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Abstract—The stochastic stability of a scalar linear system depends on the history of whether previous codewords were
controlled over a Markov time-varying digital feedback channel  decoded correctly or not. In essence, the stabilizatioblpro
with noiseless output feedback is considered. It is shown &b the is an example ofnteractive communicatigrwhere two-way

mth moment of the closed-loop system can be kept bounded if L
and only if the rate of growth of the unstable open-loop syste is communication occurs through the feedback loop between

smaller than a threshold value that is characterized as a fuction ~ the plant and the controller. Error correcting codes deyedo
of m and of the channel parameters. This stability threshold is independently in this contex{][6]2[8] have a natural tree

shown to be a continuous and strictly decreasing function ofn.  structure representing past history and are natural catedido
and to have as extreme values the Shannon capacity and thepq geq for control. Alternative capacity notions with sger

zero-error capacity in the limits as m tends to zero and infinity, liabilit traints th imolv havi ishi bil
respectively. Its operational interpretation is that of acievable F€!1abllity constraints than simply having a vanis ing Ipe0il-

communication rate, subject to a varying reliability constaint ity of error, and requiring these type of coding schemes have
that depends on the momentn. Using this result, a parametric been proposed in the context of control, including the zero-

characterization of Sahai's anytime capacity for a class okMarkov  error capacity[[9], originally introduced by Shannén|[18hd
chann_els is provi_ded. An explicit expressio_n for _the anyt_im the anytime capacity proposed by Satai [11]] [12]-[16].
capacity of an r-bit Markov erasure channel is prqwded, Whlch Within this qeneral framework. we focus on theth
generalizes the one for the memoryless case obtained by Saha . g ) !
parametric, and by Xu and Sahai in explicit form. The proofs rely moment stabilization of an unstable scalar system whose
on a novel necessary and sufficient condition for the stochis state is communicated over a rate-limited channel capdble o
stability of Markov jump linear systems. The sufficient condtion supportingRR;, bits at each time step and evolving randomly
is obtained via the idea of subsampling, while the necessary i, 5 \Markovian fashion. The rate process is known casually
condition is based on the maximum entropy theorem and the to both encoder and decoder. Many variations of this “bit-
entropy power |nequaI|ty. A . )
pipe” model have been studied in the literature | [17]+[39],

including the case of fixed rate channel; the erasure channel
where the rate process can assume value zero; and the packet
loss channel, where the rate process can oscillate randomly
between zero and infinity, allowing a real number with inénit
] o precision to be transported across the channel in one tiape st

We consider the problem of moment stabilization of gonnections between the rate limited and the packet logs cha
dynamical system \{vhere th_e estimated.sta_te is transmitied have been pointed out i [32[,133], showing that results
for control over a time-varying communication channel, &g the latter model can be recovered by appropriate ligitin
depicted in FiglIL. This problem has been studied extensivelq ments. The additive white Gaussian channel has been
in the context of networked control systems and discusseddfnsidered in([40]5[44] and in this case the Shannon capacit
several special issue journals dedicated to the tapic B1-[js indeed sufficient to express the rate needed for statiiiza
Recently, it gained renewed attention due to its .relevalnce fExtensions to the additive colored Gaussian chafnel [48}sh
the design of cyberphysical systern$ [4]. A tutorial reviev Gpat the maximum “tolerable instability” — expressed by the
the problem with extensive references appearslin [5].  guym of the logarithms of the unstable eigenvalues of thesyst

The notion of Shannon capacity is in general not sufficieffa can be stabilized by a linear controller with a given pow
to characterize the trade-off between the entropy rateymod constraint over a stationary Gaussian channel— corresgond
tion of the plant, expressed by the growth of the state spagg shannon feedback capacityl[46], that assumes the peesen
spanned in open loop, and the communication rate requirgd, nojseless feedback link between the output and the input
for its stabilization. A large Shannon capacity is usel&ss fqf the channel and that is subject to the same power conistrain
stabilization !f it cannot be u§ed in time for control_. FOHrhis result suggests a duality between the problems of @bntr
the control signal to be effective, it must be appropriate g communication in the presence of feedback, and indeed
the current state of the system. Since decoding the Wropghas peen shown that efficient feedback communication
codeword implies applying a wrong signal and driving thg:hemes can be obtained by solving a corresponding control
system away from stability, applying an effective contighsil problem [47], [48].
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I. INTRODUCTION



capacity for the remaining values of. This function yields a Theorem 1. For anym € R, if
novel anytime capacity formula in the special case ofrtiét T

) p(PTA) <1, (6)
Markov erasure channel. To prove our results, we requireesom
novel extensions of the theory Markov Jump Linear Systertisen the MILS(I) is weaklymth moment stable. Conversely,
(MJLS), that are of independent value. On the technical, sidethe MJILS() is weaklymth moment stable, then
the sufficient condition for stability is obtained explaii the PTA) < -
idea of subsampling, while the necessary condition is based P )< 1. 7

on the maximum entropy theorem and the entro ower L e .
Py Py P Proof: The sufficient condition is obtained by subsam-

inequality. In passim, although we do not deal with the cas?_ " qinal MILS at i te of | d
of vector systems directly, we point out that our results loan piing the origina at a sampling rate ofsamples an

extended to this case exploiting usual bit-allocation méghes then showing the weak stability of the subsampled system

