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The Anytime Capacity

of Markov Channels

I. INTRODUCTION

Some noteworthy references on the anytime capacity [1]–[8]. The usual references on network-

theoretic approach [9]–[14]; the usual references on data rate theorem [15], [15]–[28]; some

references on stabilization over AWGN channels [18], [29], [30]; some references on MJLS [31]–

[34]

II. MARKOV JUMP LINEAR SYSTEMS.

Consider the scalar non-homogeneous MJLS [35] with dynamics

zk+1 =
λ

2Rk
zk + wk, (1)

where zk ∈ R with z0 has bounded entropy, c ≥ 0 is a constant, and {Rk}k≥0 is a Markov rate

process defined on

R = {r̄1, . . . , r̄n}, (2)

for some integer numbers 0 ≤ r̄1 < · · · < r̄n, and with one-step transition probability matrix P

having entries

pij = P{Rk = r̄j|Rk−1 = r̄i} (3)

for every i, j ∈ {1, . . . , n}.
The system (1) is said to be weakly mth moment stable if

sup
k

E(|Z|m) <∞. (4)

Let R ∈ Zn×n+ be a diagonal matrix with diagonal entries r̄1, . . . , r̄n, i.e.,

R = diag(r̄1, . . . , r̄n). (5)
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The following lemma states the necessary and sufficient condition for m-th moment stability

of the system (1) in terms of the unstable mode |λ| and the spectral radius ρ(·) of PT2−mR,

where 2−mR denotes the base-2 matrix exponential of mR, i.e.,

2−mR = diag(2−mr̄1 , · · · , 2−mr̄n). (6)

The spectral radius of a matrix is the maximum among the absolute values of its eigenvalues.

Theorem 1. For any m ∈ R+, if

|λ|m <
1

ρ(PT2−mR)
, (7)

then the MJLS (1) is weakly mth moment stable. In the special case c = 0, the inequality “<”

in (7) is replaced by “≤”. Conversely, if MJLS (1) is weakly mth moment stable, then

|λ|m ≤ 1

ρ(PT2−mR)
(8)

In addition, for every m ≥ 2 the inequality “≤” in (8) is replaced by “<”.

Proof: [TO WRITE] The proof of the sufficient condition is new, unpublished, and based on

the idea of subsampling the original MJLS and of proving the weak stability of the subsampled

system. The proof of the necessary condition with “≤” sign is standard, while the proof for

m ≥ 2 is based on the maximum entropy theorem and the EPI, as presented at CDC 2013 [36].

Notice the trivial gap between the necessary and sufficient conditions in (7) and (8) in the

case where c 6= 0 and 0 ≤ m < 2. In this regime, the EPI cannot be applied.

Lemma extends the well-known conditions for second moment stability [35] to m-th moment

stability. A similar result appears in [37, Theorem 3.2] in the special case of a homogeneous

MJLS driven by an i.i.d. rate process.

III. MOMENT STABILIZATION OF SCALAR SYSTEMS OVER MARKOV CHANNELS

Consider now the scalar dynamical system

xk+1 = λxk + uk + vk, yk = xk + wk, k = 0, 1, . . . , (9)
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where |λ| ≥ 1. where xk represents the state variable of the system, uk the control input, vk an

additive disturbance independent of the initial condition x0, yk the sensor measurement and wk

the measurement noise, that is supposed to be independent of all other random variables.

A. Feedback Channel Model

The state observer is connected to the actuator through a noiseless digital communication link

that at each time k allows transmission without errors of Rk bits. The rate process {Rk}k≥0

is a homogeneous positive-recurrent Markov chain that takes values on (2) and has transition

probability P .

