
1

From any-time to zero-error reliability for

stabilization over Markov channels
Massimo Franceschetti, Paolo Minero
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Fig. 1. Feedback loop model. The estimated state is quantized, encoded and
sent to a decoder over a digital channel of state Rk that evolves in time
according to a Markov process.

Abstract—The stochastic stability of a scalar linear system
controlled over a Markov time-varying digital feedback channel
with noiseless output feedback is considered. A stability threshold

function of the channel’s parameters and of the moment stability
number m is studied. The system can be stabilized if and only
if this threshold function exceeds the intrinsic entropy rate of
the system, representing the growth of the state space spanned
by the open loop system. The function is continuous, strictly
decreasing for m > 0, but not generally convex. It converges
to the Shannon capacity for m → 0, to the zero-error capacity
for m → ∞, and it provides a parametric characterization of
the anytime capacity of Sahai for the remaining values of m. Its
operational interpretation is that of achievable communication
rate, subject to a varying reliability constraint that depends on
the desired stability level m.

Applications yield a novel anytime capacity formula for the
special case of the r-bit Markov erasure channel, that generalizes
the one for the memoryless case obtained by Sahai in parametric,
and by Xu and Sahai in explicit form. For a two-state memoryless
communication channel, a converse to the achievable scheme of
Yüksel and Meyn is provided, and when the rate process can
take values in {0,∞} results for the packet erasure model are
recovered. Finally, the anytime error exponent is compared to
the error exponent of variable-length block-codes over Markov
channels with feedback of Como, Yüksel, and Tatikonda.

The proofs rely on a novel necessary and sufficient condition
for the stochastic stability of Markov jump linear systems. The
sufficient condition is obtained via the idea of subsampling,
while the necessary condition is based on the maximum entropy
theorem and the entropy power inequality.

I. INTRODUCTION

We consider the problem of moment stabilization of a

dynamical system where the estimated state is transmitted

for control over a time-varying communication channel, as

depicted in Fig. 4. This problem has been studied extensively

in the context of networked control systems and discussed in

several special issue journals dedicated to the topic [1]–[3].
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Recently, it gained renewed attention due to its relevance for

the design of cyberphysical systems [4]. A tutorial review of

the problem with extensive references appears in [5].

The notion of Shannon capacity is in general not sufficient

to characterize the trade-off between the entropy rate produc-

tion of the plant, expressed by the growth of the state space

spanned in open loop, and the communication rate required

for its stabilization. A large Shannon capacity is useless for

stabilization if it cannot be used in time for control. For

the control signal to be effective, it must be appropriate to

the current state of the system. Since decoding the wrong

codeword implies applying a wrong signal and driving the

system away from stability, applying an effective control signal

depends on the history of whether previous codewords were

decoded correctly or not. In essence, the stabilization problem

is an example of interactive communication, where two-way

communication occurs through the feedback loop between

the plant and the controller. Error correcting codes developed

independently in this context [6]–[8] have a natural tree

structure representing past history and are natural candidates to

be used for control. Alternative capacity notions with stronger

reliability constraints than simply having a vanishing probabil-

ity of error, and requiring these type of coding schemes have

been proposed in the context of control, including the zero-

error capacity [9], originally introduced by Shannon [10], and

the anytime capacity proposed by Sahai [11], [12]–[16].

Within this general framework, we focus on the mth

moment stabilization of an unstable scalar system whose

state is communicated over a rate-limited channel capable of

supporting Rk bits at each time step and evolving randomly

in a Markovian fashion. The rate process is known casually

to both encoder and decoder. Many variations of this “bit-

pipe” model have been studied in the literature [17]–[39],

including the case of fixed rate channel; the erasure channel

where the rate process can assume value zero; and the packet

loss channel, where the rate process can oscillate randomly

between zero and infinity, allowing a real number with infinite

precision to be transported across the channel in one time step.

Connections between the rate limited and the packet loss chan-

nel have been pointed out in [32], [33], showing that results

for the latter model can be recovered by appropriate limiting

arguments. The additive white Gaussian channel has been

considered in [40]–[44] and in this case the Shannon capacity

is indeed sufficient to express the rate needed for stabilization.