: . - = Zir, k = 0,1,---. The weak stability of{Y;} is
outlined in [32], [33], at the expense of a more technicalr, — 2k Y
treatment that does not add much to the engineering insi icient to ensure thaf4) holds, because i moment

and that we wish to avoid here. the system in fact cannot grow unbounded in any finite time

The rest of the paper is organized as follows. Some pgt%;nzon due the assumptions tat|,..., |a.| are finite and

limi : ! tsup, E(|Wi|™) < oo.

iminary results on Markov Jump Linear Systems, necessa By iterai i it b that th b led

for our derivations are presented in Sectloh Il. Section Il y terating ()7 times, it can be seen hat the subsample
cess is a non-homogeneous MJLS with dynamics

describes the system and channel model and introduces RA
stability threshold function, illustrating some of its pexties. Yrt1 = Dryr + Cr, (8)
Section IV describes relationships with the anytime cagaci _ (kt1)r—1
and provides some representative examples. Section V ptdere for everyk > 0 we defineB;, = [[;Z},”" ~ Ay as the
vides the formula for the anytime capacity of the Markov@ndom expansion of the open-loop system during i@
erasure channel. sampling interval and”y = 32720 (T2} Akr1i) Wirt; @S
Throughout the paper, the following notation is used. Loghe total disturbance entering the system in thh sampling
arithm are assumed to be in base two; random variablgéerval. Notice thasup,, E(|Cy|™) < oo, since by assumption
are denoted with uppercase letters, while their realinatiothe disturbance procegsV; }, has boundednth moment.
with lowercase letters; matrices are also denotes in upperc BY taking the mth power in both sides ofl[8) and by

letters, but we denote them with the special typeset applying the inequality(z + y)™ < 2™(z™ + y™), which
holds for anym > 0, it follows that

Il. MARKOV JUMP LINEAR SYSTEMS. E(|Y|™) < 2™E(|By|™|Yx|™) + const 9)

Consider the scalar non-homogeneous MJLS] [49] Wilfihere const represents a uniform bound onstith moment

dynamics of {Ci}e. Let vy = E(|Yis1|™Liap—a}) i = L,....n.
Zp+1 = ApZg + W, (1) By repeatedly applying the law of total probability on both

wherez; denotes the statey;, is an additive disturbance, andSldes of [9), it can be easily seen that the veotpr —

T ) o i
{Ar}r>0 is a Markov rate process defined on a finite set Uk,1,- - - ’%") satisfies the following component-wise vec
= tor inequality
={ay,...,a,} CR" T
A {ala aan} = R 3 (2) Vg1 S om (PTA) Vg 4 c, (10)
and. with one-step transition probability matrk having wherec is again a constant that only depends on the statistics
entries of the disturbance process. [ (7) holds we can choose the sub
i m(pT o
pij = P{Ar = a;|Ar_1 =73} (3) sampling rate- large enough to ensure thalz_ (PTA)") <1 .
o and thus that the above recursion remains bounded. Since
for everyi,j € {1,...,n}. E(|Vi|™) = 37, vpi it follows thatp(PTA) < 1 is sufficient
1=1 5

We assume that the initial conditidfy and the disturbance to ensure thatup, E(|Y|™) < oo as desired.

process{W;}, are mutually independent random variables The proof of the necessary condition relies on the fact

with finite mth moment. The systerfil(1) is said to be weaklyhat the non-homogeneous MJLEZ,}, is weakly stable

mth moment stable if only if the homogeneous MJLS obtained by setting = 0

4) in (@) is weakly stable. Therefore, we focus on the homo-
geneous setting whereim, = 0 for all £ and letv,; =

E(|Zks1|"1{a,=a,}) for i = 1,...,n. By (@) and the law

f total probability, the vector, = (vg.1,...,v5n)" evolves

over time according to the linear system

A= dia@|dl|m, ey |dn|m). (5) A PTAUk. (11)

sup E(|Z|™) < <.
k

Let A € Z*" be a diagonal matrix with diagonal entrie
A1y ..y Qn, i.e.,

The following lemma states the necessary and sufficient casince (| z,|™) = S, vk, we conclude tha{{4) can hold
dition for m-th moment stability of the systerhl(1). only if the above linear system is stable and therefore dhly i

p(PTA) < 1, as claimed. |



Notice the trivial gap between the necessary and sufficidahcoder and decoder are supposed to have causal knowledge

conditions in [6) and [{7). To express the condition for transof the rate process.

tion to instability with a single inequality, while indidag the This noiseless digital link corresponds to a discrete-

existence of this trivial gap, in the rest of the paper we avriimemoryless channel with Markov state available causally at

TA) < both the encoder and the decoder. A channel with state is

p(PTA) S L. (12) " defined by a tripld X x S, p(y|z, s), V) consisting of an input

Theorem[dl extends the well known conditions for secorftX’, a state sef, an output sed, and a transition probability

moment stability given in[[49] tan-th moment stability. A matrix p(y|z) for everyz € X, s € S, andy € Y. This

similar result appears i [50, Theorem 3.2] in the speciaecachannel is memoryless if the outpyt at time & is condi-

of a homogeneous MJLS driven by an i.i.d. rate process. tionally independent of everything else givény, s;). The
state sequence is Markov$f), S, ... forms a Markov chain.