The noiseless digital link can be regarded as a discrete-memoryless channel with Markov state

available causally at both the encoder and the decoder. Formally, a channel with state is defined

by a triple (X ×S, p(y|x, s),Y) consisting of an input set X , a state set S, an output set Y , and

a transition probability matrix p(y|x) for every x ∈ X , s ∈ S, and y ∈ Y . A channel with state

is said to be memoryless if the output yk at time k is conditionally independent of everything

else given (xk, sk). The state sequence is Markov if S0, S1, . . . forms a Markov chain.

The channel model studied in this paper is a discrete-memoryless channel with Markov state

(X × S, p(y|x, s),Y) with X = Y = {1, . . . , r̄n}, S = {r̄1, · · · , r̄n},

p(y|x, s) =

1 x = y and x ≤ s

0. otherwise
(10)

and state transition probabilities

p(sk+1 = r̄j|sk = r̄i) = pij. (11)

The Shannon capacity of a general discrete-memoryless channel with Markov state was charac-

terized in CITE . In our specific setup,

CShannon =
n∑
i=1

πir̄i, (12)

where (π1, . . . , πn) denotes the unique stationary distribution of P . The zero-error capacity of

this channel CITE is given by

CZE = r̄1. (13)
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B. Moment Stability

The system (9) is said to be m-th moment stable if

sup
k

E[|Xk|m] <∞, (14)

where the expectation is taken with respect to the random initial condition, the additive distur-

bance vk, and the rate process Rk. We make the usual assumptions on the tail distribution of

the disturbance.

The following result establishes the equivalence between the m-th moment stability of (9) and

the weak moment stability of (1)

Theorem 2. There exists a control scheme that stabilizes the scalar system (9) in m-square

sense if and only if the MJLS (1) is weakly mth moment stable, i.e., if and only if

log |λ| . − 1

m
log ρ(PT2−mR) , R(m). (15)

Proof: [TO WRITE] The proof is pretty much as it was sketched in the CDC 2013

paper [36]. The proof technique depends as usual on assumptions made on the noise distribution

(bounded or unbounded). Since the anytime capacity result only applies to plants with bounded

noise, I suggest writing the proof in this setup and mention that it can be extended to the usual

case of unbounded noise.
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Fig. 1. The function R(m) in the special case where P = and n = 4. The asymptotic expression is given in (17).

Proposition 3. The following holds:

1) R(m) is a strictly decreasing function of m > 0.

2) Convergence to the Shannon capacity:

lim
m→0

R(m) =
n∑
i=1

πir̄i = CShannon, (16)

where CShannon denotes the Shannon capacity of the Markov channel.

3) Convergence to the Zero Error capacity:

R(m) ∼ r̄1 −
1

m
log p11, m→∞, (17)

hence

lim
m→∞

R(m) = r̄1 = CZE, (18)

where CZE denotes the zero-error capacity of the Markov channel.

4) Sensitivity with respect to self-loop probabilities

dR(m)

dpii
= − 2−mr̄ii

mρ(PT2−mR)

|D(1)|∑n
i=1 |D(i)|

< 0, (19)
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where D := ρ(PT2−mR)I − PT2−mR, where I denotes the n × n identity matrix, and

|D(i)| is the determinant of the matrix obtained by eliminating the ith row and the ith

column from D. In particular, as m→∞

dR(m)

dp11

∼ − 1

mp11 ln(2)
. (20)

5) The function mR(m) is nonnegative, strictly increasing, and strictly concave. If r̄1 = 0,

lim
m→∞

mR(m) = − log p1,1.

Proof: See Appendix A.