Extensions to the additive colored Gaussian channel [45] show

that the maximum “tolerable instability” — expressed by the

sum of the logarithms of the unstable eigenvalues of the system

that can be stabilized by a linear controller with a given power

constraint over a stationary Gaussian channel— corresponds to
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the Shannon feedback capacity [46], that assumes the presence

of a noiseless feedback link between the output and the input

of the channel and that is subject to the same power constraint.

This result suggests a duality between the problems of control

and communication in the presence of feedback, and indeed

it has been shown that efficient feedback communication

schemes can be obtained by solving a corresponding control

problem [47], [48].

The major contribution of this paper is the introduction of a

stability threshold function of the channel’s parameters and of

the moment stability number m that converges to the Shannon

capacity for m → 0, to the zero-error capacity for m → ∞,

and it provides a parametric characterization of the anytime

capacity for the remaining values of m. This function yields a

novel anytime capacity formula in the special case of the r-bit

Markov erasure channel. To prove our results, we require some

novel extensions of the theory Markov Jump Linear Systems

(MJLS), that are of independent value. On the technical side,

the sufficient condition for stability is obtained exploiting the

idea of subsampling, while the necessary condition is based

on the maximum entropy theorem and the entropy power

inequality. In passim, although we do not deal with the case

of vector systems directly, we point out that our results can be

extended to this case exploiting usual bit-allocation techniques

outlined in [32], [33], at the expense of a more technical

treatment that does not add much to the engineering insight

and that we wish to avoid here.

The rest of the paper is organized as follows. Some pre-

liminary results on Markov Jump Linear Systems, necessary

for our derivations are presented in Section II. Section III

describes the system and channel model and introduces the

stability threshold function, illustrating some of its properties.

Section IV describes relationships with the anytime capacity,

and provides some representative examples. Section V pro-

vides the formula for the anytime capacity of the Markov

erasure channel.

II. MARKOV JUMP LINEAR SYSTEMS.

Consider the scalar non-homogeneous MJLS [49] with

dynamics

zk+1 =
λ

2Rk
zk + wk, (1)

where zk ∈ R with z0 has bounded entropy, c ≥ 0 is a

constant, and {Rk}k≥0 is a Markov rate process defined on

R = {r̄1, . . . , r̄n}, (2)

for some integer numbers 0 ≤ r̄1 < · · · < r̄n, and with one-

step transition probability matrix P having entries

pij = P{Rk = r̄j |Rk−1 = r̄i} (3)

for every i, j ∈ {1, . . . , n}.

The system (1) is said to be weakly mth moment stable if

sup
k

E(|Z|m) < ∞. (4)

Let R ∈ Z
n×n
+ be a diagonal matrix with diagonal entries

r̄1, . . . , r̄n, i.e.,

R = diag(r̄1, . . . , r̄n). (5)

The following lemma states the necessary and sufficient

condition for m-th moment stability of the system (1) in

terms of the unstable mode |λ| and the spectral radius ρ(·) of

PT2−mR, where 2−mR denotes the base-2 matrix exponential

of mR, i.e.,

2−mR = diag(2−mr̄1 , · · · , 2−mr̄n). (6)

Theorem 1. For any m, c ∈ R
+, if

|λ|m <
1

ρ(PT2−mR)
, (7)

then the MJLS (1) is weakly mth moment stable. In addition,

if c = 0, then the same statement holds with the inequality

in (7) being not strict. Conversely, if the MJLS (1) is weakly

mth moment stable, then

|λ|m ≤
1

ρ(PT2−mR)
. (8)

In addition, if m ≥ 2 then the inequality in (8) is strict.

The proof is given in the appendix. The sufficient condition

is obtained by subsampling the original MJLS and then

showing the weak stability of the subsampled system. The

proof of the necessary condition with the weak inequality is

standard, while the strict inequality in the case m ≥ 2 is

based on the maximum entropy theorem and the entropy power

inequality (EPI). There is a gap between the necessary and

sufficient conditions in (7) and (8) in the case where c 6= 0
and m < 2. In this regime the EPI cannot be applied. In the

following, to express the condition for transition to instability

with a single inequality, while indicating the existence of this

trivial gap, we write

|λ|m .
1

ρ(PT2−mR)
. (9)

Theorem 1 extends the well known conditions for second

moment stability given in [49] to m-th moment stability. A

similar result appears in [50, Theorem 3.2] in the special case

of a homogeneous MJLS driven by an i.i.d. rate process.

