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Abstract—Several new expressions for the anytime ca-

pacity of Sahai and Mitter are presented for a time-varying

rate-limited channel with noiseless output feedback. These

follow from a parametric characterization obtained in the

case of Markov channels, and include an explicit formula

for the r-bit Markov erasure channel, as well as formulas

for memoryless rate processes including Binomial, Pois-

son, and Geometric distributions. Beside the memoryless

erasure channel and the additive white Gaussian noise

channel with input power constraint, these are the only

cases where the anytime capacity has been computed. At

the basis of these results is the study of the threshold

function for m-th moment stabilization of a scalar linear

system controlled over a Markov time-varying digital

feedback channel that depends on m and on the channel’s

parameters. This threshold is shown to be a continuous and

strictly decreasing function of m and to have as extreme

values the Shannon capacity and the zero-error capacity as

m tends to zero and infinity, respectively. Its operational

interpretation is that of achievable communication rate,

subject to a reliability constraint.

Index Terms—Anytime capacity, entropy power inequal-

ity, Markov channels, Markov jump linear systems, quan-

tized control.

I. INTRODUCTION

We consider the problem of moment stabilization of

a dynamical system where the estimated state is trans-

mitted for control over a time-varying communication

channel. This has been studied extensively in the context

of networked control systems and discussed in several

special issue journals dedicated to the topic [1]–[3].

Recently, it gained renewed attention due to its relevance

for the design of cyberphysical systems [4]. A tutorial

review with extensive references appears in [5].

The notion of Shannon capacity is in general not

sufficient to characterize the trade-off between the en-

tropy rate production of the system, expressed by the

growth of the state space spanned in open loop, and the

communication rate required for its stabilization. A large
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Shannon capacity is useless for stabilization if it cannot

be used in time for control. For the control signal to be

effective, it must be appropriate to the current state of the

system. Since decoding the wrong codeword implies ap-

plying a wrong signal and driving the system away from

stability, applying an effective control signal depends on

the history of whether previous codewords were decoded

correctly or not. In essence, the stabilization problem is

an example of interactive communication [6], where two-

way communication occurs through the feedback loop

between the plant and the controller. For this reason,

usage of alternative capacity notions with stronger reli-

ability constraints than a vanishing probability of error

has been proposed, including the zero-error capacity [7],

originally introduced by Shannon [8], and the anytime

capacity of Sahai and Mitter [9], [10]–[13].

Within this general framework, we focus on the m-

th moment stabilization of an unstable scalar system

whose state is communicated over a rate-limited channel

capable of supporting Rk bits at each time step k and

evolving randomly in a Markovian fashion, see Fig. 1.

The rate process is known casually to both encoder and

decoder. Many variations of this “bit-pipe” model have

been studied in the literature [14]–[34], including the

case of fixed rate channel; the erasure channel where the

rate process can assume value zero; and the packet loss

channel, where the rate process can oscillate randomly

between the two values of zero and infinity, allowing

a real number with infinite precision to be transported

across the channel in one time step. Connections between

the rate limited and the packet loss channel have been

pointed out in [27], [28], showing that results for the

latter model can be recovered by appropriate limiting

arguments.

Beside the bit-pipe model, stabilization over the ad-

ditive white Gaussian channel has also been considered

in [35]–[39] and in this case the Shannon capacity has

been shown to be sufficient to express the rate needed for

stabilization. Extensions to the additive colored Gaussian

channel [40] show that the maximum “tolerable instabil-

ity” — expressed by the sum of the logarithms of the

unstable eigenvalues of the system that can be stabilized

by a linear controller with a given power constraint

over a stationary Gaussian channel— corresponds to the

Shannon feedback capacity [41], that assumes the pres-
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ence of a noiseless feedback link between the output and

the input of the channel and that is subject to the same

power constraint. This suggests a duality between the

problems of control and communication in the presence

of feedback, and indeed it has been shown that efficient

feedback communication schemes can be obtained by

solving a corresponding control problem [42], [43].

The major contribution of the present paper is the

introduction of a stability threshold function of the

channel’s parameters and of the moment stability number

m that converges to the Shannon capacity for m → 0,

to the zero-error capacity for m → ∞, and it provides a

parametric characterization of the anytime capacity for

the remaining values of m. This function yields a novel

anytime capacity formula in the special case of the r-bit

Markov erasure channel, as well as novel formulas for

memoryless rate processes including Binomial, Poisson,

and Geometric distributions. It also provides a general

strategy to compute the anytime capacity of an arbitrary

memoryless channel with given rate distribution. To

prove our results, we require some extensions of the

theory of Markov Jump Linear Systems (MJLS), that

are of independent value. In passim, although we do

not deal with the case of vector systems, we point out

that our results can be extended to this case exploiting

usual bit-allocation techniques outlined in [27], [28], at

the expense of a more technical treatment that does not

provide additional engineering insight.

