References
1. U.S. Energy Information Administration. International Energy Outlook
2021. https://www.eia.gov/outlooks/ieo/pdf/IEO2021_Narrative.pdf.
Published 2021. Accessed December 31, 2021.
2. Raffa P. Where is research on fossil fuels going in times of climate
change? A perspective on chemical enhanced oil recovery. MRS
Commun . 2021;11(6):716-725. doi:10.1557/s43579-021-00131-y
3. Energy Transition Outlook 2021 Executive Summary. A global and
regional forecast to 2050. 2021:40. https://eto.dnv.com/2021.
4. Mohsenatabar Firozjaii A, Saghafi HR. Review on chemical enhanced oil
recovery using polymer flooding: Fundamentals, experimental and
numerical simulation. Petroleum . 2020;6(2):115-122.
doi:10.1016/j.petlm.2019.09.003
5. Farajzadeh R, Kahrobaei S, Eftekhari AA, Mjeni RA, Boersma D,
Bruining J. Chemical enhanced oil recovery and the dilemma of more and
cleaner energy. Sci Rep . 2021;11(1):1-14.
doi:10.1038/s41598-020-80369-z
6. Sheng JJ. Modern Chemical Enhanced Oil Recovery: Theory and
Practice . Gulf Professional Publishing; 2010.
7. Nikolova C, Gutierrez T. Use of Microorganisms in the Recovery of Oil
From Recalcitrant Oil Reservoirs: Current State of Knowledge,
Technological Advances and Future Perspectives. Front Microbiol .
2020;10(January). doi:10.3389/fmicb.2019.02996
8. She H, Kong D, Li Y, Hu Z, Guo H. Recent Advance of Microbial
Enhanced Oil Recovery (MEOR) in China. Geofluids . 2019;2019.
doi:10.1155/2019/1871392
9. Lazar I, Petrisor IG, Yen TF. Microbial Enhanced Oil Recovery.Pet Sci Technol . 2007;25(September):1353-1366.
doi:10.1016/S0376-7361(09)70098-6
10. Bermont-Bouis D, Janvier M, Grimont PAD, Dupont I, Vallaeys T. Both
sulfate-reducing bacteria and Enterobacteriaceae take part in marine
biocorrosion of carbon steel. J Appl Microbiol .
2007;102(1):161-168. doi:10.1111/j.1365-2672.2006.03053.x
11. Hubert C, Voordouw G. Oil field souring control by nitrate-reducing
Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for
organic electron donors. Appl Environ Microbiol .
2007;73(8):2644-2652. doi:10.1128/AEM.02332-06
12. Foo JL, Ling H, Lee YS, Chang MW. Microbiome engineering: Current
applications and its future. Biotechnol J . 2017:1600099.
doi:10.1002/biot.201600099
13. Lee ED, Aurand ER, Friedman DC, Group EBRCMRW. Engineering
Microbiomes—Looking Ahead. ACS Synth Biol .
2020;9(12):3181-3183.
14. Ke J, Wang B, Yoshikuni Y. Microbiome Engineering: Synthetic Biology
of Plant-Associated Microbiomes in Sustainable Agriculture. Trends
Biotechnol . 2021;39(3):244-261. doi:10.1016/j.tibtech.2020.07.008
15. Lawson CE, Harcombe WR, Hatzenpichler R, et al. Common principles
and best practices for engineering microbiomes. Nat Rev
Microbiol . 2019;17(12):725-741. doi:10.1038/s41579-019-0255-9
16. Youssef N, Simpson DR, Duncan KE, et al. In situ biosurfactant
production by Bacillus strains injected into a limestone petroleum
reservoir. Appl Environ Microbiol . 2007;73(4):1239-1247.
doi:10.1128/AEM.02264-06
17. Yue M, Zhu W, Song Z, Long Y, Song H. Study on distribution of
reservoir endogenous microbe and oil displacement mechanism. Saudi
J Biol Sci . 2017;24(2):263-267. doi:10.1016/j.sjbs.2016.09.014
18. Lin X, Zheng X, Liu R, et al. Extracellular Polymeric Substances
Production by ZL-02 for Microbial Enhanced Oil Recovery. Ind Eng
Chem Res . 2021;60(2):842-850. doi:10.1021/acs.iecr.0c05130
19. Quraishi M, Bhatia SK, Pandit S, et al. Exploiting Microbes in the
Petroleum Field : Analyzing the Credibility of Microbial Enhanced Oil
Recovery (MEOR). Energies . 2021;14(4684):1-30.