III. MOMENT STABILIZATION OVER MARKOV CHANNELS

Results on the stability of MJLS are used to characterize

the stability of linear dynamical systems when the estimated

state is sent to the controller over a digital communication link

whose state is described by a Markov process.

A. System model

Consider the scalar dynamical system

xk+1 = λxk + uk + vk,

yk = xk + wk, (10)

where k ∈ N, and |λ| ≥ 1. The variable xk represents the

state of the system, uk the control input, vk is an additive

stochastic disturbance, yk is the sensor measurement, and wk
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is the measurement noise. Both disturbance and noise are

independent of each other and of the initial condition x0. They

are also independent of the channel state, as defined below.

B. Channel Model

The state observer is connected to the actuator through

a noiseless digital communication link that at each time k
allows transmission without errors of Rk bits. The rate process

{Rk}k≥0 is a homogeneous positive-recurrent Markov chain

that takes values in R defined in (2) and that has transition

probability matrix P. This noiseless digital link corresponds

to a discrete-memoryless channel with Markov state available

causally at both the encoder and the decoder. A channel with

state is defined by a triple (X × S, p(y|x, s),Y) consisting

of an input set X , a state set S, an output set Y , and a

transition probability matrix p(y|x) for every x ∈ X , s ∈ S,

and y ∈ Y . This channel is memoryless if the output yk
at time k is conditionally independent of everything else

given (xk, sk). The state sequence is Markov if S0, S1, . . .
forms a Markov chain. According to these definitions, our

channel model is a discrete-memoryless channel with Markov

state (X × S, p(y|x, s),Y) with X = Y = {1, . . . , r̄n},

S = {r̄1, · · · , r̄n},

p(y|x, s) =

{

1 x = y and x ≤ s

0. otherwise
(11)

and state transition probabilities

p(sk+1 = r̄j |sk = r̄i) = pij . (12)

The Shannon capacity of this channel is []

C =

n
∑

i=1

πir̄i, (13)

where (π1, . . . , πn) denotes the unique stationary distribution

of P.

The zero-error capacity of this channel is []

C0 = r̄1. (14)

The capacities in (13) and (14) are the limiting values of

a stability threshold function indicating the channel’s rate-

reliability constraint required to achieve a given level of

stabilization. As m → ∞ and the system is highly stable, then

the stability threshold function tends to the zero-error capacity

that has a hard reliability constraint of providing no decoding

error. Conversely, as m → 0 and the system’s stability level

decreases, then the stability threshold function tends to the

Shannon capacity that has a weak reliability constraint of

vanishing probability of error.

C. Stability threshold function

The system (10) is mth moment stable if

sup
k

E[|Xk|
m] < ∞, (15)

where the expectation is taken with respect to the random

initial condition x0, the additive disturbance vk, and the rate

process Rk. The following Theorem establishes the equiva-

lence between the m-th moment stability of (10) and the weak

moment stability of (1)

Theorem 2. There exists a control scheme that stabilizes the

scalar system (10) in mth momemt sense if and only if the

MJLS (1) is weakly mth moment stable, i.e., if and only if

log |λ| . −
1

m
log ρ(PT2−mR) , R(m). (16)

The proof is given in the appendix in the case the dis-

turbance has bounded support. This assumotion is made for

ease of presentation and to compare our results to the ones on

the anytime capacity that only apply to plants with bounded

disturbance [11]. The extension to unbounded disturbance can

be easily obtained using standard, but more technical, adaptive

encoding schemes described in [24], [32], [33].

We now mention several properties of the threshold function

R(m), whose proofs are given in the appendix.

Proposition 3.

1) Monotonicity: R(m) is continuous and strictly decreas-

ing for m > 0.