The rest of the paper is organized as follows. Some

preliminary results on Markov Jump Linear Systems,

necessary for our derivations are presented in Section II.

Section III describes the system and channel model and

introduces the stability threshold function, illustrating

some of its properties. Section IV describes relationships

with the anytime capacity, and provides some represen-

tative examples. Section V provides the formula for the

anytime capacity of the Markov erasure channel.

Throughout the paper, the following notation is used.

Logarithm are assumed to be in base two; random

variables are denoted with uppercase letters, while their

realizations with lowercase letters; matrices are also

denotes in uppercase letters, but we denote them with

the special typeset A.

II. MARKOV JUMP LINEAR SYSTEMS.

Consider the scalar non-homogeneous MJLS [44] with

dynamics

zk+1 = akzk + wk, (1)

where zk denotes the state, wk is an additive disturbance,

and {Ak}k≥0 is a Markov rate process defined on a finite

set

A = {ā1, . . . , ān} ⊆ R
n, (2)

and with one-step transition probability matrix P having

entries

pij = P{Ak = āj |Ak−1 = r̄i} (3)

for every i, j ∈ {1, . . . , n}.

We assume that the initial condition Z0 and the distur-

bance process {Wk}k are mutually independent random

variables with finite m-th moment. The system (1) is

said to be weakly m-th moment stable if

sup
k

E(|Z|m) < ∞. (4)

Let A ∈ Z
n×n
+ be a diagonal matrix with diagonal

entries ā1, . . . , ān, i.e.,

A = diag(|ā1|
m, . . . , |ān|

m). (5)

The following lemma states the necessary and sufficient

condition for m-th moment stability of the system (1).

Theorem 1. For any m ∈ R
+, the MJLS (1) is weakly

m-th moment stable if and only if

ρ(PTA) . 1, (6)

The usage of the symbol “.” indicates that while the

necessary condition holds with a weak inequality, the

sufficient condition requires a strong inequality.

Proof: The sufficient condition is obtained by sub-

sampling the original MJLS at a sampling rate of τ
samples and then showing the weak stability of the

subsampled system Yk = Zkτ , k = 0, 1, · · · . The

weak stability of {Yk}k is sufficient to ensure that (4)

holds, because the m-th moment of the system in fact

cannot grow unbounded in any finite time horizon due

the assumptions that |ā1|, . . . , |ān| are finite and that

supk E(|Wk|
m) ≤ ∞.

By iterating (1) τ times, it can be seen that the

subsampled process is a non-homogeneous MJLS with

dynamics

yk+1 = bkyk + ck, (7)

where for every k ≥ 0 we define Bk =
∏(k+1)τ−1

j=kτ Ak

as the random expansion of the open-loop sys-

tem during the k-th sampling interval and Ck =
∑τ−1

j=0

(
∏τ−1

i=j Akτ+i

)

Wkτ+j as the total disturbance en-

tering the system in the k-th sampling interval. Notice

that supk E(|Ck|
m) < ∞, since by assumption the

disturbance process {Wk}k has bounded m-th moment.
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By taking the m-th power in both sides of (7) and by

applying the inequality (x+y)m ≤ 2m(xm+ym), which

holds for any m > 0, it follows that

E(|Y |m) ≤ 2mE(|Bk|
m|Yk|

m) + const, (8)

where const represents a uniform bound on the m-th

moment of {Ck}k. Let vk,i = E(|Yk+1|
m1{Ak=āi

}),
i = 1, . . . , n. By repeatedly applying the law of total

probability on both sides of (8), it can be easily seen that

the vector vk = (vk,1, . . . , vk,n)
T satisfies the following

component-wise vector inequality

vk+1 ≤ 2m
(

PTA
)τ
vk + c, (9)

where c is again a constant that only depends on the

statistics of the disturbance process. If (6) holds we

can choose the subsampling rate τ large enough to

ensure that ρ(2m
(

PTA
)τ
) < 1 and thus that the above

recursion remains bounded. Since E(|Yk|
m) =

∑n
i=1 vk,i

it follows that ρ(PTA) < 1 is sufficient to ensure that

supk E(|Yk|
m) < ∞ as desired.