20. Diaz-Colunga J, Lu N, Sanchez-Gorostiaga A, et al. Top-down and
bottom-up cohesiveness in microbial community coalescence. Proc
Natl Acad Sci U S A . 2022;119(6):1-11. doi:10.1073/pnas.2111261119
21. Walter J, Maldonado-Gómez MX, Martínez I. To engraft or not to
engraft: an ecological framework for gut microbiome modulation with live
microbes. Curr Opin Biotechnol . 2018;49:129-139.
doi:https://doi.org/10.1016/j.copbio.2017.08.008
22. Lindemann SR, Bernstein HC, Song HS, et al. Engineering microbial
consortia for controllable outputs. ISME J . 2016;10(9):2077-2084.
doi:10.1038/ismej.2016.26
23. Amor DR, Bello MD. Bottom-up approaches to synthetic cooperation in
microbial communities. Life . 2019;9(1). doi:10.3390/life9010022
24. Rottinghaus AG, Ferreiro A, Fishbein SRS, Dantas G, Moon TS.
Genetically stable CRISPR-based kill switches for engineered microbes.Nat Commun . 2022;13(1):1-17. doi:10.1038/s41467-022-28163-5
25. Gilmore SP, Lankiewicz TS, Wilken SE, et al. Top-Down Enrichment
Guides in Formation of Synthetic Microbial Consortia for Biomass
Degradation. ACS Synth Biol . 2019;8(9):2174-2185.
doi:10.1021/acssynbio.9b00271
26. Pacheco AR, Osborne ML, Segrè D. Non-additive microbial community
responses to environmental complexity. Nat Commun .
2021;12(1):1-11. doi:10.1038/s41467-021-22426-3
27. Portwood JT. A Commercial Microbial Enhanced Oil Recovery
Technology: Evaluation of 322 Projects. In: Vol All Days. SPE Oklahoma
City Oil and Gas Symposium / Production and Operations Symposium. ;
1995.
28. Nikolova C, Gutierrez T. Marine Hydrocarbon-Degrading
Bacteria: Their Role and Application in Oil-Spill Response and Enhanced
Oil Recovery . INC; 2022. doi:10.1016/b978-0-323-85455-9.00005-9
29. Zahner RLL, Tapper SJJ, Marcotte BWGWG, Govreau BRR. Lessons Learned
From Applications of a New Organic-Oil-Recovery Method That Activates
Resident Microbes. SPE Reserv Eval Eng . 2012;15(06):688-694.
30. Sen R. Biotechnology in petroleum recovery: The microbial EOR.Prog Energy Combust Sci . 2008;34(6):714-724.
doi:10.1016/j.pecs.2008.05.001
31. Safdel M, Anbaz MA, Daryasafar A, Jamialahmadi M. Microbial enhanced
oil recovery, a critical review on worldwide implemented field trials in
different countries. Renew Sustain Energy Rev .
2017;74(January):159-172. doi:10.1016/j.rser.2017.02.045
32. Anantharaman K, Hausmann B, Jungbluth SP, et al. Expanded diversity
of microbial groups that shape the dissimilatory sulfur cycle.ISME J . 2018;12(7):1715-1728. doi:10.1038/s41396-018-0078-0
33. Rojas CA, De Santiago Torio A, Park S, Bosak T, Klepac-Ceraj V.
Organic Electron Donors and Terminal Electron Acceptors Structure
Anaerobic Microbial Communities and Interactions in a Permanently
Stratified Sulfidic Lake. Front Microbiol . 2021;12:0-19.
doi:10.3389/fmicb.2021.620424
34. Hahn CR, Farag IF, Murphy CL, Podar M, Elshahed MS, Youssef NH.
Microbial Diversity and Sulfur Cycling in an Early Earth Analogue: From
Ancient Novelty to Modern Commonality. MBio . 2022.
doi:10.1128/mbio.00016-22
35. Begmatov S, Savvichev AS, Kadnikov V V., et al. Microbial
communities involved in methane, sulfur, and nitrogen cycling in the
sediments of the barents sea. Microorganisms . 2021;9(11).