2) Convergence to the Shannon capacity:

lim
m→0

R(m) =

n
∑

i=1

πir̄i = C. (17)

3) Convergence to the Zero Error capacity:

R(m) ∼ r̄1 −
1

m
log p11, as m → ∞, (18)

and hence

lim
m→∞

R(m) = r̄1 = C0. (19)

4) Sensitivity with respect to self-loop probabilities:

dR(m)

dpii
= −

2−mr̄ii

mρ(PT2−mR)

|D(1)|
∑n

i=1 |D(i)|
< 0, (20)

where D := ρ(PT2−mR)I−PT2−mR, I denotes the n×
n identity matrix, and |D(i)| is the determinant of the

matrix obtained by eliminating the ith row and the ith
column from D. We also have the asymptotic behavior

dR(m)

dp11
∼ −

1

mp11 ln(2)
as m → ∞. (21)

5) The function mR(m) is nonnegative, strictly increasing,

and strictly concave. If r̄1 = 0, then

lim
m→∞

mR(m) = − log p1,1. (22)

IV. ANYTIME CAPACITY OF MARKOV CHANNELS

We now relate the stability threshold function R(m) to the

anytime capacity. R(m) depends on both the system’s stability

level m and on the properties of the channel via the transition

matrix P and the matrix of rate values R. We show that for the

given Markov channel, it provides a parametric representation

of the anytime capacity in terms of system’s stability level m.

The anytime capacity is defined in the following con-

text [13]. Consider a system for information transmission that
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allows the decoding time to be infinite, and improves the

reliability of the estimated message as time progresses. More

precisely, at each step k in the evolution of the plant a new

message mk of r bits is generated that must be sent over the

channel. The coder sends a bit over the channel at each k
and the decoder upon reception of the new bit updates the

estimates for all messages up to time k. It follows that at time

k messages

m0,m1, . . . ,mk

are considered for estimation, while estimates

m̂0|k, m̂1|k, . . . , m̂k|k

are constructed, given all the bits received up to time k.

Hence, the processing operation for any message mi continues

indefinitely for all k ≥ i. A reliability level α is achieved in

the given transmission system if for all k the probability that

there exists at least a message in the past whose estimate is

incorrect decreases α-exponentially with the number of bits

received, namely for all d ≤ k

P{(M̂0|k, . . . , M̂d|k) 6= (M0, . . . ,Md)} = O(2−αd). (23)

The described communication system is characterized by a

rate-reliability pair (r, α). The work in [13] has shown that

for scalar systems the ability to achieve stability depends on

the ability to construct such a communication system, in terms

of achievable coding and decoding schemes, with a given rate-

reliability constraints.

To state this result in the context of our Markov channel,

let the α-anytime capacity CA(α) be the supremum of the

rate r that can be achieved with reliability α. The problems

of α-reliable communication and mth moment stabilization of

a scalar system over a Markov channel are then equivalent in

the sense of the following theorem.

Theorem 4 (Sahai, Mitter [13]). The necessary and sufficient

condition for mth moment stabilization of a scalar system with

bounded disturbances and in the presence of channel output

feedback over a Markov channel is

log |λ| . CA(m log |λ|). (24)

The anytime capacity is an intermediate notion between the

zero-error capacity and the Shannon capacity. The zero-error

capacity requires transmission without error. The Shannon ca-

pacity requires the decoding error to tend to zero by increasing

the length of the code. In the presence of disturbances, only

a critical value of the zero-error capacity can guarantee the

almost sure stability of the system [9]. On the other hand, for

scalar systems in presence of bounded disturbances, a critical

value of the anytime capacity can guarantee the ability to

stabilize the system in the weaker mth moment sense.

By combining Theorem 2 and Theorem 4, we obtain the

following result.

Theorem 5. The following holds:

1) Parametric characterization of the anytime capacity: For

every m > 0, the anytime capacity CA satisfies

CA

(

mR(m)
)

= R(m), (25)

i.e., for every α ≥ 0, there exists a unique m(α) such

that

m(α)R
(

m(α)
)

= α (26)

and

CA(α) = R
(

m(α)
)

. (27)

2) CA(α) is a nonincreasing function of m > 0.

