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Abstract

In this paper, we define three types of 2-Ruled hypersurfaces in the Minkowski 4-space E4
1.

We obtain Gaussian and mean curvatures of the 2-ruled hypersurfaces of type-1 and type-2,
and some characterizations about its minimality. We also deal with the first Laplace-Beltrami
operators of these types of 2-Ruled hypersurfaces in E4

1. Moreover, the importance of this paper
is that the definition of these surfaces by using the octonions in E4

1. Thus, this is a new idea and
make the paper original. We give an example of 2-ruled hypersurface constructed by octonion
and we visualize the projections of the images with MAPLE program. Furthermore, the optical
fiber can be defined as a one-dimensional object embedded in the 4-dimensional Minkowski
space E4

1. Thus, as a discussion, we investigate the geometric evolution of a linearly polarized
light wave along an optical fiber by means of the 2-ruled hypersurfaces in a four-dimensional
Minkowski space.

MSC: 53A10, 53C42, 53C50, 53Z05, 53B50, 37C10, 57R25.
Keywords: 2-Ruled hypersurfaces, curvature, Ruled surfaces, Vector fields, Electromagnetic theory, quater-
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1 Introduction
The study of submanifolds of a given ambiant space is a naturel interesting problem which enriches
our knowledge and understanding of the geometry of the space itself, see [2,3]. The theory of ruled
surfaces in R3 is a classical subject in diffrential geometry and ruled hypersurfaces in higher di-
mensions have also been studied by many authors. For Ruled surfaces and their study one can
see [4–7].
A 2-ruled hypersurface in R4 is a one-parameter family of planes in R4. This is a generalization of
ruled surfaces in R3.
In [12], K. Saji study singularities of 2-ruled hypersurfaces in Euclidean 4-space. After defining a

* E–mail: ameth1.ndiaye@ucad.edu.sn (A. NDIAYE)
† E–mail: zehra.ozdemir@amasya.edu.tr (Z. Özdemir)
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non-degenerate 2-ruled hypersurface he gives a necessary and sufficient condition for such a map
germ to be right-left equivalent to the cross cap × interval. And he discusses the behavior of a
generic 2-ruled hypersurface map.
In [1] the authors obtain the Gauss map (unit normal vector field) of a 2-ruled hypersurface in Eu-
clidean 4-space with the aid of its general parametric equation. They also obtain Gaussian and mean
curvatures of the 2-ruled hypersurface and they give some characterizations about its minimality.
Finally, they deal with the first and second Laplace-Beltrami operators of 2-ruled hypersurfaces in
E4. In [13,14], Aslan et al. characterize the ruled surface through quaternions in E3 and E3

1. In three
dimensions, the quaternions can be used to characterize the ruled surfaces. Identically, the 2-ruled
hypersurfaces can be constructed by octonions, for more information about octonions see [15].
Motivated by the above two works, we study in this paper the 2-Ruled hypersurfaces in the Minkowski
4-space E4

1. We define three types of 2-Ruled hypersurfaces in E4
1 and we obtain Gaussian and mean

curvatures of the 2-ruled hypersurface and some characterizations about its minimality. Moreover,
we contract these surfaces via octonions in E4

1. We also deal with the first Laplace-Beltrami oper-
ators of these type of 2-Ruled hypersurfaces in E4

1. At the end, as an application, we investigate
the geometric evolution of a linearly polarized light wave along an optical fiber by means of the
2-ruled hypersurfaces in a four-dimensional Minkowski space.

2 Preliminaries
Let R4 = {(x0, x1, x2, x3)|xi ∈ R(i = 0, 1, 2, 3)} be an 4-dimensional cartesian space. For any
x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) ∈ R4, the pseudo-scalar product of x and y is defined by

⟨x, y⟩ = −x0y0 +
3∑

i=1

xiyi. (1)

We call (R4, ⟨, ⟩) the Minkowski 4-space. We shall write R4
1 instead of (R4, ⟨, ⟩). We say that a

non-zero vector x ∈ R4
1 is spacelike, lightlike or timelike if ⟨x, x⟩ > 0, ⟨x, x⟩ = 0 or ⟨x, x⟩ < 0

respectively. The norm of the vector x ∈ R4
1 is

∥x∥ =
√

|⟨x, x⟩|. (2)