doi:10.3390/microorganisms9112362
36. Zhan Y, Wang Q, Chen C, et al. Potential of wheat bran to promote
indigenous microbial enhanced oil recovery. J Ind Microbiol
Biotechnol . 2017;44(6):845-855. doi:10.1007/s10295-017-1909-0
37. Nazina T, Sokolova D, Grouzdev D, et al. The potential application
of microorganisms for sustainable petroleum recovery from heavy oil
reservoirs. Sustain . 2020;12(1). doi:10.3390/SU12010015
38. Iwanowicz DD, Jonas RB, Schill WB, Marano-Briggs K. Novel microbiome
dominated by Arcobacter during anoxic excurrent flow from an ocean blue
hole in Andros Island, the Bahamas. PLoS One . 2021;16(8
August):1-16. doi:10.1371/journal.pone.0256305
39. Varjani SJ, Gnansounou E. Microbial dynamics in petroleum oilfields
and their relationship with physiological properties of petroleum oil
reservoirs. Bioresour Technol . 2017;245(August):1258-1265.
doi:10.1016/j.biortech.2017.08.028
40. Kögler F, Hartmann FSF, Schulze-Makuch D, Herold A, Alkan H, Dopffel
N. Inhibition of microbial souring with molybdate and its application
under reservoir conditions. Int Biodeterior Biodegrad .
2021;157(June 2020). doi:10.1016/j.ibiod.2020.105158
41. de Jesus EB, de Andrade Lima LRP, Bernardez LA, Almeida PF.
Inhibition of Microbial Sulfate Reduction By Molybdate. Brazilian
J Pet Gas . 2015;9(3):95-106. doi:10.5419/bjpg2015-0010
42. Nemati M, Mazutinec TJ, Jenneman GE, Voordouw G. Control of biogenic
h2s production with nitrite and molybdate. J Ind Microbiol
Biotechnol . 2001;26(6):350-355. doi:10.1038/sj.jim.7000142
43. Stoeva MK, Coates JD. Specific inhibitors of respiratory sulfate
reduction: Towards a mechanistic understanding. Microbiol (United
Kingdom) . 2019;165(3):254-269. doi:10.1099/mic.0.000750
44. Saeed AM, El Shatoury E, Hadid R. Production of molybdenum blue by
two novel molybdate-reducing bacteria belonging to the genus Raoultella
isolated from Egypt and Iraq. J Appl Microbiol .
2019;126(6):1722-1728. doi:10.1111/jam.14254
45. Rahman MF, Rusnam M, Gusmanizar N, et al. Molybdate-reducing and
SDS-degrading Enterobacter sp. Strain Neni-13. Nov Biotechnol
Chim . 2016;15(2):166-181. doi:10.1515/nbec-2016-0017
46. Lohmayer R, Kappler A, Lösekann-Behrens T, Planer-Friedrich B.
Sulfur species as redox partners and electron shuttles for ferrihydrite
reduction by Sulfurospirillum deleyianum. Appl Environ Microbiol .
2014;80(10):3141-3149. doi:10.1128/AEM.04220-13
47. Yutin N, Galperin MY. A genomic update on clostridial phylogeny:
Gram-negative spore formers and other misplaced clostridia.Environ Microbiol . 2013;15(10):2631-2641.
doi:10.1111/1462-2920.12173
48. El-Sayed WS, Al-Senani SR, Elbahloul Y. Diversity of dehalorespiring
bacteria and selective enrichment of aryl halides-dechlorinating
consortium from sedimentary environment near an oil refinery. J
Taibah Univ Sci . 2018;12(6):711-722. doi:10.1080/16583655.2018.1495869
49. Sallam A, Steinbüchel A. Clostridium sulfidigenes sp. nov., a
mesophilic, proteolytic, thiosulfate- and sulfur-reducing bacterium
isolated from pond sediment. Int J Syst Evol Microbiol .