3) Convergence to the Shannon capacity:

lim
α→0

CA(α) =

n
∑

i=1

πiri = C, (28)

4) Convergence to the Zero Error capacity: If r̄1 = 0, then

for every α ≥ log(1/p11)

CA(α) = 0 = C0. (29)

Conversely, if r̄1 6= 0, then CA(α) has unbounded

support and

CA(α) ∼ r̄1
α

α− log(1/p11)
, as α → ∞, (30)

hence

lim
α→∞

CA(α) = r̄1 = C0. (31)

The proof is given in the appendix and uses some results

on the log-convexity of the spectral radius of a nonnegative

matrix. These results imply that the function φ(m) = mR(m)
is increasing and strictly concave, thus invertible. It follows

that for every α ≥ 0, there exists a unique m := m(α) such

that

mR(m) = α, (32)

hence assuming equality in (16) it follows CA

(

mR(m)
)

=
R(m). The remaining properties are immediate.

We now give some representative examples of the stability

threshold function, visually showing its extremal properties

and its relationship with the anytime capacity.

Example IV.1. Let n = 4,R = {1, 3, 4, 5} and P be is a 4×4
circulant matrix with first row equal to 1

16 (1, 13, 1, 1), namely

P =
1

16











1 13 1 1

13 1 1 1

1 1 1 13

1 1 13 1











. (33)

In this case it is easy to compute C = 1
4 (1 + 3+ 4+ 5) = 13

4
and C0 = 1. Figure 2 plots the stability threshold function

R(m) (together with its asymptotic approximation) and the

anytime capacity CA(α). Both curves have the same shape

and they are in fact related by an affine transformation as

m grows. Furthermore, both curves have unbounded support

and tend to one at infinity. There is a change of convexity for

small values of m and α, as indication that R(m) and CA(α)
are generally not convex functions. In contrast, the function

φ(m) = mR(m), reported in red in the top plot of Figure 2,

is strictly convex and increasing.
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Fig. 2. Stability threshold function and anytime capacity for Example IV.1

Example IV.2. Let R = {0, 3, 4, 5} and P is as in (33). The

only difference with the previous example is that r̄1 is now 0

instead than 1. In this case it is easy to compute C = 1
4 (0+3+

4 + 5) = 3 and C0 = 0. Figure 3 plots the stability threshold

function R(m) (together with its asymptotic approximation)

and the anytime capacity CA(α). In this case, while R(m) has

unbounded support, CA(α) is zero for all α ≥ − log p11 =
log 16 = 4. This occurs because the function φ(m) = mR(m)
saturates as m → ∞, tending to the limiting value − log p11 =
4.

When viewed together, the two examples above show that

for some channels a communication system with an arbitrary

rate-reliability pair (r, α) cannot be constructed, because the

anytime capacity may have bounded support and tend abruptly

to zero. However, in order to achieve mth moment stabilization

it is sufficient to consider the simpler function R(m) =
CA(mR(m)), and construct a communication system whose

reliability level depends on the desired stabilization level. It

follows that we do not need to compute the whole anytime

capacity if we are interested only in moment stabilization, and

we may be content with determining the threshold function

R(m) corresponding to its parametric representation. The

extremal properties of R(m) determine the support of the

anytime capacity corresponding to the achievable reliability
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m
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R
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Fig. 3. Stability threshold function and anytime capacity for Example IV.2.

level α. If R(m) = O(1/m) then the anytime capacity has

support bounded by the pre-constant of the asymptotic order.

On the other hand, if R(m) decreases at most sub-linearly

to zero, or it tends to a constant zero-error capacity, then the

anytime capacity has unbounded support and any reliability

level α is achieved.

V. THE MARKOV ERASURE CHANNEL

We now use the stability threshold function to compute the

anytime capacity of the Markov erasure channel. Beside the

memoryless erasure channel and the additive white Gaussian

noise channel with input power constraint, for which the

anytime capacity equals the Shannon capacity, this is the

only case where an explicit anytime capacity formula can be

obtained.