The proof of the necessary condition relies on the

fact that the non-homogeneous MJLS {Zk}k is weakly

stable only if the homogeneous MJLS obtained by setting

wk = 0 in (1) is weakly stable. Therefore, we focus

on the homogeneous setting wherein wk = 0 for all k
and let vk,i = E(|Zk+1|

m1{Ak=āi
}) for i = 1, . . . , n.

By (1) and the law of total probability, the vector

vk = (vk,1, . . . , vk,n)
T evolves over time according to

the linear system

vk+1 = PTAvk. (10)

Since E(|Zk|
m) =

∑n
i=1 vk,i, we conclude that (4)

can hold only if the above linear system is stable and

therefore only if ρ(PTA) ≤ 1, as claimed.

Theorem 1 extends the well known conditions for

second moment stability given in [44] to m-th moment

stability. A similar result appears in [45, Theorem 3.2],

limited to the special case of a homogeneous MJLS

driven by an i.i.d. rate process.

III. MOMENT STABILIZATION OVER MARKOV

CHANNELS

Results on the stability of MJLS are used to charac-

terize the stability of linear dynamical systems where

the estimated state is sent to the controller over a

digital communication link whose state is described by

a Markov process, as depicted in Fig. 1.
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Fig. 1. Feedback loop model. The estimated state is quantized,

encoded and sent to a decoder over a digital channel of state Rk

that evolves according to a Markov process of discrete time step k.

A. System model

Consider the scalar dynamical system

xk+1 = λxk + uk + vk,

yk = xk + wk, (11)

where k ∈ N, and |λ| ≥ 1. The variable xk represents the

state of the system, uk the control input, vk is an additive

stochastic disturbance, yk is the sensor measurement, and

wk is the measurement noise. Both disturbance and noise

are independent of each other and of the initial condition

x0. They are also independent of the channel state, as

defined below.

B. Channel Model

The state observer is connected to the actuator through

a noiseless digital communication link that at each time

k allows transmission without errors of Rk bits. The rate

process {Rk}k≥0 is modeled as a homogeneous positive-

recurrent Markov process defined on the finite set

R = {r̄1, . . . , r̄n}, (12)

for some integer numbers 0 ≤ r̄1 < · · · < r̄n, and with

one-step transition probability matrix P having entries

pij = P{Rk = r̄j|Rk−1 = r̄i} (13)

for every i, j ∈ {1, . . . , n}. In the sequel, we define

R ∈ Z
n×n
+ as the diagonal matrix with diagonal entries

r̄1, . . . , r̄n, i.e.,

R = diag(r̄1, . . . , r̄n). (14)

Encoder and decoder are supposed to have causal knowl-

edge of the rate process.

This noiseless digital link corresponds to a discrete-

memoryless channel with Markov state available

causally at both the encoder and the decoder. A channel

with state is defined by a triple (X × S, p(y|x, s),Y)
consisting of an input set X , a state set S , an output

set Y , and a transition probability matrix p(y|x) for

every x ∈ X , s ∈ S , and y ∈ Y . This channel is

memoryless if the output yk at time k is condition-

ally independent of everything else given (xk, sk). The
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state sequence is Markov if S0, S1, . . . forms a Markov

chain. According to these definitions, our channel model

is a discrete-memoryless channel with Markov state

(X × S, p(y|x, s),Y) with X = Y = {1, . . . , r̄n},

S = {r̄1, · · · , r̄n},

p(y|x, s) =

{

1 x = y and x ≤ s

0. otherwise
(15)

and state transition probabilities

p(sk+1 = r̄j|sk = r̄i) = pij. (16)

The Shannon capacity of this channel is [46]

C =

n
∑

i=1

πir̄i, (17)

where (π1, . . . , πn) denotes the unique stationary distri-

bution of P.

The zero-error capacity of this channel is [8]

C0 = r̄1. (18)

Next, we show that the capacities in (17) and (18) are

the limiting values of a stability threshold function in-

dicating the channel’s rate-reliability constraint required

to achieve a given level of stabilization. As m → ∞ and

the system is highly stable, then the stability threshold

function tends to the zero-error capacity that has a hard

reliability constraint of providing no decoding error.

Conversely, as m → 0 and the system’s stability level

decreases, then the stability threshold function tends to

the Shannon capacity that has a soft reliability constraint

of vanishing probability of error.

C. Stability threshold function

The system (11) is m-th moment stable if

sup
k

E[|Xk|
m] < ∞, (19)

where the expectation is taken with respect to the random

initial condition x0, the additive disturbance vk, and the

rate process Rk.

The following Theorem establishes the equivalence

between the m-th moment stability of (11) and the weak

moment stability of a suitably defined MJLS.