2009;59(7):1661-1665. doi:10.1099/ijs.0.004986-0
50. Dennis JJ, Zylstra GJ. Complete sequence and genetic organization of
pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas
putida strain NCIB 9816-4. J Mol Biol . 2004;341(3):753-768.
doi:10.1016/j.jmb.2004.06.034
51. Okoye AU, Chikere CB, Okpokwasili GC. Characterization of Potential
Paraffin Wax Removing Bacteria for Sustainable Biotechnological
Application. In: Vol Day 3 Wed,. SPE Nigeria Annual International
Conference and Exhibition. ; 2019. doi:10.2118/198799-MS
52. Speight JG, El-Gendy NS. Chapter 9 - Chemistry of Biotransformation.
In: Introduction to Petroleum Biotechnology . Gulf Professional
Publishing; 2018:287-359.
53. Alsebri H, Hamad AA, Hassam MM. Biodegradation of petroleum
hydrocarbons using indigenious bacterial and actinomycetes cultures.Pakistan J Biol Sci . 2020;23(6).
54. Das K, Mukherjee AK. Crude petroleum-oil biodegradation efficiency
of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a
petroleum-oil contaminated soil from North-East India. Bioresour
Technol . 2007;98(7):1339-1345. doi:10.1016/j.biortech.2006.05.032
55. Li YP, Pan JC, Ma YL. Elucidation of multiple alkane hydroxylase
systems in biodegradation of crude oil n-alkane pollution by Pseudomonas
aeruginosa DN1. J Appl Microbiol . 2020;128(1):151-160.
doi:10.1111/jam.14470
56. Lan G, Fan Q, Liu Y, et al. Effects of the addition of waste cooking
oil on heavy crude oil biodegradation and microbial enhanced oil
recovery using Pseudomonas sp. SWP- 4. Biochem Eng J .
2015;103:219-226. doi:10.1016/j.bej.2015.08.004
57. Barman SR, Banerjee P, Mukhopadhayay A, Das P. Biodegradation of
acenapthene and naphthalene by Pseudomonas mendocina: Process
optimization, and toxicity evaluation. J Environ Chem Eng .
2017;5(5):4803-4812. doi:10.1016/j.jece.2017.09.012
58. Samanta SK, Singh O V, Jain RK. Polycyclic aromatic hydrocarbons:
environmental pollution and bioremediation. Trends Biotechnol .
2002;20(6):243-248. doi:10.1016/s0167-7799(02)01943-1
59. Hillman ET, Li M, Hooker CA, Englaender JA, Wheeldon I, Solomon K V.
Hydrolysis of lignocellulose by anaerobic fungi produces free sugars and
organic acids for two-stage fine chemical production with Kluyveromyces
marxianus. Biotechnol Prog . 2021;e3172.
doi:https://doi.org/10.1002/btpr.3172
60. Daly RA, Borton MA, Wilkins MJ, et al. Microbial metabolisms in a
2.5-km-deep ecosystem created by hydraulic fracturing in shales.Nat Microbiol . 2016;1(September):1-9.
doi:10.1038/nmicrobiol.2016.146
61. RedCorn RM, Hillman ET, Solomon K V, Engelberth AS.
Xanthobacter-dominated biofilm as a novel source for high-value
rhamnose. Appl Microbiol Biotechnol . 2019;103(11):4525-4538.
62. Walters W, Hyde ER, Berg-lyons D, et al. Improved Bacterial 16S rRNA
Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene
Primers for Microbial Community Analysis. mSystems .
2016;1(1):e0009-15. doi:10.1128/mSystems.00009-15.Editor
63. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive,
scalable and extensible microbiome data science using QIIME 2. Nat
Biotechnol . 2019;37(8):852-857. doi:10.1038/s41587-019-0209-9
64. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP.
DADA2: High-resolution sample inference from Illumina amplicon data.Nat Methods . 2016;13(7):581-583. doi:10.1038/nmeth.3869
65. Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene
database project: Improved data processing and web-based tools.Nucleic Acids Res . 2013;41(D1):590-596. doi:10.1093/nar/gks1219
66. Varlet V, Giuliani N, Palmiere C, Maujean G, Augsburger M. Hydrogen
sulfide measurement by headspace-gas chromatography-mass spectrometry
(HS-GC-MS): Application to gaseous samples and gas dissolved in muscle.J Anal Toxicol . 2015;39(1):52-57. doi:10.1093/jat/bku114
67. Vozka P, Kilaz G. How to obtain a detailed chemical composition for
middle distillates via GC × GC-FID without the need of
GC × GC-TOF/MS. Fuel . 2019;247(January):368-377.
doi:10.1016/j.fuel.2019.03.009