IV. ANYTIME CAPACITY OF MARKOV CHANNELS

[We must modify this part, which is copied from the book chapter for Cuomo] Consider a

system for information transmission that allows the time for processing the received codeword

at the decoder to be infinite, and improves the reliability as time progresses. More precisely, at

each step k in the evolution of the plant a new message mk of r bits is generated that must be

sent over the channel. The coder sends a bit over the channel at each k and the decoder upon

reception of the new bit updates the estimates for all messages up to time k. It follows that at

time k messages

m0,m1, . . . ,mk

are considered for estimation, while estimates

m̂0|k, m̂1|k, . . . , m̂k|k

are constructed, given all the bits received up to time k. Hence, the processing operation for any

message mi continues indefinitely for all k ≥ i. A reliability level α is achieved in the given

transmission system if for all k the probability that there exists at least a message in the past

whose estimate is incorrect decreases α-exponentially with the number of bits received, namely

P((M̂0|k, . . . , M̂d|k) 6= (M0, . . . ,Md)) = O(2−αd) for all d ≤ k. (21)
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The described communication system is then characterized by a rate-reliability pair (r, α). It

turns out that the ability to stabilize a dynamical system depends on the ability to construct such

a communication system, in terms of achievable coding and decoding schemes, with a given

rate-reliability constraints.

Let the supremum of the rate r that can be achieved with reliability α be the α-anytime

capacity CA(α) of a given Markov channel with channel feedback. The problem of α-reliable

communication and mth moment stabilization are equivalent, as shown by the following.

Theorem 4. The necessary and sufficient condition for m-moment stabilization of a scalar system

with bounded disturbances and in the presence of channel output feedback over a Markov channel

is

log |λ| . CA(m log |λ|). (22)

Proof: [TO DO] I think this should be immediate from Sahai’s paper.

By combining Theorem 2 and Theorem 4, we obtain the following result.

Theorem 5. The following holds:

1) Parametric characterization of the anytime capacity: For every m > 0, the anytime capacity

CA satisfies

CA
(
mR(m)

)
= R(m), (23)

i.e., for every α ≥ 0, there exists a unique m(α) such that

m(α)R
(
m(α)

)
= α (24)

and

C(α) = R
(
m(α)

)
. (25)

2) CA(α) is a nonincreasing function of m > 0.

3) Convergence to the Shannon capacity:

lim
α→0

CA(α) =
n∑
i=1

πiri = CShannon, (26)
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4) Convergence to the Zero Error capacity: If r̄1 = 0, then

CA(α) = 0 = CZE, for every α ≥ log(1/p11), (27)

If, instead, r̄1 6= 0, then CA(α) has unbounded support and

CA(α) ∼ r̄1
α

α− log(1/p11)
, as α→∞, (28)

hence

lim
α→∞

CA(α) = r̄1 = CZE. (29)

Proof: [Sketch] By using Theorem 7, it can shown that the function φ(m) = mR(m) is

increasing and strictly concave, thus invertible. It follows that for every α ≥ 0, there exists a

unique m := m(α) such that

mR(m) = α, (30)

hence assuming equality in (15), it follows CA
(
mR(m)

)
= R(m). The remaining properties are

immediate.

Example IV.1. Suppose that n = 4,R = {1, 3, 4, 5} and P is a 4x4 circulant matrix with first

row equal to 1
16

(1, 13, 1, 1), i.e.,

P =
1

16



1 13 1 1

13 1 1 1

1 1 1 13

1 1 13 1


. (31)

In this case CShannon = 1
4
(1 + 3 + 4 + 5) = 13

4
and CZE = 1. Fig. 2 shows a numerical evaluation

of T (m) (with asymptotic approximation) and Cα(α) in this case. Notice that both curves have

the same shape and they are in fact related by an affine transformation as m grows. Notice the

change of convexity for small values of m and α, as indication that T (m) and Cα(α) are not

convex functions in general.

DRAFT



9

0 5 10 15 20

1

1.5

2

2.5

3

3.5
R
(m

)

m
0 5 10 15 20

0

5

10

15

20

25

m
R
(m

)

−

1

m
log p11

mr̄1 − log p11

0 5 10 15 20
1

1.5

2

2.5

3

C
A

(α
)

α

 

 

r̄1

α

α + log p11

Fig. 2. T (m).