We now define the Hyperbolic 3-space by

H3
+(−1) = {x ∈ R4

1|⟨x, x⟩ = −1, x0 > 0}, (3)

and the Sitter 3-space by

S3
1 = {x ∈ R4

1|⟨x, x⟩ = 1}. (4)

We also define the light cone at the origin by

LC = {x ∈ R4
1|x0 ̸= 0, ⟨x, x⟩ = 0}. (5)

If −→x = (x0, x1, x2, x3), −→y = (y0, y1, y2, y3) and −→z = (z0, z1, z2, z3) are three vectors in R4
1, then

vector product are defined by

−→x ×−→y ×−→z = det


−e1 e2 e3 e4
x0 x1 x2 x3

y0 y1 y2 y3
z0 z1 z2 z3

 . (6)

2



If

φ : R3 −→ R4
1

(x0, x1, x2) 7−→ φ(x0, x1, x2) = (φ1(x0, x1, x2), φ2(x0, x1, x2), φ3(x0, x1, x2), φ4(u1, u2, u3))

is a hypersurface in Minkowski 4-space R4
1, then the Gauss map (i.e., the unit normal vector field),

the matrix forms of the first and second fundamental forms are

G =
φx0 × φx1 × φx2

∥φx0 × φx1 × φx2∥
, (7)

[gij] =

 g11 g12 g13
g21 g22 g23
g31 g32 g33

 (8)

and

[hij] =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 , (9)

respectively, where the coefficients gij = ⟨φxi
, φxj

⟩, hij = ⟨φxixj
, G⟩, φxi

= ∂φ(x0,x1,x2)
∂xi

, φxixi
=

∂2φ(x0,x1,x2)
∂xixj

, i, j ∈ {0, 1, 2}.

Also, the matrix of shape operator of the hypersurface φ is

S = [aij] = [gij] · [hij], (10)

where [gij] is the inverse matrix of [gij].
With aid of (8)-(10), the Gaussian curvature and mean curvature of a hypersurface in E4 are given
by

K =
det[hij]

det[gij]
(11)

and

3H = trace(S), (12)

respectively (12).
Let the octonion parameterized by

q = a0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7, (13)

where ai, i = 0, 1, ..., 7 are real numbers and the ei, i = 0, 1, ..., 7 satisfy the following

• e1, ..., e7 are square roots of −1,

3



• ei and ej anticommute when i ̸= j:

eiej = −ejei

• the index cycling identity holds:

eiej = ek ⇒ ei+1ej+1 = ek+1

where we think of the indices as living in Z7, and

• the index doubling identity holds:

eiej = ek ⇒ e2ie2j = e2k.

Now we assume that the reals a5 = a6 = a7 = 0 and we get the expression

Q = a0 + a1e1 + a2e2 + a3e3 + a4e4, (14)

called particular octonion.
This particular octonion can be also given in the form

Q = S(Q) + V (Q), (15)

where S(Q) = a0 is the scalar and V (Q) = a1e1 + a2e2 + a3e3 + a4e4 is the vector part of Q. If
S(Q) = 0, then Q = a1e1 + a2e2 + a3e3 + a4e4 is called a pure particular octonion. Particular
octonion product of any particular octonion Q = S(Q) + V (Q) and P = S(P ) + V (P ) is defined
by

Q ⋆ P ⋆ I = S(Q)S(P )− ⟨V (Q), V (P )⟩+ S(q)V (p)

+S(p)V (q) + V (q)× V (p)× I, (16)

where ⟨, ⟩ and × denote the usual scalar and vector products in R4
1, respectively, and I is a unitary

element of particular octonion.
Now we denote the set of all dual numbers by

D = {A = a+ εa∗/a, a∗ ∈ R}, (17)

where ε is the dual unit and satisfying

ε ̸= 0, ε2 = 0 and rε = εr, ∀r ∈ R.