According to these definitions, our channel model is a disere

. _memoryless channel with Markov stat& x S, p(y|z, s),))
Results on the stability of MILS are used to characterige., V={1,...,7}, S={F1, - ,in}

the stability of linear dynamical systems when the estichate

IIl. M OMENT STABILIZATION OVER MARKOV CHANNELS

state is sent to the controller over a digital communicaliitk )1 x=yandr<s 17
whose state is described by a Markov process, as depicted in pyle, s) = 0. otherwise (7)
Fig. .
and state transition probabilities
p(Skt1 = Tj|sk = Ti) = pij.- (18)
Plant -~ Estimator Controller The Shannon capacity of this channellis|[51]
A n
C= Z T, (29)
i=1
Fig. 1. Feedback loop model. The estimated state is quanteecoded . . s .
and sent to a decoder over a digital channel of siatethat evolves in time where (Wl’ T ’ﬂ-") denotes the unique stationary distribution
according to a Markov process. of P.
The zero-error capacity of this channel[is][10]
A. System model Co = T71. (20)
Consider the scalar dynamical system The capacities in[{19) and (R0) are the limiting values of

Trp1 = AT + Uk + Uk, a ;tab_lllty threshpld func_tlon |nd|cat|_ng the channel tera
B 13 reliability constraint required to achieve a given level of
Y = T+ W, (13)  stabilization. Asm — oo and the system is highly stable, then

wherek € N, and |\| > 1. The variablex;, represents the the stability threshold function tends to the zero-errquazaty
state of the systemy,, the control input,u, is an additive that has a hard reliability constraint of providing no deiogd
stochastic disturbancey, is the sensor measurement, angl  error. Conversely, as — 0 and the system’s stability level
is the measurement noise. Both disturbance and noise @gsreases, then the stability threshold function tendséo t
independent of each other and of the initial conditignThey Shannon capacity that has a weak reliability constraint of
are also independent of the channel state, as defined belo¥anishing probability of error.

B. Channel Model C. Stability threshold function

The state observer is connected to the actuator throughl N€ System[(I3) isnth moment stable if
a noiseless digital communication link that at each tifne sup E[| X4 |™] < o0, (21)
allows transmission without errors &%, bits. The rate process k
{Rk}x>0 is modeled as a homogeneous positive-recurraghere the expectation is taken with respect to the random
Markov process defined on the finite set initial condition z(, the additive disturbance;,, and the rate
_ _ SRy..
R = 14) Processi. . .

{r, (14) The following Theorem establishes the equivalence between
for some integer numbe® < 7, < --- < 7,, and with one- the m-th moment stability of [(ZI3) and the weak moment
step transition probability matri¥® having entries stability of a suitably defined MJLS.

pij = P{Rk = 7j|Rp—1 = Ti} (15) Theorem 2. There exists a control scheme that stabilizes the

for everyi, j € {1,...,n}. In the sequel, we define e Z*" scalar systen(I3) in mth momemt sense if and only if the
as the diagonal matrix with diagonal entries.. . ., 7, i.e., Scalar non-homogeneous MJLSwith dynamics

R =diagm,..., 7). (16) 21 = A 21 + const (22)

2mrk



for some suitably defined constamanstis weaklymth moment allows the decoding time to be infinite, and improves the

stable, i.e., if and only if reliability of the estimated message as time progressese Mo
1 . B s precisely, at each step in the evolution of the plant a new
log |A] S ——log p(P727"™%) = R(m). (23) messagen;, of r bits is generated that must be sent over the

channel. The coder sends a bit over the channel at éach

The proof is given in the appendix in the case of stand the decoder upon reception of the new bit updates the
feedback and assuming the disturbance has bounded supgstimates for all messages up to timdt follows that at time
These assumptions are made for ease of presentation ardessages
to compare our results to the ones on the anytime capacity mo, M1, ..., Mk
that on_Iy apply to plants W'Fh bounded dlsturba@ [14]. T.hgr considered for estimation, while estimates
extension to unbounded disturbance can be easily obtalneg
using standard, but more technical, adaptive encodingisebe 0|k, M1 |ks - - - Tk|k

described inl[24] [[32]]33]. Notice thall (P3) is obtainedrh are constructed, given all the bits received up to tilme

by replacingal- Wi.th [Al/27 in (12) and by simplifying the Hence, the processing operation for any messageontinues
rewglzgvf)rféﬁ?iir?géverm operties of the threshold funcgdndefinitely for allk > i. A reliability level a is achieved in
R hose broofs are 'penp'n the appendi Fe given transmission system if for dllthe probability that

(m), w P givent ppendix. there exists at least a message in the past whose estimate is
incorrect decreases-exponentially with the number of bits

Proposition 3. The following facts hold: received, namely for alil < &

1) Monotonicity: R(m) is continuous and strictly decreas- . R p
ing for m > 0. P{(Mo, ..., Mgy) # (Mo, ..., Mq)} = O(27°%). (30)