Example IV.2. Suppose now that R = {0, 3, 4, 5} and P is as in (31). Notice that the only

difference with the previous example is that r̄1 is now 0 instead of 1. In this case CShannon =

1
4
(0+3+4+5) = 3 and CZE = 0. Fig. 3 shows a numerical evaluation of T (m) (with asymptotic

approximation) and Cα(α) in this case. Notice that Cα(α) is zero for α ≥ − log p11 = log 16 = 4.
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A. The Markov Erasure Channel

Consider the special case of a two-state Markov process where n = 2 R = {0, r̄}, p12 = q,

and p21 = p for some 0 < p, q < 1. In this case,

PT2−mR =

(1− q) 1
2mr̄

p

q 1
2mr̄

(1− p)

 .

For this channel model we have the following result.

Theorem 6. The anytime capacity of the Markov Erasure Channel is equal to

CA(α) =
αr̄

α + log2

(
1−p−2α(1−p−q)

1−(1−q)2−α

) , (32)

if 0 ≤ α < − log2(1− q), and 0 otherwise.

A few remarks are in order:

Remark 1. Eq. (33) provides the anytime reliability of a binary erasure channel (BEC) with

Markov erasures and with noiseless channel output feedback. If, in particular, we let q = 1− p,

then the erasure process becomes i.i.d. and (33) recovers the anytime capacity of the memoryless

BEC with erasure probability p derived by Sahai [3, page 129] (in parametric form) and by

Xu [38, Theorem 1.3] (in non-parametric form)

CA(α) =
α

α + log2

(
1−p

1−p2−α

) , (33)

Remark 2. Observe that limα→0CA(α) = q
p+q

r̄ = E(R) = CShannon, where the expectation

is taken with respect to the stationary distribution of P . This limiting value is the Shannon

capacity CShannon of an r̄-bit erasure channel with Markov erasures and with noiseless channel

output feedback.

CA(α) = 0 for any α >= − log2(1 − q) because the probability that d consecutive zeros

occurs is (1− q)d = 2−d(− log2(1−q)).

Remark 3. If we specialize to the case n = 2, r̄1 = 0, r̄2 = r, and an i.i.d. rate process with
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P{Rk = 0} = p1 and P{Rk = r} = p2 for all k’s, then

|λ|m
(
p1 + p22−mr

)
< 1,

which provides a converse to the achievable scheme in [40, Theorem 3.3], and we further let

r → ∞, then the stability condition p1 > 1/|λ|m depends only on the erasure rate of the

channel. In this case, our condition generalize the packet loss model result in [9].
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Fig. 4. Anytime reliability of a BEC with Markov erasure for different recovery probability q and p = 0.8.

TO DO: Similarly to what Sahai did in the case of the memoryless BEC in his CDC 2004

presentation (http://www.eecs.berkeley.edu/∼sahai/Presentations/CDC2004.pdf), we can compare

the the anytime error exponent to error exponents of block codes. Specifically, we can compare

the curves in Fig. 4 obtained by evaluating (33) with the results by Como, Yüksel, and Tatikonda

in [39, Section VI].

V. AUXILIARY RESULTS

We begin with a theorem of Friedland on the log-convexity of the spectral radius of a

nonnegative matrix (superconvexity as Kingman [41] called it).

Theorem 7 (Friedland Theorem 4.2 [42]). Let Dn be the set of n × n real-valued diagonal
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matrices. Let ρ(A) refer to the spectral radius of a matrix A. Let A be a fixed n × n non-

negative matrix having a positive spectral radius. Define φ : Dn → R by φ(D) := log ρ(eDA).

Then φ(D) is a convex functional on Dn. Specifically: for every D1, D2 ∈ Dn and α ∈ (0, 1),

φ(αD1 + (1− α)D2) ≤ αφ(D1) + (1− α)φ(D2). (34)

Moreover, if A is irreducible and the diagonal entries of A are positive (or A is fully indecom-

posable) then equality holds in (34) if and only if

D1 −D2 = cI (35)

for some c ∈ R, where I is the identity matrix.