For any dual numbers A = a + εa∗ and B = b + εb∗, we have the addition and the multiplication
expressed by

A+B = (a+ b) + ε(a∗ + b∗)

and
AB = ab+ ε(a∗b+ ab∗),
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respectively.
Dual numbers form the module

D4 = {Ã = a+ εa∗/a, a∗ ∈ R4}, (18)

which is a commutative and associative ring.The element Ã ∈ D4 is called dual vector. The scalar
and vector products of any dual vectors Ã = a+ εa∗ and B̃ = b+ εb∗ are defined by

⟨A,B⟩D = ⟨a, b⟩+ ε(⟨a, b∗⟩+ ⟨a∗, b⟩) (19)

and

Ã×D B̃ ×D I = a× b× I + ε(a× b∗ × I + a∗ × b× I), (20)

respectively. In the last two equalities, ⟨, ⟩ and × denote the usual scalar and vector products in R4
1,

respectively. And the norm of a dual vector Ã = a+ εa∗ is defined to be

NÃ = ⟨A,A⟩D = |a|2 + 2ε⟨a, a∗⟩ ∈ D. (21)

Unit dual sphere is defined by

S3
D = {Ã = a+ εa∗/|Ã| = 1, Ã ∈ D4}. (22)

3 2-Ruled hypersurfaces of type-1 in R4
1

A 2-ruled hypersurface of type-1 in R4
1 means (the image of) a map φ : I1 × I2 × I3 −→ R4

1 of the
form

φ(x, y, z) = α(x) + yβ(x) + zγ(x), (23)

where α : I1 −→ R4
1, β : I2 −→ S3

1 , γ : I3 −→ S3
1 are smooth maps, S3

1 is the Sitter 3-space of R4
1

and I1, I2, I3 are open intervals.
We call α a base curves β and γ director curves. The planes (y, z) −→ α(x) + yβ(x) + zγ(x) are
called rulings.
So, if we take

α(x) = ( α1(x), α2(x), α3(x), α4(x))
β(x) = ( β1(x), β2(x), β3(x), β4(x))
γ(x) = ( γ1(x), γ2(x), γ3(x), γ4(x))

 , (24)

in (23), then we can write the 2-ruled hypersurface of type-1 as

φ(x, y, z) = α(x) + yβ(x) + zγ(x)

= (φ1(x, y, z), φ2(x, y, z), φ3(x, y, z), φ4(x, y, z))

=

(
α1(x) + yβ1(x) + zγ1(x), α2(x) + yβ2(x) + zγ2(x),
α3(x) + yβ3(x) + zγ3(x), α4(x) + yβ4(x) + zγ4(x)

)
. (25)
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We see that

(
−β2

1 +
3∑

i=1

(βi)
2

)
=

(
−γ2

1 +
3∑

i=1

(γi)
2

)
= 1 and we state αi = αi(x), βi =

βi(x), γi = γi(x), φi = φi(x, y, z), f ′ = ∂f(x)
∂x

, f ′′ = ∂2f(x)
∂x∂x

, i ∈ {1, 2, 3, 4} and f ∈ {α, β, γ}.
We denote by

Eij = γi(α
′
j + yβ′

j + zγ′
j) (26)

Fij = βi(α
′
j + yβ′

j + zγ′
j). (27)

Now, let us prove the following theorem which contains the Gauss map of the 2-ruled hyper-
surface of type-1 (25).

Theorem 3.1. The Gauss map of the 2-ruled hypersurface of type-1 (25) is

G(x, y, z) =
G1(x, y, z)e1 +G2(x, y, z)e2 +G3(x, y, z)e3 +G4(x, y, z)e4

D
, (28)

where

G1(x, y, z) = β2(E43 − E34) + β3(E24 − E42) + β4(E32 − E23)

G2(x, y, z) = β1(E43 − E34) + β3(E14 − E41) + β4(E31 − E13)

G3(x, y, z) = β1(E24 − E42) + β2(E41 − E14) + β4(E12 − E21)

G4(x, y, z) = β1(E32 − E23) + β2(E13 − E31) + β3(E21 − E12) (29)

and

D =

√√√√−G2
1(x, y, z) +

4∑
i=2

G2
i (x, y, z). (30)

Proof. If we differentiate (25) we get
φx(x, y, z) =

(
α′
1 + yβ′

1 + zγ′
1, α

′
2 + yβ′

2 + zγ′
2, α

′
3 + yβ′

3 + zγ′
3, α

′
4 + yβ′

4 + zγ′
4

)
φy(x, y, z) =

(
β1, β2, β3, β4

)
φz(x, y, z) =

(
γ1, γ2, γ3, γ4

)
.