2) Convergence to the Shannon capacity: The described communication system is characterized by a

n rate-reliability pair(r, «). The work in [13] has shown that
lim R(m) = > mr =C. (24)  for scalar systems the ability to achieve stability depenils
i=1 the ability to construct such a communication system, imger
3) Convergence to the Zero Error capacity: of achievable coding and decoding schemes, with a given rate
1 reliability constraints.
R(m) ~ 71 — . logpi1, asm — oo, (25) To state this result in the context of our Markov channel,

let the a-anytime capacityC'4(«) be the supremum of the
) B rate r that can be achieved with reliability. The problems
im R(m) =m = Co. (26)  4f o-reliable communication anaith moment stabilization of
a scalar system over a Markov channel are then equivalent in
the sense of the following theorem.

and hence

4) Sensitivity with respect to self-loop probabilities:

dR(m) 2T IDA)]
= - n — <0, (27)
dpii mp(PT27mR) 370 D(d)]
whereD := p(PT2=mF)[ - PT2-mR T denotes the: x
n identity matrix, and/D(¢)| is the determinant of the
matrix obtained by eliminating théh row and theith
column fromD. We also have the asymptotic behavior log |\| £ Ca(mlogl|A|). (31)

Theorem 4 (Sahai, Mitter [18]) The necessary and sufficient
condition formth moment stabilization of a scalar system with
bounded disturbances and in the presence of channel output
feedback over a Markov channel is

dR(m) 1 The anytime capacity is an intermediate notion between the
~ = asm — oo. (28) . )
dp11 mp11 1In(2) zero-error capacity and the Shannon capacity. The zeos-err
capacity requires transmission without error. The Shargasen
pacity requires the decoding error to tend to zero by inéngas
the length of the code. In the presence of disturbances, only
a critical value of the zero-error capacity can guarantee th

5) The functionmR(m) is nonnegative, strictly increasing,
and strictly concave. Ifr; # 0, then mR(m) grows
unbounded asn — oco. If insteadr; = 0, then

lim mR(m) = —logp11. (29) almost sure stability of the system [9]. On the other hand, fo
e scalar systems in presence of bounded disturbances, @kriti

stabilize the system in the weakeith moment sense.

We now relate the stability threshold functidt(m) to the By combining Theoreni]2 and Theorddh 4, we obtain the
anytime capacityR(m) depends on both the system’s stabilit3f0"0Wmg result '

level m and on the properties of the channel via the transition
matrix P and the matrix of rate valuds. We show that for the
given Markov channel, it provides a parametric representat
of the anytime capacity in terms of system’s stability level
The anytime capacity is defined in the following con-
text [13]. Consider a system for information transmissioat t Ca(mR(m)) = R(m), (32)

Theorem 5. The following holds:

1) Parametric characterization of the anytime capacity: For
everym > 0, the anytime capacity'4 satisfies



i.e., for everya > 0, there exists a unique:(«) such 35

125

that
m(e)R(m(a)) = a (33) 3
and N a5 1 - 120
Ca(e) = R(m(a)) = @) (34) 1 / m o Ls
B X, &
2) Cy(«) is a strictly decreasing function function of > = R | i
3) OC.onvergence to the Shannon capacity: Wl T, )
ggfum):§;mn:cz (35) I
4) Convergence to the Zero érror capacity:if = 0, then 0 5 113 15 20
for everya > log(1/p11)
Ca(a) =0=Cy. (36)

Conversely, ifr; # 0, then C4(a) has unbounded
support and
o

Cala) ~ 7 o Tog( /o)’ asa — oo, (37) 29 .
hence ? / a+logpu
lim Cy(a) = = Cp. (38) 2t
—r 00 LY
Proof: By Theoreni® and Theorel 4, at the boundaries Lol
of the stability region we must have that
log |\| = R(m). (39) 1 ‘
0 5 10 15 20
and a

log |\| = C(mlog |A]). (40)

Therefore, [3R) follows by combinind (B9) and {40). NeXt',:ig' 2. Stability threshold function and anytime capacity Example V1

by Propositio B, the functiom(m) = mR(m) is increasing

and strictly concave, thus invertible. It follows that foreey

a > 0, there exists a unique: := m(«) such that In this case it is easy to compute= 1(1+3+4+5) =12
mR(m) = a. (41) and Cy = 1. Flgurelﬂ_ plots the s_tab|I|ty threshpld function

R(m) (together with its asymptotic approximation) and the

Substituting this equality intd(32), it follows th@ta(e) = anytime capacityC'4 (). Both curves have the same shape

R(m(a)). as claimed. The remaining properties are immediat@d they are in fact related by an affine transformation as

consequences of Propositibh 3. By definiti@# (a) is non s, grows. Furthermore, both curves have unbounded support

increasing ina. Since bothmR(m) and R(m) are both and tend to one at infinity. There is a change of convexity for

monotonic function ofr, however, it follows thaC'4 (o)) must  small values ofn and«, as indication thatR(m) and C'4 («)

be strictly decreasing im, thus establishing 2). Property 3)are generally not convex functions. In contrast, the fuorcti

follows from (32) combined Wit.h .the fact thab R(m) — 0 ¢(m) = mR(m), reported in red in the top plot of Figuid 2,
and R(m) — C asm — 0. Similarly, property 4) follow is strictly convex and increasing.