The Markov erasure channel corresponds to a two-state

Markov process where n = 2 R = {0, r̄}, p12 = q, and

p21 = p, where 0 < p, q < 1. In this case,

PT2−mR =

(

(1− q) 1
2mr̄ p

q 1
2mr̄ (1− p)

)

,

and we have the following result, whose proof is given in the

appendix.
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Theorem 6. The anytime capacity of the Markov Erasure

Channel is

CA(α) =
αr̄

α+ log2

(

1−p−2α(1−p−q)
1−(1−q)2−α

) , (34)

if 0 ≤ α < − log2(1 − q), and 0 otherwise.

A. Special cases

We now discuss some special cases, recovering previous

results in the literature. By (34) it follows that the anytime

capacity of the binary erasure channel (BEC) with Markov

erasures and with noiseless channel output feedback is

CA(α) =
α

α+ log2

(

1−p−2α(1−p−q)
1−(1−q)2−α

) . (35)

By letting q = 1 − p, the erasure process becomes i.i.d.

and we recover the anytime capacity of the memoryless BEC

with erasure probability p derived by Sahai [11, page 129]

(in parametric form) and by Xu [15, Theorem 1.3] (in non-

parametric form)

CA(α) =
α

α+ log2

(

1−p
1−p2−α

) . (36)

By (34), letting α → 0, we have that

lim
α→0

CA(α) =
q

p+ q
r̄ = E(R) = C, (37)

where the expectation is taken with respect to the stationary

distribution of P. This recovers the Shannon capacity of an r̄-

bit erasure channel with Markov erasures and with noiseless

channel output feedback.

In the case n = 2, r̄1 = 0, r̄2 = r, and an i.i.d. rate process

with P{Rk = 0} = p1 and P{Rk = r} = p2 for all k’s, then

the stability condition becomes

|λ|m
(

p1 + p22
−mr

)

< 1,

which provides a converse to the achievable scheme of Yüksel

and Meyn [51, Theorem 3.3].

If we further let r → ∞, then the stability condition

p1 > 1/|λ|m depends only on the erasure rate of the channel.

In this case, our condition generalizes the packet loss model

result in [34].

B. Error exponents

We now compare the the anytime error exponent to error

exponents of block codes. Specifically, we can compare the

curves in Fig. 4 obtained by evaluating (34) with the results

by Como, Yüksel, and Tatikonda in [52, Section VI]. to do

APPENDIX A

AUXILIARY RESULTS

We begin with a theorem of Friedland on the log-convexity

of the spectral radius of a nonnegative matrix (superconvexity

as Kingman [53] calls it).

Theorem 7 (Friedland Theorem 4.2 [54]). Let Dn be the set

of n × n real-valued diagonal matrices. Let ρ(A) refer to
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Fig. 4. Anytime reliability of a BEC with Markov erasure for different
recovery probability q and p = 0.8.

the spectral radius of a matrix A. Let A be a fixed n × n
non-negative matrix having a positive spectral radius. Define

φ : Dn → R by φ(D) := log ρ(eDA). Then φ(D) is a convex

functional on Dn. Specifically: for every D1, D2 ∈ Dn and

α ∈ (0, 1),

φ(αD1 + (1− α)D2) ≤ αφ(D1) + (1 − α)φ(D2). (38)

Moreover, if A is irreducible and the diagonal entries of A
are positive (or A is fully indecomposable) then equality holds

in (37) if and only if

D1 −D2 = cI (39)

for some c ∈ R, where I is the identity matrix.

Theorem 8 (Cohen Theorem 1 [55]). Let A be a fixed n× n
non-negative matrix having a positive spectral radius. Define

D := ρ(A)I −A, where I denotes the n× n identity matrix.

Then,

0 <
dρ(A)

da11
=

|D(1)|
∑n

i=1 |D(i)|
< 1 (40)

APPENDIX B

ADDITIONAL RESULTS ON STABILITY OF MJLS

1) Strong mth Moment Stability: We say that the system (1)

is strongly mth moment stable if there exists a finite cm ∈ R

such that

E[|Z|m] → cm, as m → ∞. (41)

Clearly, if a MJLS is strongly stable, then it is also weakly

stable.