Theorem 8 (Cohen Theorem 1 [43]). Let A be a fixed n × n non-negative matrix having a

positive spectral radius. Define D := ρ(A)I − A, where I denotes the n × n identity matrix.

Then,

0 <
dρ(A)

da11

=
|D(1)|∑n
i=1 |D(i)|

< 1 (36)

VI. EXTENSIONS

A. More Results on Stability of MJLS

1) Strong mth Moment Stability: We say that the system (1) is strongly mth moment stable

if there exists a finite cm ∈ R such that

E[|Z|m]→ cm, as m→∞. (37)

Clearly, if a MJLS is strongly stable, then it is also weakly stable.

Lemma 1. For every positive integer number m = 1, 2, 3, . . . , if the MJLS (1) is strongly mth

moment stable if and only if

|λ|m <
1

ρ(PT2−mR)
. (38)

Proof: The proof technique is based on the binomial expansion and was presented in the

CDC paper.
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APPENDIX A

PROOF OF PROPOSITION 3

1) This is an immediate consequence of the log-convexity of the spectral radius of a non-

negative matrix. Let D1 = −m diag(r̄1, · · · , r̄n) ln 2, D2 = 0n×n and α = n
m

. Notice that

PT2−mR = P ′eD1 , log ρ(P ′eD2) = 0, and H(n) = P ′eαD1 . Then, for every n < m, by

Theorem 7

n

m
log ρ(PT2−mR) = α log ρ(P ′eD1) + (1− α) log ρ(P ′eD2)

> log ρ(P ′eαD1+(1−α)D2)

= log ρ(H(n)), (39)

which implies T (n) > T (m).

2) Next,

lim
m→0

R(m) = lim
m→0

log ρ
(
(PT2−mR)

1
m

)
= log ρ

(
lim
m→0

(PT2−mR)
1
m

)

= log ρ

 lim
m→0



π12mr1 · · · π12mrn

...
...

...

πn2mr1 · · · πn2mrn




1
m



= lim
m→0

1

m
log ρ



π12mr1 · · · π12mrn

...
...

...

πn2mr1 · · · πn2mrn




= lim
m→0

1

m
log

(∑
i

πi2
mri

)
=
∑
i

πi2
mri
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Lemma 2.

lim
m→0

(PT2−mR)
1
m = lim

m→0



π12mr1 · · · π12mrn

...
...

...

πn2mr1 · · · πn2mrn




1
m

Proof: Let 1/m = k. By the monotonicity property, it is sufficient to prove the claim for k

integer. Let

A :=


p1,12r1/k · · · p1,n2r1/k

...
...

...

pn,12rn/k · · · pn,n2rn/k

 =
(
H−

1
k

)T

and

B :=


π12r1/k · · · πn2r1/k

...
...

...

π12rn/k · · · πn2rn/k

 =



π12r1/k · · · π12rn/k

...
...

...

πn2r1/k · · · πn2rn/k



T

We prove that

lim
k→∞

Ak = lim
k→∞

Bk.

It is enough to show that

lim
k→∞

[Ak]i,j = lim
k→∞

[Bk]i,j.

Note that

[Ak]i,j =
∑

l1,...,lk−1

(
pil12i/k

)
· · ·
(
plk−1j2

lk−1/k
)

=
∑

l1,...,lk−1

(
pil1 · · · plk−1j

)
2(i+···+lk−1)/k

and

[Bk]i,j =
∑

l1,...,lk−1

(
πl12i/k

)
· · ·
(
πlj2

lk−1/k
)

=
∑

l1,...,lk−1

(
πl1 · · · πlj

)
2(i+···+lk−1)/k
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lim
k→∞

([Ak]i,j − [Bk]i,j) = lim
k→∞

∑
l1,...,lk−1

(
pil1 · · · plk−1j − πl1 · · · πlj

)
2(i+···+lk−1)/k

≤ lim
k→∞

∑
l1,...,lk−1

(
pil1 · · · plk−1j − πl1 · · · πlj

)
2n

= 2n

 lim
k→∞

∑
l1,...,lk−1

pil1 · · · plk−1j

−
 lim
k→∞

∑
l1,...,lk−1

πl1 · · · πlj


= 2n

(
lim
k→∞

[P k]i,j − lim
k→∞

[Qk]i,j

)
0.