directly by combining [[3R) with properties 3) and 5) in
Propositior{B. Example IV.2. Let R = {0,3,4,5} and P is as in(@2). The
u only difference with the previous example is thatis now 0
We now give some representative examples of the stabilitystead than 1. In this case it is easy to compilte- §(0+3+
threshold function, visually showing its extremal propest 4 +5) = 3 and Cy = 0. Figure[3 plots the stability threshold
and its relationship with the anytime capacity. function R(m) (together with its asymptotic approximation)
Example IV.1. Letn — 4R = {1,3,4,5} andP be is ad x 4 and the anytime capacity 4 («). In this case, whil&®(m) has

. T 1 unbounded suppori4(«) is zero for alla > —logpy; =
circulant matrix with first row equal tg (1,13, 1, 1), namely log 16 — 4. This occurs because the functiofm) — mR(m)

1 13 1 1 saturates asn — oo, tending to the limiting value- log p11 =
1 {13 1 1 1 4.
P—— . (42)
6f1r 1 1 13 When viewed together, the two examples above show that

11 13 1 for some channels a communication system with an arbitrary



only case where an explicit anytime capacity formula can be

“ ~log i | | obtained.
I T 1 The Markov erasure channel corresponds to a two-state
Markov process wheree = 2 R = {0,7}, p12 = ¢, and
p21 = p, Where0 < p, g < 1. In this case,
2\ [ 6 - (1-q)  5hp
B v E pTo—mR — < 2mr : 43
2\ ¢ () @)

1
“\4,/— *Elog[)n
and we have the following result, whose proof is given in the

appendix.
Theorem 6. The anytime capacity of the Markov Erasure
% . m 1 20 Channel is
m af
Cala) = 1-p—22(1—p—q)\’ (44)
3 T T T T o+ 10g2 (W)
25 1 if 0 <o < —logy(1—gq), and O otherwise.
2t 1 1 Proof: By (33) and the definition of2(m), for everya
_ B Og”'\'< there exists amn(a) such that
54 15 I p(PT2—m(a)R) — 9« (45)
r I 1 In the case of a Markov erasure channel, a simple calculation
shows that
0.5
tr 1
. p(PT2~ MRy — 5+ 5\/tr2 — 4det (46)
OO 1 2 é 4‘1 5

o where tr and det denote the trace and determinani_df (43),

respectively. By combinind (45) an{46) and squaring both

, . _ _ _ sides of the resulting equation, it follows that(«) must

Fig. 3. Stability threshold function and anytime capaciy Exampld V2. satisfy
27%r — 4det= 27+, (47)

rate-reliability pair(r, o) cannot be constructed, because thg, oo — (1—q)+2-™@7(1 — p) and det= 2-(O7(1 —
anytime capacity may have bounded support and tend abru%tly q). Solving [@T) yields

to zero. However, in order to achieweh moment stabilization

it is sufficient to consider the simpler functioR(m) = m(a) = 1 <a+log (1 —-p—2°(1—-p-— Q))> (48)
Ca(mR(m)), and construct a communication system whose r 2 1—(1—gq)2~

reliability level depends on the desired stabilizationelevt : - -
follows that we do not need to compute the whole anytin{%élgséﬁzi log, (1 — ). Finally, substituting[(48) |ntd1?..4)
capacity if we are interested only in moment stabilizatimd

we may be content with determining the threshold function

R(m) corresponding to its parametric representation. THe Special cases

extremal properties of?(m) determine the support of the e now discuss some special cases, recovering previous
anytime capacity corresponding to the achievable reltgibil results in the literature. ByC(#4) it follows that the anyéim
level a. If R(m) = O(1/m) then the anytime capacity hascapacity of the binary erasure channel (BEC) with Markov

support bounded by the pre-constant of the asymptotic ordgfasures and with noiseless channel output feedback is
On the other hand, ifR(m) decreases at most sub-linearly

to zero, or it tends to a constant zero-error capacity, then t Cala) = ~ .

) . e +1o 1—p—22(1—p—q)
anytime capacity has unbounded support and any reliability « 29 —(1—q2°
level « is achieved.

«

(49)

By letting ¢ = 1 — p, the erasure process becomes i.i.d.
and we recover the anytime capacity of the memoryless BEC
with erasure probabilityp derived by Sahail[11, page 129]

We now use the stability threshold function to compute then parametric form) and by XU 15, Theorem 1.3] (in non-
anytime capacity of the Markov erasure channel. Beside thgrametric form)

memoryless erasure channel and the additive white Gaussian o
noise channel with input power constraint, for which the Ca(a) = - . (50)
anytime capacity equals the Shannon capacity, this is the o+ log, (ﬁ)

V. THE MARKOV ERASURE CHANNEL




By (44), lettinga — 0, we have that Example VI.1. Suppose thak is a binomial random variable

q with parameters; and 1 — p. Then,
lim Cx(a) = r=C, (51) .
a0 ptq Mp(t) = (p+ (1 = p)e’) (55)

where the expectation is taken with respect to the stal}'on%rn d

distribution of P. This recovers the Shannon capacity ofran . y/k _p i
bit erasure channel with Markov erasures and with noiseless Mg (y) =In 1—p y<p" (56)
channel output feedback.
In the caser — 2, 7, — 0, 7, — r, and an i.i.d. rate process@Nd thus byG2)
v;:ith P{lﬁ{C =0} d: P abnd P{Ry, =r} = po for all k's, then Cala) = @ — (57)
the stability condition becomes a/k + log, (1_1)%)
IA™ (p1 +p227™7) <1, for & < —klog p. Notice that (57) recovers(B0) in the special

which provides a converse to the achievable scheme of yukE@sek = 1 in which 12 is Bernoulli with parameted — p.