Lemma 1. For every positive integer number m = 1, 2, 3, . . . ,
if the MJLS (1) is strongly mth moment stable if and only if

|λ|m <
1

ρ(PT2−mR)
. (42)
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Proof. The proof technique is based on the binomial expansion

and was presented in the CDC paper.

APPENDIX C

PROOF OF PROPOSITION 3

1) This is an immediate consequence of the log-convexity

of the spectral radius of a nonnegative matrix. Let D1 =
−m diag(r̄1, · · · , r̄n) ln 2, D2 = 0n×n and α = n

m .

Notice that PT2−mR = P ′eD1 , log ρ(P ′eD2) = 0, and

H(n) = P ′eαD1 . Then, for every n < m, by Theorem 7

n

m
log ρ(PT2−mR) = α log ρ(P ′eD1) + (1− α) log ρ(P ′eD2)

> log ρ(P ′eαD1+(1−α)D2)

= log ρ(H(n)), (43)

which implies T (n) > T (m).
2) Next,

lim
m→0

R(m) = lim
m→0

log ρ
(

(PT2−mR)
1

m

)

= log ρ
(

lim
m→0

(PT2−mR)
1

m

)

= log ρ









lim
m→0













π12
mr1 · · · π12

mrn

...
...

...

πn2
mr1 · · · πn2

mrn













1

m









= lim
m→0

1

m
log ρ













π12
mr1 · · · π12

mrn

...
...

...

πn2
mr1 · · · πn2

mrn













= lim
m→0

1

m
log

(

∑

i

πi2
mri

)

=
∑

i

πi2
mri

Lemma 2.

lim
m→0

(PT2−mR)
1

m = lim
m→0













π12
mr1 · · · π12

mrn

...
...

...

πn2
mr1 · · · πn2

mrn













1

m

Proof. Let 1/m = k. By the monotonicity property, it is

sufficient to prove the claim for k integer. Let

A :=







p1,12
r1/k · · · p1,n2

r1/k

...
...

...

pn,12
rn/k · · · pn,n2

rn/k






=
(

H− 1

k

)T

and

B :=







π12
r1/k · · · πn2

r1/k

...
...

...

π12
rn/k · · · πn2

rn/k






=













π12
r1/k · · · π12

rn/k

...
...

...

πn2
r1/k · · · πn2

rn/k













T

We prove that

lim
k→∞

Ak = lim
k→∞

Bk.

It is enough to show that

lim
k→∞

[Ak]i,j = lim
k→∞

[Bk]i,j .

Note that

[Ak]i,j =
∑

l1,...,lk−1

(

pil12
i/k
)

· · ·
(

plk−1j2
lk−1/k

)

=
∑

l1,...,lk−1

(

pil1 · · · plk−1j

)

2(i+···+lk−1)/k

and

[Bk]i,j =
∑

l1,...,lk−1

(

πl12
i/k
)

· · ·
(

πlj2
lk−1/k

)

=
∑

l1,...,lk−1

(

πl1 · · ·πlj

)

2(i+···+lk−1)/k

lim
k→∞

([Ak]i,j − [Bk]i,j) = lim
k→∞

∑

l1,...,lk−1

(

pil1 · · · plk−1j − πl1 · · ·πlj

)

2(i+···

≤ lim
k→∞

∑

l1,...,lk−1

(

pil1 · · · plk−1j − πl1 · · ·πlj

)

2n

= 2n







 lim
k→∞

∑

l1,...,lk−1

pil1 · · · plk−1j



−



 lim
k→∞

= 2n
(

lim
k→∞

[P k]i,j − lim
k→∞

[Qk]i,j

)

0.

(i+ · · ·+ lk−1)/k < n.
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[30] S. Yüksel and T. Başar, “Control over noisy forward and reverse
channels,” IEEE Transactions on Automatic Control, vol. 56, no. 5, pp.
1014–1029, May 2011.

[31] V. Borkar and S. Mitter, LQG Control with Communication Constraints.

Communications,Computation, Control and Signal Processing: A Trib-
ute to Thomas Kailath. Kluver, 1997.

