References
Aiken, G.R., McKnight, D.M., Wershaw, R.L., MacCarthy, P., 1985. In: Aiken, G.R., McKnight, D.M., Wershaw ,R.L., MacCarthy, P. (eds): Humic substances in soil, sediment, and water: geochemistry, isolation, and characterization. Wiley, New York, 1–9.
Almendros, G., González-Vila, F.J., 1987. Degradative studies on a soil humin fraction—Sequential degradation of inherited humin. Soil Biol. Biochem. 19, 513–520. https://doi.org/https://doi.org/10.1016/0038-0717(87)90093-9
Almendros, G., Tinoco, P., De la Rosa, J-M., Knicker, H., Gonzáles-Peréz, J-A., Gonzáles-Vila, F.J., 2018. Selective effects of forest fires on the structural domains of soil humic acids as shown by dipolar dephasing 13C NMR spectra and graphical-statistical analysis of pyrolysis compounds. J Soils Sediments 18, 1303–1313 https://doi.org/10.1007/s11368-016-1595-y
Bhattacharyya, S.S., Ros, G.H., Furtak, H., Iqbal, H.M.N., Para-Saldivar, R., 2022. Soil carbon sequestration – An interplay between soil microbial community and soil organic matter dynamics. Sci Total Environ. 815, 152928. https://doi.org/10.1016/j.scitotenv.2022.152928
Cambardella, C.A., Elliott, E.T., 1992. Particulate soil organic‐matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 56, 777–783
Chen, Y., Zou, C., Mastalerz, M., Hu S., Gasaway C, Tao, X., 2015, Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences-A Review. Int J Mol Sci. 18, 16(12), 30223-50. doi: 10.3390/ijms161226227.
Cieslewicz, J., Gonet, S., Marszelewski ,W., 2008. Differences in the Properties of the Bottom Sediments in the System of Wdzydze Lakes (Northern Poland). Soil & Water Res., 3, 2008 (1), 21–30
De Nobili, M., 2019. Comment on “Humic Substances Extracted by Alkali Are Invalid Proxies for the Dynamics and Functions of Organic Matter in Terrestrial and Aquatic Ecosystems,” by Kleber and Lehmann. J. Environ. Qual. 48, 787–789
Dębska, B., Banach-Szott, M., Dziamski, A. Gonet, S.S., 2010. Chromatographic characteristics (HPLC, HPSEC) of humic acids of soil fertilised with various organic fertilisers. Chem. Ecol. 26(S2), 49–57.
Gerke, J., 2018. Concepts and misconceptions of humic substances as the stable part of soil organic matter: a review. Agronomy 8, 76
Gerson, F., Huber. W., 2003. Electron Spin Resonance Spectroscopy of Organic Radicals. Wiley, Weinheim, 97–164.
Grasset, L., Ambles, A., 1998. Structure of humin and humic acid from an acid soil as revealed by phase transfer catalyzed hydrolysis Org. Geochem. 29, 4, 881-891
Hatcher, P., Breger, I., Maciel, G., Szeverenyi, N. ,1985. Geochemistry of humin. In: Aiken, G.R., McKnight, D.M., Wershaw, R.L., MacCarthy, P. (Eds.), Humic substances in soil, sediment and water: Geochemistry, Isolation and Characterization. John Wiley and Sons, New York, 275–302.
Hayes, M.H.B., Mylotte, R., Swift, R.S., 2017. Humin: Its Composition and Importance in Soil Organic Matter. Adv. Agron., 143, 47-138. https://doi.org/https://doi.org/10.1016/bs.agron.2017.01.001
Hayes, M.H.B., Swift, R.S., 1978. The chemistry of soil organic colloids. In: Greenland, D.J., Hayes, M.H.B., (Eds.), The Chemistry of Soil Constituents. Wiley, Chichester, 175–320.
Hayes, M.H.B., Swift, R.S., 2020. Vindication of Humic Substances as a Key Component of Organic Matter in Soil and Water. In: Sparks DL (ed) Advances in Agronomy, Academic Press, 1-40
Hoffland, E., Kuyper, T.W., Comans, R.N.J., Creamer, R.E., 2020. Eco-functionality of organic matter in soils. Plant Soil 455, 1–22 .