Theorem 2. There exists a control scheme that stabilizes

the scalar system (11) in m-th momemt sense if and only

if the scalar non-homogeneous MJLS with dynamics

zk+1 =
|λ|

2mrk
zk + const, (20)

for some suitably defined constant const is weakly m-th

moment stable, i.e., if and only if

log |λ| . −
1

m
log ρ(PT2−mR) , R(m). (21)

The proof is given in the appendix assuming the

disturbance has bounded support. This assumption is

made for ease of presentation and to compare our results

to the ones on the anytime capacity that only apply

to plants with bounded disturbance [9]. The extension

to unbounded disturbance can be easily obtained using

standard, but more technical, adaptive encoding schemes

described in [20], [27], [28].

We mention several properties of the threshold func-

tion R(m), whose proofs are given in the appendix.

Proposition 1. The following holds:

1) Monotonicity: R(m) is continuous and strictly

decreasing for m > 0.

2) Convergence to the Shannon capacity:

lim
m→0

R(m) =

n
∑

i=1

πir̄i = C. (22)

3) Convergence to the Zero Error capacity:

R(m) ∼ r̄1 −
1

m
log p11, as m → ∞, (23)

and hence

lim
m→∞

R(m) = r̄1 = C0. (24)

4) Sensitivity with respect to self-loop probabilities:

dR(m)

dpii
= −

2−mr̄ii

mρ(PT2−mR)

|D(1)|
∑n

i=1 |D(i)|
< 0,

(25)

where D := ρ(PT2−mR)I−PT2−mR, I denotes the

n×n identity matrix, and |D(i)| is the determinant

of the matrix obtained by eliminating the ith row

and the ith column from D. We also have the

asymptotic behavior

dR(m)

dp11
∼ −

1

mp11 ln(2)
as m → ∞. (26)

5) The function mR(m) is nonnegative, strictly in-

creasing, and strictly concave. If r̄1 6= 0, then

mR(m) grows unbounded as m → ∞. If instead

r̄1 = 0, then

lim
m→∞

mR(m) = − log p11. (27)
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IV. ANYTIME CAPACITY OF MARKOV CHANNELS

We relate the stability threshold function R(m) to the

anytime capacity. For the given Markov channel, R(m)
provides a parametric representation of the anytime

capacity in terms of system’s stability level m.

The anytime capacity is defined in the following

context [11]. Consider a system for information trans-

mission that allows the decoding time to be infinite,

and improves the reliability of the estimated message

as time progresses. More precisely, at each step k in

the evolution of the plant a new message mk of r bits

is generated that must be sent over the channel. The

coder sends a bit over the channel at each time k and

the decoder upon reception of the new bit updates the

estimates for all messages up to time k. It follows that

at time k messages

m0,m1, . . . ,mk

are considered for estimation, while estimates

m̂0|k, m̂1|k, . . . , m̂k|k

are constructed, given all the bits received up to time

k. Hence, the processing operation for any message mi

continues indefinitely for all k ≥ i. A reliability level

α is achieved in the given transmission system if for

all k the probability that there exists at least a message

in the past whose estimate is incorrect decreases α-

exponentially with the number of bits received, namely

for all d ≤ k

P{(M̂0|k, . . . , M̂d|k) 6= (M0, . . . ,Md)} = O(2−αd).
(28)

The described communication system is characterized by

a rate-reliability pair (r, α). The work in [11] has shown

that for scalar systems the ability to achieve stability

depends on the ability to construct such a communication

system, in terms of achievable coding and decoding

schemes, with a given rate-reliability constraints.

To state this result in the context of our Markov chan-

nel, let the α-anytime capacity CA(α) be the supremum

of the rate r that can be achieved with reliability α. The

problems of α-reliable communication and m-th moment

stabilization of a scalar system over a Markov channel

are then equivalent in the sense of the following theorem.

Theorem 3 (Sahai, Mitter [11]). The necessary and

sufficient condition for m-th moment stabilization of a

scalar system with bounded disturbances and in the

presence of channel output feedback over a Markov

channel is

log |λ| . CA(m log |λ|). (29)

The anytime capacity is an intermediate notion be-

tween the zero-error capacity and the Shannon capacity.

The zero-error capacity requires transmission without

error. The Shannon capacity requires the decoding error

to tend to zero by increasing the length of the code. In the

presence of disturbances, only a critical value of the zero-

error capacity can guarantee the almost sure stability of

the system [7]. On the other hand, for scalar systems in

the presence of bounded disturbances, a critical value of

the anytime capacity can guarantee the ability to stabilize

the system in the weaker m-th moment sense.