By using the vector product in (6), we get

φx × φy × φz =
(
β2(E43 − E34) + β3(E24 − E42) + β4(E32 − E23)

)
e1

+
(
β1(E43 − E34) + β3(E14 − E41) + β4(E31 − E13)

)
e2

+
(
β1(E24 − E42) + β2(E41 − E14) + β4(E12 − E21)

)
e3

+
(
β1(E32 − E23) + β2(E13 − E31) + β3(E21 − E12)

)
e4

Now using the unit normal vector formula in (7) we get the result.
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From (8) we obtain the matrix of the first fundamental form

[gij] =

 −(α′
1 + yβ′

1 + zγ′
1)

2 +
∑4

i=2(α
′
i + yβ′

i + zγ′
i)

2 −F11 +
∑4

i=2 Fii −E11 +
∑4

i=2Eii

−F11 +
∑4

i=2 Fii 1 −β1γ1 +
∑4

i=2 βiγi
−E11 +

∑4
i=2Eii −β1γ1 +

∑4
i=2 βiγi 1

 .

(31)

And we obtain the inverse matrix [gij] of [gij] as

[gij] =
1

det[gij]

 1− e2 ce− b be− c
ce− b a− c2 bc− ae
be− c bc− ae a− b2

 . (32)

where

a =− (α′
1 + yβ′

1 + zγ′
1)

2 +
4∑

i=2

(α′
i + yβ′

i + zγ′
i)

2,

b =− F11 +
4∑

i=2

Fii,

c =− E11 +
4∑

i=2

Eii,

e =− β1γ1 +
4∑

i=2

βiγi



(33)

and

det[gij] = −b2 + 2cbe− c2 − ae2 + a = D. (34)

Furthermore, from (9), the matrix from of the second fundamental from of the 2-ruled hypersurface
(25 is obtained by

[hij] =

 h11 h12 h13

h21 0 0
h31 0 0

 , (35)

where

h11 =
−G1(α

′′
1 + yβ′′

1 + zγ′′
1 ) +

∑4
i=2 Gi(α

′′
i + yβ′′

i + zγ′′
i )√

−G2
1(x, y, z) +

∑3
i=1 G

2
i (x, y, z)

,

h12 = h21 =
−G1β

′
1 +

∑4
i=2Giβ

′
i√

−G2
1(x, y, z) +

∑3
i=1G

2
i (x, y, z)

,

h13 = h31 =
−G1γ

′
1 +

∑4
i=2 Giγ

′
i√

−G2
1(x, y, z) +

∑3
i=1G

2
i (x, y, z)

.


(36)

We can see easily that the det[hij] = 0.
Then we can give the following theorem by using (11)
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Theorem 3.2. The 2-ruled hypersurfaces of type-1 defined in (25) is flat.

Now we will prove the following theorem about the mean curvature

Theorem 3.3. The 2-ruled hypersurfaces of type-1 defined in (25) is minimal in R4
1, if

(1− e2)

[
−G1(α

′′
1 + yβ′′

1 + zγ′′
1 ) +

4∑
i=2

Gi(α
′′
i + yβ′′

i + zγ′′
i )

]

+(ce− b)

[
−G1β

′
1 +

4∑
i=2

Giβ
′
i

]
+ (be− c)

[
−G1γ

′
1 +

4∑
i=2

Giγ
′
i

]

+(ce− b)

[
−G1β

′
1 +

4∑
i=2

Giβ
′
i

]
+ (be− c)

[
−G1γ

′
1 +

4∑
i=2

Giγ
′
i

]
= 0 (37)

Proof. By (10) the matrix of the shape operator is

S =

 1− e2 ce− b be− c
ce− b a− c2 bc− ae
be− c bc− ae a− b2

 h11 h12 h13

h21 0 0
h31 0 0

 .

Then we get the coefficients of S by

S11 = (1− e2)h11 + (ce− b)h21 + (be− c)h31

S22 = (ce− b)h12

S33 = (be− c)h13.

And using (36) and (12) we see that the 2-ruled hypersurfaces is minimal if

S11 + S22 + S33 = 0,

then that end the proof.