Janzen, H., 2019. The future of humic substances research: Preface to a debate. J. Environ. Qual., 48, 205–206
Jerzykiewicz, M., Drozd, J., Jezierski, A., 1999. Organic radicals and paramagnetic metal complexes in municipal solid waste composts. An EPR and chemical study. Chemosphere 39, 253–268. https://doi.org/10.1016/S0045-6535(99)00107-1
Jezierski, A., Czechowski, F., Jerzykiewicz, M., Chen, Y., Drozd, J., 2000. Electron paramagnetic resonance (EPR) studies on stable and transient radicals in humic acids from compost, soil, peat and brown coal. J. Spectrochim. Acta Part A 56, 379–385. https://doi.org/10.1016/S1386-1425(99)00249-8
Kibblewhite, M.G., Ritz, K., Swift, M.J., 2008. Soil health in agricultural systems. Philos. Trans. R. Soc. B, 363, 685–701.
Lavallee, J.M., Soong, J.L., Cotrufo, M.F., 2020. Conceptualizing soil organic matter into particulate and mineral‐associated forms to address global change in the 21 st century. Glob. Change Biol. 26, 261-273.
Lehmann, J., Kleber, M., 2015. The contentious nature of soil organic matter. Nature, 528, 60–68
Liu, W-X., Wei, Y-X., Li, R-C., Chen, Z., Wang, H-D., Virk, A.L., Lal, R., Zhao, X., Zhang, H-L., 2022. Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the North China Plain. Sci Total Environ. 847, 157518. https://doi.org/10.1016/j.scitotenv.2022.157518
Machado, W., Franchini, J.C., Guimaraes, M. F., Filho, J.T., 2020. Spectroscopic characterization of humic and fulvic acids in soil aggregates, Brazil, Heliyon 6(6), e04078. DOI: 10.1016/j.heliyon.2020.e04078.
Matějková, Š., Šimon, T., 2012. Application of FTIR spectroscopy for evaluation of hydrophobic/hydrophilic organic components in arable soil, Plant Soil Environ., 58 , (4): 192–195
Minasny, B., McBratney ,A.B., Malone, B.P , Wheeler I., 2013. Digital Mapping of Soil Carbon, chapter one, Advances in Agronomy, Volume 118, ISSN 0065-2113, http://dx.doi.org/10.1016/B978-0-12-405942-9.00001-3, Elsevier Inc.
Olk, D.C.,Bloom, P.R., Perdue, E.M., McKnight, D.M., Chen, Y., Farenhorst, A., Senesi, N., Chin, Y.-P., Schmitt-Kopplin, P., Hertkorn, N., 2019a. Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters. J. Environ. Qual. 48, 217–232.
Olk, D.C., Bloom, P.R., de Nobili, M., Chen, Y., McKnight, D.M.;,Wells, M.J.M., Weber, J., 2019b. Using humic fractions to understand natural organic matter processes in soil and water: Selected studies and applications. J. Environ. Qual. 48, 1633–1643
Pham, D.M., Kasai, T., Yamaura, M., Katayama, A., 2021. Humin: No longer inactive natural organic matter. Chemosphere, 269, 128697.
Pham, D.M., Katayama, A., 2018. Humin as an external electron mediator for microbial pentachlorophenol dechlorination: exploration of redox active structures influenced by isolation methods. Int J Environ Res Public Health. 5,15(12), 2753. doi: 10.3390/ijerph15122753.
Piccolo, A., 2002. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Advances in Agronomy, 75, 57–134.
Pospíšilová, L., Horáková, E., Fišera, M., Jerzykiewicz, M., Menšik L., 2020. Effect of selected organic materials on soil humic acids chemical properties. Environmental Research 187, 109663/1-109663/5 10.1016/j.envres.2020.109663
Preston, C.M., 1996. Application of NMR to soil organic matter analysis: history and prospects. Soil Sci 161, 144–166
Preston, C.M., Newman, R.H., Rother, P., 1994. Using 13C CPMAS NMR to assess effects of cultivation on the organic matter of particle size fractions in a grassland soil. Soil Sci 157, 26–35
Rabot, E., Wiesmeier, M., Schlüter, S., Vogel, H.J., 2018. Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122-137
Rice, J.A., MacCarthy, P., 1988. Comments on the literature of the humin fraction of humus. Geoderma 43, 65–73. doi.org/10.1016/0016-7061(88)90055-9
Schnitzer, M., McArthur, D.F.E., Schulten, H-R, Kozak, L.M., Huang, P.M., 2006. Long-term cultivation effects on the quantity and quality of organic matter in selected Canadian prairie soils. Geoderma 130, 141−156
Schnitzer, M., Monreal, C.M., 2011. Chapter Three - Quo Vadis Soil Organic Matter Research? A Biological Link to the Chemistry of Humification. Advances in Agronomy, 113, 143-217.