[32] P. Minero, M. Franceschetti, S. Dey, and G. Nair, “Data rate theorem for
stabilization over time-varying feedback channels,” IEEE Transactions

on Automatic Control, vol. 54, no. 2, pp. 243–255, Feb. 2009.

[33] L. Coviello, P. Minero, and M. Franceschetti, “Stabilization over Markov
feedback channels: The general case.” IEEE Transactions on Automatic

Control, vol. 58, no. 2, pp. 349–362, 2013.

[34] V. Gupta, D. Spanos, B. Hassibi, and R. M. Murray, “Optimal LQG
control across packet-dropping links,” Systems and Control Letters,
vol. 56, no. 6, pp. 439–446, 2007.

[35] V. Gupta, N. Martins, and J. Baras, “Optimal output feedback control
using two remote sensors over erasure channels,” IEEE Transactions on

Automatic Control, vol. 54, no. 7, pp. 1463–1476, july 2009.

[36] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. Sastry,
“Foundations of control and estimation over lossy networks,” Proceed-

ings of the IEEE, vol. 95, no. 1, pp. 163–187, Jan. 2007.

[37] M. Huang and S. Dey, “Stability of kalman filtering with Markovian
packet losses,” Automatica, vol. 43, no. 4, pp. 598–607, 2007.

[38] N. Elia, “Remote stabilization over fading channels,” Systems and

Control Letters, vol. 54, no. 3, pp. 237–249, 2005.

[39] N. Elia and S. K. Mitter, “Stabilization of linear systems with limited
information,” IEEE Transactions on Automatic Control, vol. 46, no. 9,
pp. 1384–1400, 2001.

[40] S. Tatikonda, A. Sahai, and S. K. Mitter, “Stochastic linear control over
a communication channel,” IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1549–1561, Sept. 2004.

[41] J. Braslavsky, R. Middleton, and J. Freudenberg, “Feedback stabilization
over signal-to-noise ratio constrained channels,” IEEE Transactions on

Automatic Control, vol. 52, no. 8, pp. 1391–1403, Aug. 2007.
[42] R. Middleton, A. Rojas, J. Freudenberg, and J. Braslavsky, “Feedback

stabilization over a first order moving average Gaussian noise channel,”
IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 163–167,
2009.

[43] J. Freudenberg, R. H. Middleton, and V. Solo, “Stabilization and
disturbance attenuation over a Gaussian communication channel,” IEEE

Transactions on Automatic Control, vol. 55, no. 3, pp. 795–799, 2010.
[44] E. Silva, G. Goodwin, and D. Quevedo, “Control system design subject

to snr constraints,” Automatica, vol. 46, no. 2, Dec. 2010.
[45] E. Ardestanizadeh and M. Franceschetti, “Control-theoretic approach

to communication with feedback,” IEEE Transactions on Automatic

Control, vol. 57, no. 10, October 2012.
[46] Y.-H. Kim, “Feedback capacity of stationary Gaussian channels,” IEEE

Trans. Inf. Theory, vol. 56, no. 1, pp. 57–85, 2010.
[47] N. Elia, “When Bode meets Shannon: control-oriented feedback com-

munication schemes,” IEEE Transactions on Automatic Control, vol. 49,
no. 9, pp. 1477–1488, Sept. 2004.

[48] E. Ardestanizadeh, P. Minero, and M. Franceschetti, “LQG control
approach to Gaussian broadcast channels with feedback,” IEEE Trans.
Inf. Theory, vol. 58, no. 8, pp. 5267–5278, Aug. 2012.

[49] O. Costa, D. Fragoso, and R. Marques, Discrete-Time Markov Jump

Linear Systems, ser. Probability and its Applications. Springer, 2004.
[50] Y. Fang, K. A. Loparo, and X. Fend, “Almost sure and δ-moment

stability of jump linear systems,” International Journal of Control,
vol. 59, no. 5, pp. 1281–1307, 1994.

[51] S. Yuksel and S. Meyn, “Random-time, state-dependent stochastic drift
for markov chains and application to stochastic stabilization over erasure
channels,” IEEE Transactions on Automatic Control, vol. 58, no. 1, pp.
47–59, Jan. 2012.
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