Corollary 3.4. If the curves β and γ are orthogonal then the 2-ruled hypersurfaces of type-1 defined
in (25) is minimal if [

−G1(α
′′
1 + yβ′′

1 + zγ′′
1 ) +

4∑
i=2

Gi(α
′′
i + yβ′′

i + zγ′′
i )

]

−b

[
−G1β

′
1 +

4∑
i=2

Giβ
′
i

]
− c

[
−G1γ

′
1 +

4∑
i=2

Giγ
′
i

]

−b

[
−G1β

′
1 +

4∑
i=2

Giβ
′
i

]
− c

[
−G1γ

′
1 +

4∑
i=2

Giγ
′
i

]
= 0. (38)

The Laplace-Beltrami operator of a smooth function f = f(x1, x2, x3) of class C3 with respect
to the first fundamental form of a hypersurface is defined as follows:

∆f =
1√

det[gij]

3∑
i,j

∂

∂xi

(√
det[gij]g

ij ∂f

∂xj

)
. (39)
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Using (39) we get the Laplace-Beltrami operator of the 2-ruled hypersurface of type-1 (24) by

∆φ = (∆φ1,∆φ2,∆φ3,∆φ4),

where

∆φi =
1√
D



∂

∂x

(
(1− e2)φix + (ce− b)φiy + (be− c)φiz√

det[gij]

)

+
∂

∂y

(
(ce− b)φix + (a− c2)φiy + (bc− ae)φiz√

det[gij]

)

+
∂

∂z

(
(be− c)φix + (bc− ae)φiy + (a− b2)φiz√

det[gij]

)


. (40)

That is

∆φi =
1√
D



∂

∂x

(
(1− e2)(α′

i + yβ′
i + zγ′

i) + (ce− b)βi + (be− c)γi√
det[gij]

)

+
∂

∂y

(
(ce− b)(α′

i + yβ′
i + zγ′

i) + (a− c2)βi + (bc− ae)γi√
det[gij]

)

+
∂

∂z

(
(be− c)(α′

i + yβ′
i + zγ′

i) + (bc− ae)βi + (a− b2)γi√
det[gij]

)


. (41)

If we suppose that β and γ are orthogonal,then the Laplace-Beltrami operator of the 2-ruled hyper-
suface of type-1 is given by

∆φi =
1√

a− b2 − c2



∂

∂x

(
(α′

i + yβ′
i + zγ′

i)− bβi − cγi√
a− b2 − c2

)
+

∂

∂y

(
−b(α′

i + yβ′
i + zγ′

i) + (a− c2)βi + bcγi√
a− b2 − c2

)
+

∂

∂z

(
−c(α′

i + yβ′
i + zγ′

i) + bcβi + (a− b2)γi√
a− b2 − c2

)


. (42)

Theorem 3.5. The components of the Laplace-Beltrami operator of the 2-ruled hypersurface of
type-1 are

∆φi =
1√
Q



(α′′
i + yβ′′

i + zγ′′
i )− (bβi)x − (cγi)x)Q− P1(α

′
i + yβ′

i + zγ′
i − bβi − cγi)

Q
3
2

+
(−bβ′

i + ((a− c2)βi)y + (bcγi)y)Q− P2(−b(α′
i + yβ′

i + zγ′
i) + (a− c2)βi + bcγi)

Q
3
2

+
(−cγ′

i + (bcβi)z + ((a− b2)γi)z)Q− P3(−c(α′
i + yβ′

i + zγ′
i) + bcβi + (a− b2)γi)

Q
3
2


,(43)

where i = 1, 2, 3, 4; β and γ are orthogonal; Q = a − b2 − c2, P1 = ax − 2bbx − 2ccx, P2 =
ay − 2bby − 2ccy, P3 = az − 2bbz − 2ccz.
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Example 3.6. Let φ be the 2-ruled hypersurface of type-1 defined by

φ(x, y, z) =
(
3x+ 7 +

y√
7
,−5x+ 1 +

z√
5
, x+

2y
√
2√

7
,−4x− 1 +

2z√
5

)
.

We take α(x) = (3x+ 7,−5x+ 1, x;−4x− 1), β(x) = ( 1√
7
, 0, 2

√
2√
7
, 0), γ(x) = (0, 1√

5
, 0, 2√

5
).

An easy computation show that φ is minimal. And the Laplace-Beltrami operator of φ is zero.