Simpson, A.J., Song, G., Smith, E., Lam, B., Novotny, E.H., Hayes, M.H.B., 2007. Unraveling the Structural Components of Soil Humin by Use of Solution-State Nuclear Magnetic Resonance Spectroscopy. Environ. Sci. Technol. 41, 876–883. https://doi.org/10.1021/es061576c
Simpson, M.J., Johnson, P.C.E., 2006. Identification of mobile aliphatic sorptive domains in soil humin by solid-state 13C nuclear magnetic resonance. Environmental Toxicology and Chemistry 25, 52-57
Song, G., Hayes, M.H.B., Novotny, E.H., Simpson, A.J., 2011. Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid. Naturwissenschaften 98, 7–13. https://doi.org/10.1007/s00114-010-0733-4
Spaccini, R., Piccolo, A., Conte, P., Haberhauer, G., Gerzabek, M.H., 2002. Increased soil organic carbon sequestration through hydrophobic protection by humic substances. Soil Biol. & Biochem. 34, 1839–1851. https://doi.org/10.1016/S0038-0717(02)00197-9
Stevenson, F.J., 1994. Humus Chemistry: Genesis, Composition, Reactions, second ed. Wiley, New York
Sutton, R., Sposito, G., 2005. Molecular structure in soil humic substances: the new view. Environ. Sci. Technol. 39, 9009-9015
Swift, R.S., 1996, Organic matter characterization. In: Sparks E (ed) Methods of soil analysis. Part 3, SSSA Book Series, vol 5. SSSA Madison, Wisconsin, 1011–1069
Tan, K.H., 2014. Humic Matter in Soil and the Environment. Principles and Controversies. CRC Press, Taylor and Francis Group, 439.
Tang, C., Cheng,. H., Liu, B., Antionietti, B., Yang, F., 2022. Artificial humic acid facilitates biological carbon sequestration under freezing-thawing conditions. Sci Total Environ. 849, 157841. https://doi.org/10.1016/j.scitotenv.2022.157841
Tatzber ,M., Stemmer ,M., Spiegel, H., Katzlberger, Ch, Haberhauer, G., Mentler, A., Gerzabek, M.H., 2007. FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures . Plant Nutr. Soil Sci. 170, 522–529
Ukalska-Jaruga, A., Bejger, R., Debaene, G., Smreczak, B., 2021. Characterization of soil organic matter individual fractions (Fulvic acids, humic acids, and humins) by spectroscopic and electrochemical techniques in agricultural soils. Agronomy 11, 4–8. https://doi.org/10.3390/agronomy11061067
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H.J., Kögel-Knabner, I., 2019. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales, Geoderma, 333, 149-162
Weber, J., Jamroz, E., Kocowicz, A., Debicka, M., Bekier, J., Ćwieląg-Piasecka, I., Ukalska-Jaruga, A., Mielnik, L., Bejger, R., Jerzykiewicz, M. 2022. Optimized isolation method of humin fraction from mineral soil material. Environ. Geochem. Health, 44, 1289-129. https://doi.org/10.1007/s10653-021-01037-3
Weber, J., Chen, Y., Jamroz, E., Miano, T., 2018. Preface: Humic substances in the environment. J Soils Sediments. 18, 2665–2667
Xu, J., Zhao, B., Chu, W., Mao, J., Olk, D.C., Xina, X. , Zhang, J. ,2017. Altered humin compositions under organic and inorganic fertilization on an intensively cultivated sandy loam soil. Science of the Total Environment 601–602 356–364
Yang, X., Wang, Q., Qu, X., Jiang, W., 2017. Bound and unbound humic acids perform different roles in the aggregation and deposition of multi-walled carbon nanotubes. STOTEN, 586: 738-745, https://doi.org/10.1016/j.scitotenv.2017.02.050.
Zaccone, C., Plaza, C., Ciavatta, C., Miano, T.M., Shotyk, W., 2018. Advances in the determination of humification degree in peat since Achard (1786): Applications in geochemical and paleoenvironmental studies. Earth-Science Reviews,163-178
Zhang, Ch., Katayama, A., 2012. Humin as an Electron Mediator for Microbial Reductive Dehalogenation Environ. Sci. Technol. 46, 12, 6575–6583
Zhang, C., Zhang, D., Xiao, Z., Li, Z., Suzuki, D., Katayama, A., 2015. Characterization of humins from different natural sources and the effect on microbial reductive dechlorination of pentachlorophenol. Chemosphere, 131, 110-116.
Zhang, J., Yin, H. , Wang, H., Xu, L., Samuel, B., Chang, J., Liu, F., Chen, H., 2019. Molecular structure-reactivity correlations of humic acid and humin fractions from a typical black soil for hexavalent chromium reduction, Science of The Total Environment, 651, 2, 2975-2984