and Meyn [52, Theorem 3.3]. Example VI.2. Suppose thaR is a Poisson random variable
If we further letr — oo, then the stability condition with parameter\. Then,

p1 > 1/|A\|™ depends only on the erasure rate of the channel. Aet—1)

In this case, our condition generalizes the packet loss mode Mg(t) = e (58)

result in [34]. and

M}gl(y)zln(l—i—l/x\lny), y >0, (59)

VI. MEMORYLESSCHANNELS
and thus by(52)

Consider the special case of an i.i.d. rate prodessvhere
R; ~ R has probability mass functiop; = P{R = 7;}, Ca(a) =
7; € R. Fort real, LetMg(t) = E(e!f) denote the moment
generating function of? and letM ;' (y) denotes the inverse for o < —\/In2.
of the Mg(t), if it exists, i.e., My'(y) = ¢t if and only if
MR(t) =Y.

We have the following result

(%

" log(1 —a/AIn2) (60)

Notice in both examples; = 0, so the anytime capacity
has bounded support. In the next example= 1 and thus the
anytime capacity is defined for all > 0.

Theorem 7. The anytime capacity of a memoryless channExample VI.3. Suppose thaft is a geometric random vari-

with rate distributionR is able with parametep. Then,
In2—« pet
C =— 52 Mgp(t) = —F—— 61
SR 52 "D = T (61
for aw < —log p1y if 7o = 0, or for any o > 0 if 7 # 0. for t < —In(1—¢) and
—1 _ Yy
Proof: In the special case of an i.i.d. rate process, My (y) = 1np +y(l—p)’ y >0, (62)
PT2 "R = (py,.. pn)T(z—mfl 27 for y > 0, and thus
«
is a rank-one matrix whose only nonzero eigenvalue is Cala) = log((1—p) +p20)° a>0. (63)
S pi27mT = E(2™F). Therefore, in this case
R(m) = 1 log E(2~ ™) VII. CONCLUSION
m

1 IncompleteA commonly encountered notion of stochastic
= _ElogMR(_me)- (53) stability in the MJLS literature[[49] is the one of strong
By combining [38) and [(83), we find than = moment stqbility, ac;c_ording to which the MJLE (1) is stable
“log Ma(—m(a)In 2) and so ’ if there exists a finitea,, € R such thatE[|Z|™] —
Qs asm — oo. Clearly, if a MJLS is strongly stable,
1o then it is also weakly stable. It can be verified that the proof
m(e) = 1n2MR 27%), (54) of the necessary condition in Theoréin 1 extends to the case
whereM}gl(y) exists in light of property 5) in Propositidd 3 of strong moment stability, thereby_ establishing the nsites
Thus, by [3#4),[5R) follows. m of (@ for _the strong moment §tab|llty pIEI(l). In contrasteth
Theorem[V shows that in the case where the Chanﬁéqbsampl_mg technique used in the direct par_t_of Thedrem _1
is memoryless, the anytime capacity can be evaluated |§ynot suitable to prove strong m_oment stability bec_ause it
computing the inverse of the moment generating function 5fMNOt prevent undesirable fluctuations in the system digsam

R, as illustrated in the next three examples. between any two sampling periods. [n[53], we presented a
different proof technique based on the binomial expansion o



T
Binominal(4,1/2) |
—&— Poisson(2)

—w— Geometric(1/2)
—6— Uniform([0,4])

IN

n Cm -

—1 — E[|X,|™
L og[n > EIX ]]
n Cm m
 log | (| XI72]

where the second inequality follows from the maximum en-
tropy theorem applied to each random varialllg while the
1 last inequality follows from Jensen’s inequality. [ |

It should be remarked that inequalify 164) with= 1 is a
special case of a result provedin[59] relating thith moment
1 and the Renyi entropy of a random variable.

Next, we state a known result on the log-convexity of the
spectral radius of a nonnegative matrix which is needed to
prove some of the properties &(m).

Lemma 2 (Friedland Theorem 4.2 [56])Let D,, be the set of
n x n real-valued diagonal matrices. Let be a fixedn x n

non-negative matrix having a positive spectral radius. Defi
¢ : Dy, — R by ¢(D) :=log p(ePA). Theng(D) is a convex

. , . functional onD,,. Specifically: for everyD;,D, € D,, and
(axzr+wyi)™ which can be used to prove thgt (6) is a sufficient € (0,1) P y W1, D;

condition for the strong moment stability ¢fl (1). This appch “
however requires: to be an integer number, as opposed to the ¢(aD; + (1 — o)D) < ap(D1) + (1 — a)p(Dy).  (66)
subsampling technigue which can be applied to any 0.

1.5r

c,@

Fig. 4. To do.