4 2-Ruled hypersurfaces of type-2 in R4
1

A 2-ruled hypersurface of type-1 in R4
1 means (the image of) a map φ : I1 × I2 × I3 −→ R4

1 of the
form

φ(x, y, z) = α(x) + yβ(x) + zγ(x), (44)

where α : I1 −→ R4
1, β : I2 −→ H3

+(−1), γ : I3 −→ H3
+(−1) are smooth maps, H3

+(−1) is the
hyperbolic 3-space of R4

1 and I1, I2, I3 are open intervals.
We call α a base curve, β and γ director curves. The planes (y, z) −→ α(x) + yβ(x) + zγ(x) are
called rulings.
So, if we take

α(x) = ( α1(x), α2(x), α3(x), α4(x))
β(x) = ( β1(x), β2(x), β3(x), β4(x))
γ(x) = ( γ1(x), γ2(x), γ3(x), γ4(x))

 (45)

in (23), then we can write the 2-ruled hypersurface of type-1 as

φ(x, y, z) = α(x) + yβ(x) + zγ(x)

= (φ1(x, y, z), φ2(x, y, z), φ3(x, y, z), φ4(x, y, z))

=

(
α1(x) + yβ1(x) + zγ1(x), α2(x) + yβ2(x) + zγ2(x),
α3(x) + yβ3(x) + zγ3(x), α4(x) + yβ4(x) + zγ4(x)

)
. (46)

We see that

(
−β2

1 +
3∑

i=1

(βi)
2

)
=

(
−γ2

1 +
3∑

i=1

(γi)
2

)
= −1 and we state αi = αi(x), βi =

βi(x), γi = γi(x), φi = φi(x, y, z), f ′ = ∂f(x)
∂x

, f ′′ = ∂2f(x)
∂x∂x

, i ∈ {1, 2, 3, 4} and f ∈ {α, β, γ}.
From (31) we obtain the matrix of the first fundamental form

[gij] =

 −(α′
1 + yβ′

1 + zγ′
1)

2 +
∑4

i=2(α
′
i + yβ′

i + zγ′
i)

2 −F11 +
∑4

i=2 Fii −E11 +
∑4

i=2Eii

−F11 +
∑4

i=2 Fii −1 −β1γ1 +
∑4

i=2 βiγi
−E11 +

∑4
i=2Eii −β1γ1 +

∑4
i=2 βiγi −1

 .

(47)

And we obtain the inverse matrix [gij] of [gij] as

[gij] =
1

det[gij]

 1− e2 ce+ b be+ c
ce+ b −a− c2 bc− ae
be+ c bc− ae −a− b2

 . (48)
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where a, b, c and e are the same in (33) and

det[gij] = b2 + 2cbe+ c2 − ae2 + a = D. (49)

Furthermore, from (9), the matrix from of the second fundamental from of the 2-ruled hypersurface
(46) is the same given in (35) and (36). And we have the following theorem since the det[hij] = 0.

Theorem 4.1. The 2-ruled hypersurfaces of type-2 defined in (46) is flat.

For the mean curvature we have

Theorem 4.2. The 2-ruled hypersurfaces of type-2 defined in (46) is minimal in R4
1, if

(1− e2)

[
−G1(α

′′
1 + yβ′′

1 + zγ′′
1 ) +

4∑
i=2

Gi(α
′′
i + yβ′′

i + zγ′′
i )

]

+(ce+ b)

[
−G1β

′
1 +

4∑
i=2

Giβ
′
i

]
+ (be+ c)

[
−G1γ

′
1 +

4∑
i=2

Giγ
′
i

]

+(ce+ b)

[
−G1β

′
1 +

4∑
i=2

Giβ
′
i

]
+ (be+ c)

[
−G1γ

′
1 +

4∑
i=2

Giγ
′
i

]
= 0. (50)

Proof. By (10) the matrix of the shape operator is

S =

 1− e2 ce− b be− c
ce− b a− c2 bc− ae
be− c bc− ae a− b2

 h11 h12 h13

h21 0 0
h31 0 0


Then we get the coefficients of S by

S11 = (1− e2)h11 + (ce+ b)h21 + (be+ c)h31

S22 = (ce+ b)h12

S33 = (be+ c)h13.

And using (36) and (12) we see that the 2-ruled hypersurfaces of type-2 is minimal if

S11 + S22 + S33 = 0,

then that end the proof.

