Humus Chemistry: Genesis, Composition, Reactions,
second ed. Wiley, New York
Sutton,
R., Sposito, G., 2005. Molecular structure in soil humic substances: the
new view. Environ. Sci. Technol. 39, 9009-9015
Swift, R.S., 1996, Organic matter characterization. In: Sparks E (ed)
Methods of soil analysis. Part 3, SSSA Book Series, vol 5. SSSA Madison,
Wisconsin, 1011–1069
Tan, K.H., 2014. Humic Matter in Soil and the Environment. Principles
and Controversies. CRC Press, Taylor and Francis Group, 439.
Tang, C., Cheng,. H., Liu, B., Antionietti, B., Yang, F., 2022.
Artificial humic acid facilitates biological carbon sequestration under
freezing-thawing conditions. Sci Total Environ. 849, 157841.
https://doi.org/10.1016/j.scitotenv.2022.157841
Tatzber ,M., Stemmer ,M., Spiegel, H., Katzlberger, Ch, Haberhauer, G.,
Mentler, A., Gerzabek, M.H., 2007. FTIR-spectroscopic characterization
of humic acids and humin fractions obtained by advanced NaOH,
Na4P2O7, and
Na2CO3 extraction procedures . Plant
Nutr. Soil Sci. 170, 522–529
Ukalska-Jaruga, A., Bejger, R., Debaene, G., Smreczak, B., 2021.
Characterization of soil organic matter individual fractions (Fulvic
acids, humic acids, and humins) by spectroscopic and electrochemical
techniques in agricultural soils. Agronomy 11, 4–8.
https://doi.org/10.3390/agronomy11061067
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco,
N., Wollschläger, U., Vogel, H.J., Kögel-Knabner, I., 2019. Soil organic
carbon storage as a key function of soils - A review of drivers and
indicators at various scales, Geoderma, 333, 149-162
Weber, J., Jamroz, E., Kocowicz, A., Debicka, M., Bekier, J.,
Ćwieląg-Piasecka, I., Ukalska-Jaruga, A., Mielnik, L., Bejger, R.,
Jerzykiewicz, M. 2022. Optimized isolation method of humin
fraction from mineral soil material. Environ. Geochem. Health, 44,
1289-129. https://doi.org/10.1007/s10653-021-01037-3
Weber, J., Chen, Y., Jamroz, E., Miano, T., 2018. Preface: Humic
substances in the environment. J Soils Sediments. 18, 2665–2667
Xu, J., Zhao, B., Chu, W., Mao, J., Olk, D.C., Xina, X. , Zhang, J.
,2017. Altered humin compositions under organic and inorganic
fertilization on an intensively cultivated sandy loam soil. Science of
the Total Environment 601–602 356–364
Yang, X., Wang, Q., Qu, X., Jiang, W., 2017. Bound and unbound humic
acids perform different roles in the aggregation and deposition of
multi-walled carbon nanotubes. STOTEN, 586: 738-745,
https://doi.org/10.1016/j.scitotenv.2017.02.050.
Zaccone, C., Plaza, C., Ciavatta, C., Miano, T.M., Shotyk, W., 2018.
Advances in the determination of humification degree in peat since
Achard (1786): Applications in
geochemical and paleoenvironmental studies.
Earth-Science
Reviews,163-178
Zhang, Ch., Katayama, A., 2012. Humin as an Electron Mediator for
Microbial Reductive Dehalogenation Environ. Sci. Technol. 46, 12,
6575–6583
Zhang, C., Zhang, D., Xiao, Z., Li, Z., Suzuki, D., Katayama, A., 2015.
Characterization of humins from different natural sources and the effect
on microbial reductive dechlorination of pentachlorophenol. Chemosphere,
131, 110-116.
Zhang, J., Yin, H. , Wang, H., Xu, L., Samuel, B., Chang, J., Liu, F.,
Chen, H., 2019. Molecular structure-reactivity correlations of humic
acid and humin fractions from a typical black soil for hexavalent
chromium reduction, Science of The Total Environment, 651, 2, 2975-2984