(i+ · · ·+ lk−1)/k < n.
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[6] T. Şimşek, R. Jain, and P. Varaiya, “Scalar estimation and control with noisy binary observations,” IEEE Transactions on

Automatic Control, vol. 49, no. 9, pp. 1598–1603, Sept. 2004.

[7] R. Ostrovsky, Y. Rabani, and L. Schulman, “Error-correcting codes for automatic control,” IEEE Trans. Inf. Theory, vol. 55,

no. 7, pp. 2931 –2941, july 2009.

[8] R. Sukhavasi and B. Hassibi, “Error correcting codes for distributed control,” Available on-line at http://arxiv.org:

arXiv:1112.4236v2 [cs.IT], Dec. 2001.

[9] V. Gupta, D. Spanos, B. Hassibi, and R. M. Murray, “Optimal LQG control across packet-dropping links,” Systems and

Control Letters, vol. 56, no. 6, pp. 439–446, 2007.

[10] V. Gupta, N. Martins, and J. Baras, “Optimal output feedback control using two remote sensors over erasure channels,”

IEEE Transactions on Automatic Control, vol. 54, no. 7, pp. 1463–1476, july 2009.

[11] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. Sastry, “Foundations of control and estimation over lossy

networks,” Proceedings of the IEEE, vol. 95, no. 1, pp. 163–187, Jan. 2007.

[12] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, and S. Sastry, “Kalman filtering with intermittent

observations,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464, Sept. 2004.

DRAFT



16

[13] P. Minero, M. Franceschetti, S. Dey, and G. Nair, “Data rate theorem for stabilization over time-varying feedback channels,”

IEEE Transactions on Automatic Control, vol. 54, no. 2, pp. 243–255, Feb. 2009.

[14] M. Huang and S. Dey, “Stability of kalman filtering with Markovian packet losses,” Automatica, vol. 43, no. 4, pp. 598–607,

2007.

[15] W. S. Wong and R. Brockett, “Systems with finite communication bandwidth constraints. II. Stabilization with limited

information feedback,” IEEE Transactions on Automatic Control, vol. 44, no. 5, pp. 1049–1053, May 1999.

[16] R. Brockett and D. Liberzon, “Quantized feedback stabilization of linear systems,” IEEE Transactions on Automatic Control,

vol. 45, no. 7, pp. 1279–1289, July 2000.

[17] D. Liberzon, “On stabilization of linear systems with limited information,” IEEE Transactions on Automatic Control,

vol. 48, no. 2, pp. 304–307, Feb. 2003.

[18] J. Braslavsky, R. Middleton, and J. Freudenberg, “Feedback stabilization over signal-to-noise ratio constrained channels,”

IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1391–1403, Aug. 2007.

[19] D. Delchamps, “Stabilizing a linear system with quantized state feedback,” IEEE Transactions on Automatic Control,

vol. 35, no. 8, pp. 916–924, Aug. 1990.

[20] N. Martins, M. Dahleh, and N. Elia, “Feedback stabilization of uncertain systems in the presence of a direct link,” IEEE

Transactions on Automatic Control, vol. 51, no. 3, pp. 438–447, Mar. 2006.

[21] G. N. Nair and R. J. Evans, “Stabilizability of stochastic linear systems with finite feedback data rates,” SIAM J. Control

Optim., vol. 43, no. 2, pp. 413–436, Feb. 2004.
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