Corollary 4.3. If the curves β and γ are orthogonal then the 2-ruled hypersurfaces of type-2 defined
in (46) is minimal if [

−G1(α
′′
1 + yβ′′

1 + zγ′′
1 ) +

4∑
i=2

Gi(α
′′
i + yβ′′

i + zγ′′
i )

]

+b

[
−G1β

′
1 +

4∑
i=2

Giβ
′
i

]
+ c

[
−G1γ

′
1 +

4∑
i=2

Giγ
′
i

]

+b

[
−G1β

′
1 +

4∑
i=2

Giβ
′
i

]
+ c

[
−G1γ

′
1 +

4∑
i=2

Giγ
′
i

]
= 0. (51)
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To end this section, we will give the operator of Laplace-Beltrami in the following theorem

Theorem 4.4. The components of the Laplace-Beltrami operator of the 2-ruled hypersurface of
type-2 are

∆φi =
1√
Q



(α′′
i + yβ′′

i + zγ′′
i ) + (bβi)x + (cγi)x)Q− P1(α

′
i + yβ′

i + zγ′
i + bβi + cγi)

Q
3
2

+
(bβ′

i + ((−a− c2)βi)y + (bcγi)y)Q− P2(b(α
′
i + yβ′

i + zγ′
i) + (−a− c2)βi + bcγi)

Q
3
2

+
(cγ′

i + (bcβi)z + ((−a− b2)γi)z)Q− P3(c(α
′
i + yβ′

i + zγ′
i) + bcβi + (−a− b2)γi)

Q
3
2


,(52)

where i = 1, 2, 3, 4; β and γ are orthogonal; Q = a + b2 + c2, P1 = ax + 2bbx + 2ccx, P2 =
ay + 2bby + 2ccy, P3 = az + 2bbz + 2ccz.

Example 4.5. Let φ be the 2-ruled hypersurface of type-2 defined by

φ(x, y, z) =
(x4

4
− 2y√

3
+
√
2, 2x+ 1 +

z√
7
,−3x+

y√
3
,
x3

3
+

z
√
6√
7

)
.

An easy computation show that φ is minimal. And the Laplace-Beltrami operator of φ is zero.

5 2-ruled hypersurfaces constructed by particular octonions
Now we give the definition of the 2-ruled hypersurface constructed by the particular octonion.

Definition 5.1. Let γ̃ = a(t) + εa∗(t) and β̃ = b(t) + εb∗(t) be two curves on the unit dual sphere
S3
D, the 2-ruled hypersurfaces corresponding to these curves is

φ(r, s, t) = α(t) + sa(t) + rb(t), (53)

where α(t) = a(t)× a∗(t)× I + b(t)× b∗(t)× I .

Let u(t) be a curve in R4. We can define two particular octonions

Q(s, t) = s+ u(t), P (r, t) = r + u(t),

where S(Q(s, t)) = s, S(P (s, t)) = r and V (Q(s, t)) = V (P (s, t)) = u(t).

Theorem 5.2. Let v(t) and w(t) be two curve on unit sphere in S3
D and let their position vectors be

perpendicular to the position vector of the curve u(t) (i.e |v(t)| = |w(t)| = 1 and ⟨v(t), u(t)⟩ =
⟨w(t), u(t)⟩ = 0. Then the sum defined by

φ(s, r, t) = α(t) + sw(t) + rv(t), (54)

where α(t) = u(t)× v(t)× I + u(t)×w(t)× I , is a 2-ruled hypersurface constructed by the two
particular octonions.
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Proof. Since S(Q(s, t)) = s, S(P (s, t)) = r and V (Q(s, t)) = V (P (s, t)) = u(t), using the
octonion product operator we have

Q(s, t) ⋆ w(t) ⋆ I = (s+ u(t)) ⋆ w(t) ⋆ I

= −⟨u(t), w(t)⟩+ sw(t) + u(t)× w(t)× I

= sw(t) + u(t)× w(t)× I, (55)

and the same calculus give

Q(s, t) ⋆ v(t) ⋆ I = (s+ u(t)) ⋆ v(t) ⋆ I

= rv(t) + u(t)× v(t)× I. (56)

If we put (55)+(56), we get

φ(s, r, t) = u(t)× v(t)× I + u(t)× w(t)× I + sw(t) + rv(t)

= α(t) + sw(t) + rv(t),

where α(t) = u(t)× v(t)× I + u(t)× w(t)× I .

Corollary 5.3. Let γ̃1 = a + εa∗ and γ̃2 = b + εb∗ be dual number in S3
D. Then, the particular

octonion φ(s, r, t) can be written as follows

φ(s, r, t) = α(t) + sa(t) + rb(t), (57)

where α(t) = a(t)× a∗(t)× I + b(t)× b∗(t)× I , is a 2-ruled hypersurface constructed by the two
particular octonions.