Moreover, if A is irreducible and the diagonal entries df
are positive (orA is fully indecomposable) then equality holds

APPENDIXA in (€8) if and only if

AUXILIARY RESULTS

We first state a series of auxiliary results that are needed Dy =Dy =l (67)
in the res_t of the paper. We begin with a maximum entrogy, somec ¢ R, wherel is the identity matrix.
result which generalizes the well-know result that the seco
moment of a continuous random variableis lower bounded  Next, we state a result on the derivative of the spectralsadi
by its entropy powee2"(¥) to the case of th&™-norm of a as a function of non-negative matrix elements.

continuous random vector. Lemma 3 (Cohen Theorem 1 [57])Let A be a fixedn x n
Lemma 1. Let X be a continuous:-dimensional vector- hon-negative matrix having a positive spectral radius. Defi
valued random variable wittE[||X||™] < oo, wherem is D = p(A)I — A, wherel denotes the: x n identity matrix.
a positive real number. L&tX||,, = (>, |Xi|™)"/™ denotes Then,

the L™-norm of X. Then, dp(A) ID(1)]

0< = == _ <1 (68)
N mpx) da > izt D)
E[l|X|[m] > —e™ "t (64) _ - .
Cm whereD := p(A)I—A, I denotes thes x n identity matrix, and
where 2mmi=me (D(L))™ andD(x) = [ e~to—1dt |D(7)| is the determinant of the matrix obtained by eliminating
Cin = m e pos x)=J, € .

. . ’ L theith d theith col fromD.
Equality holds if and only ifX,, - -- , X, are i.i.d ~ X, where e row an e/th column 1o

Finally, we state a result on the asymptotic behavior of

@) exp (— f);) (65) PT2 ™8 gasm — .
x(T) = , xR, 5
2mi=m/mur (=) Lemma 4. The following equality holds
Proof: First, notice that by the maximum entropy theo- 72 7,277 <
rem [58, Theorem 12.1.1], the unique dengity(z) that max- To—mRs L )
imizes the differential entrop¥ (X ) over all probability den- ,}}I_I}O(P 2 )= ,}}I_I}O L : L
sities f havingm-th moment equal t0X|™ is given in [65). TR 2T, 2MTn

Notice that if X ~ fx(z), thenh(X) = L log[c,, E[| X |™]).

Next, by using the fact that conditioning reduces the eryl;ropof Proof: Let 1/m = k. By the monotonicity property

R(m), it is sufficient to prove the claim fok integer.
Therefore, let

i=1 pri2/k o pp2m/k

A= : : : = (PTgfl/kR)T

i=1 pn12fn/k T panF"/k



and /K /K Let S* = {Sy, ..., Sk} denote the symbols transmitted over
2T 2T the digital link up to timek. By the law of total expectation
B:= : : : and Lemmall ,
/k L mn/k 1 _
T2 ™2 E(|Xk+1|m) P ESk (emh(XkJrl‘Sk,ak)). (71)
To establish the claim it suffices to show that Cm
. . ) . It follows that them-th moment of the state is lower bounded
klggo A= khjgo B*. by the average entropy power &f, conditional onS*. From
To do so. we prove that the translation invariance property of the differentiatrepy,
' P the conditional version of entropy power inequality|[54hda
lim [A*];; = lim [B¥]; ;. Assumption A2, it follows that
k—o00 k—o00 : .k
Note that Egn (emM(XerlS7=s7))
i — mh(AXj+a(s%)+ V| SF=s%)
[AMig = > (pan27*) - (puers2"F) = Esr(e ' ) )
Uyl > Eg ((th(AXk\Sk:sk) 1 e2h(Ve) )%)
— it o1)/k
B Z (pill "'plk—lj)z( k) > Ear (emh()\Xk\Sk:sk))
Lyl —1 = =5
and — |A[™ Egn (e (XnIS" =55y (72)
B¥; = Z (ml2i/k) . (7le2lk71/k) We can further lower bound(¥72) as in Lemma 1[inl[32], and
Lyl obtain that for every: > 0
— Z (7Tl1 o le)2(i+...+lk71)/k ESk‘Skith (emh(Xk\Sk:sk)) > 2T3Rk emh(Xk‘Sk—lzskfl)’
Pt o (73)
Then, wekdenotmg the stationary distribution BfasIT = with S_; = (). By the tower rule of conditional expectation,
limg o0 P it then follows that
kh_}H;O([Ak]i,j — [B"i5) Egn (€M (XnI5"=55) >
. il 1 —1_ k-
= klggo Z (pl-l1 DLy — T ..ﬂ-lj)Q( +ootlo—1)/k Egr—1 g, <2mR,c omh(Xg|s* =5k 1)> . (74)
Iyl —1
< khm Z (pul py_ — T, ._ﬂ,lj)2n Combining [Z#) and{72) gives
o T Eg (emh(Xk+1\Sk:5k))
=2" kliﬂlo Z Dils * Ply_y > Ep, (2|leC Esk1(m, (emh(xklskl_skl))> . @5)
ll,...,lk,1
Following similar steps and using the Markov ch&f—! —
[ lim > m,eem, (82, Ry_1) — Ry, we obtain
k—o00
Iy, —1 ESk’I‘Rk (emh(Xk|Sk71:Sk—1))
n . k . k — —
=2 <kli>II;O[P ]i,j — kli}II;O[H ]i,j) > |/\|m ES’Cfl\Rk (emh(xk—]|sk 1_gk 1))
)\ m m k—2:Sk—2
=0, > Egk-2 ry IR, (27|”F|ikle h(Xp—1|S ))
where the inequality follows from the fact thét + --- + A e s
lkfl)/k < n. H = EquIRk (m ES"*2|R;C,1,R;€ [e2h(Xk71|S =s )}) )
APPENDIX B (76)
PROOF OFTHEOREMI[Z Substituting [(7B) into[(45) and re-iteratirigtimes, it follows