Proof. Let γ̃1 = a+ εa∗ and γ̃2 = b+ εb∗ be dual number in S3
D. We know that

Q(s, t) = s+ a∗(t)

and
P (r, t) = r + b∗(t)

are two particular octonions where S(Q(s, t)) = s, S(P (r, t)) = r, V (Q(s, t)) = a∗(t) and
V (P (r, t)) = b∗(t). So using the octonion product we have

a(t) ⋆ Q(s, t) ⋆ I = a(t)(s+ a∗(t))

= −⟨a(t), a∗(t)⟩+ sa(t) + a(t)× a∗(t)× I.

Since |γ̃1| = 1 we have ⟨a(t), a∗(t)⟩ = 0. Then

a(t) ⋆ Q(s, t) ⋆ I = a(t)× a∗(t)× I + sa(t). (58)

The same calculus gives also

b(t) ⋆ P (r, t) ⋆ I = b(t)× b∗(t)× I + rb(t). (59)

If we take (58)+(59) and denote by φ(s, r, t) = a(t) ⋆ Q(s, t) ⋆ I + b(t) ⋆ P (r, t) ⋆ I , we get

φ(s, r, t) = α(t) + sa(t) + rb(t).
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Example 5.4. Let us take the particular octonions Q(s, t) = s+u(t) and P (r, t) = r+u(t) defined
by u(t) = (− cos t cos 2t, cos t sin 2t, 0, 0) ∈ R4

1. Then, we can find

w(t) = (sin t sin 2t, sin t cos 2t, cos t, sin t) and v(t) = (cos t sin 2t, sin t sin 2t, sin t,− cos t).

Thus, we can compute

α(t) = u(t)× w(t)× I+ = u(t)× v(t)× I

= (0, 0, sin 2t(
1

2
sin 2t− cos2 t), sin 2t(

1

2
sin 2t+ cos2 t)).

Then, we reach the following 2-ruled hypersurface of type-1,

φ(s, t, r) =


s sin t sin 2t+ r cos t sin 2t
s sin t cos 2t+ r sin t sin 2t

sin 2t(1
2
sin 2t− cos2 t) + s cos t+ r sin t

sin 2t(1
2
sin 2t+ cos2 t) + s sin t+ r cos t

 .

Next, the image of the projections of 2-ruled hypersurface of type-1 in Example 5.4 onto R3
1

constructed by particular octonion are visualized in Figure 1.
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(a) (b)

(c) (d)

Figure 1: Some projections of 2-ruled hypersurface of type-1 constructed by particular octonion in
R4

1

6 Some discussions related to the electromagnetic theory
By identifying an optical fiber with a curve, we can give a geometric interpretation of the motion
of a linearly polarized light wave through Frenet roof elements. As the linearly polarized light
wave moves along the optical fiber, the Polarization plane rotates, and the image of the polarization
vector (electric field) in the plane is a linear line.
Therefore, we can use ruled surfaces to model this movement geometrically. In particular, it would
be very advantageous to use ruled surface equations instead of standard calculations when express-
ing the motion of a linearly polarized light wave along the optical fiber in 4 dimensions.
In this study, we defined three types of 2-ruled hypersurfaces in 4-dimensional Minkowski space
R4

1. In this section we will give an interpretation of the motion of the polarized light wave in the
4-dimensional Minkowski space of these surfaces and give some motivated examples and visualize
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them through MAPLE program.
We demonstrate that the evolution of a linearly polarized light wave is associated with the move-
ment of the parameter curve, which is the line segment in the formation of the ruled surface. If we
match the parameter curve, which is the line segment of the ruled surface, with the polarization vec-
tor, the optical fiber as the other parameter curve is matched. Hence, the polarization vector moves
in parallel along an optical fiber. This allows us to interpret the movement of the polarization vector
(electric field) along an optical fiber geometrically in 4-dimensional space.

7 Conclusions
In this paper, we gave the definition of three types of 2-ruled hypersurfaces and we calculated
the mean curvature, the Gauss curvature and the Laplace-Bertrami operator of the two types of
2-ruled hypersurfaces. After, we constructed those 2-ruled hypersurfaces by using the particular
octonion. In this construction, we gave an example and we visualized the images with MAPLE
program. This construction is new and original. Then, we presented some discussions related to
the 2-ruled hypersurfaces and the electromagnetic theory. For perspective, one can do the same in
also Riemannian 4-manifolds and pseudo-Riemannian 4-manifolds.
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