mh(Xpy1|SF=s%)) j
Necessity To establish the necessary condition, we proJ8atEsr (e Xl ) is lower bounded by

that for everyk = 0,1, ..., e A2
m kal-rRk(ﬁ
e EXL") > €112 9 T
m k—1 =S
where ¢, is a constant defined in Lemnia 1 afd,} is a X Esrozim oy (e ))
homogeneous MJLS with dynamics |\|mk m s
|)\|m > ERl,...,Rk (m Esl\Rl ..... Ry (e h(X1|So 0))
Bt = o (70) (77)

m(k+1) m
and zy = ¢2h(Xo), =E (%) emh(Xo) (78)
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where [Z¥) uses the fact that the initial condition of théesta To establish the convergence @t(m) to the Shannon
xo is independent of the rate proceRs. Let {Z;} be a non- capacity asn — 0, observe that

homogeneous MJLS with dynamics
Zyyr = [N /27 7, (79)

with zy = ¢™"(Xo) By taking the expectation on both sides
of (Z9) and iterating: times, it is easy to see that the right hand
side of [78) is equal to the first moment 8f, ;. Hence, com-

lim R(m)
m—0

= lim log p((PT27") )

_ : To—mRy\ L
= log p( lim (PT27) )

-

mry mrn m
bining (72)-{78) we conclude thd&(|X,|™) > -1 E(|Z|), (@) . m2 m2
which is the claim. = logp [ lim : ;

Sufficiency Let w denote a uniform bound on the measure Tp2MT Tp2MTn
of the support of the initial condition, the noise, and the . gmi . gmi
disturbance. Then, we claim that the plant dynamics can be 1 ! !
bounded as follows = lim - log p L L

n2m7‘1 n2mrn
|$k|§2’k, k=0,1,..., (80) g T
where Z,, is a homogeneous MJLS with dynamics = lim - log <Z ;2 )
Zk+1:2Tka+w, k=0,1,... ® lim D miri2

. . . . . m—0 Zi 7Ti2mﬁ
and zp = w. To see this, consider the following inductive e
proof. By assumptionjzg| < w = zp. Assume that the claim = 27“2 '

holds for all times up tok, so |zx| < z,. Suppose that at i

time k the uncertainty set-z, 2] is quantized using a,-bit where (a) follows from Lemmdl4 and (b) follows from
uniform quantizer, and that the encoder communicates to ffdopital’s rule.

decoder the interval containing the state. Then, the decodeThe convergence dk(m) to the zero-error capacity as —
approximates the state by the centraig of this interval ©c can be proved using the fact that, as— oo

and sends to the plant the control input = —AZ;. By

_ 1 To—mR
construction|zy, — &| < 2z /2", thus R(m) = i log p(P "2 )

|zrp1| = | Mok — Tk) + vkl — _ logp((PTQ—mR)l/m)
< Afzk — Zp| +w s e pg2-mn) L
S;:lzlg—i-w =7 —logp :7 7
= Zk+41 (81) Pin P2 T

i.e., the claim holds at timg+ 1 as well. It follows thatzy, is
mth moment stable if the homogeneous MJLSis weakly
mth moment stable, i.e., if and only f(P3) holds.

_ 1
~ 71 — — logpi1,
m

where the last equation follows from the fact that for any
column vectorv = (v1,...,v,)", p([v Opx(nn)]) = v1.
From the above asymptotic approximation it immediately

APPENDIXC follows that if 7, = 0, then
PROOF OFPROPOSITIONT )
The monotonicity property is an immediate consequence im mR(m) = —logpu. (83)

of the log-convexity of the spectral radius of a nonnegative Next, the property on the sensitivity with respect to self-

matrix, see, e.d]2. LeD; = —mRIn2, Dy = 0,x» and |oop probabilities is a direct application of a result In [57

o = Z. Notice that2=™® = eP1, log p(PTeP>) = 0, and which is re-stated here as Lemia 3, on the derivative of the

pT2-mR — pTeeDi Then, for everyn < m, by Lemma®  spectral radius as a function of non-negative matrix elémen
Next, the monotonicity property of—mR(m) =

log p(PT2~™R) follows from the fact that all the entries of the

matrix PT2-R are monotonically decreasing in. Finally,

the strict concavity ofnR(m) is again a direct consequence

—nR(m) = — log p(PT2~™R)
m
= alogp(PTeP!) + (1 — ) log p(PTeP?)

1 PT OtDl-l-(l—(!)Dg ) ) '
> log p( Te_nR ) of the log-convexity of the spectral radius of a nonnegative
=logp(P'27"%) matrix stated in Lemm@] 2.

= —nR(n). (82)
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