By combining Theorem 2 and Theorem 3, we obtain

the following result.

Theorem 4. The following holds:

1) Parametric characterization of the anytime capac-

ity: For every m > 0, the anytime capacity CA

satisfies

CA

(

mR(m)
)

= R(m), (30)

i.e., for every α ≥ 0, there exists a unique m(α)
such that

m(α)R
(

m(α)
)

= α (31)

and

CA(α) = R
(

m(α)
)

=
α

m(α)
. (32)

2) CA(α) is a strictly decreasing function function of

α > 0.

3) Convergence to the Shannon capacity:

lim
α→0

CA(α) =

n
∑

i=1

πir̄i = C, (33)

4) Convergence to the Zero Error capacity: If r̄1 = 0,

then for every α ≥ log(1/p11)

CA(α) = 0 = C0. (34)

Conversely, if r̄1 6= 0, then CA(α) has unbounded

support and

CA(α) ∼ r̄1
α

α− log(1/p11)
, as α → ∞,

(35)

hence

lim
α→∞

CA(α) = r̄1 = C0. (36)

Proof: By Theorem 2 and Theorem 3, at the bound-

aries of the stability region we must have that

log |λ| = R(m). (37)

and

log |λ| = C(m log |λ|). (38)
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Therefore, (30) follows by combining (37) and (38).

Next, by Proposition 1, the function φ(m) = mR(m) is

increasing and strictly concave, thus invertible. It follows

that for every α ≥ 0, there exists a unique m := m(α)
such that

mR(m) = α. (39)

Substituting this equality into (30), it follows that

CA(α) = R
(

m(α)
)

. as claimed. The remaining prop-

erties are immediate consequences of Proposition 1.

By definition, CA(α) is non increasing in α. Since

both mR(m) and R(m) are both monotonic function

of m, however, it follows that CA(α) must be strictly

decreasing in α, thus establishing 2). Property 3) follows

from (30) combined with the fact that mR(m) → 0 and

R(m) → C as m → 0. Similarly, property 4) follow

directly by combining (30) with properties 3) and 5) in

Proposition 1.

We now give some representative examples of the

stability threshold function, visually showing its extremal

properties and its relationship to the anytime capacity.

Example IV.1. Let n = 4,R = {1, 3, 4, 5} and P
be is a 4 × 4 circulant matrix with first row equal to
1
16 (1, 13, 1, 1), namely

P =
1

16











1 13 1 1

13 1 1 1

1 1 1 13

1 1 13 1











. (40)

In this case it is easy to compute C = 1
4(1 + 3 +

4 + 5) = 13
4 and C0 = 1. Figure 2 plots the stability

threshold function R(m) (together with its asymptotic

approximation) and the anytime capacity CA(α). Both

curves have the same shape and they are in fact related

by an affine transformation as m grows. Furthermore,

both curves have unbounded support and tend to one at

infinity. There is a change of convexity for small values

of m and α, as indication that R(m) and CA(α) are

generally not convex functions. In contrast, the function

φ(m) = mR(m), reported in red in the top plot of

Figure 2, is strictly convex and increasing.

Example IV.2. Let R = {0, 3, 4, 5} and P is as in (40).

The only difference with the previous example is that

r̄1 is now 0 instead than 1. In this case it is easy to

compute C = 1
4(0+3+4+5) = 3 and C0 = 0. Figure 3

plots the stability threshold function R(m) (together with

its asymptotic approximation) and the anytime capacity

CA(α). In this case, while R(m) has unbounded support,

CA(α) is zero for all α ≥ − log p11 = log 16 = 4. This
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Fig. 2. Stability threshold function and anytime capacity for Exam-

ple IV.1

occurs because the function φ(m) = mR(m) saturates

as m → ∞, tending to the limiting value − log p11 = 4.

When viewed together, the two examples above show

that for some channels, like the one in Example IV.2, a

communication system with an arbitrary rate-reliability

pair (r, α) cannot be constructed, because the anytime

capacity may have bounded support and tend abruptly

to zero. However, in order to achieve m-th moment

stabilization it is sufficient to consider the parametric

function R(m) = CA(mR(m)), and construct a com-

munication system whose reliability level depends on

the desired stabilization level. It follows that we do

not need to compute the whole anytime capacity if

we are interested only in moment stabilization, and we

may be content with determining the threshold function

R(m) corresponding to its parametric representation.

The extremal properties of R(m) determine the support

of the anytime capacity corresponding to the achievable

reliability level α. If R(m) = O(1/m) then the anytime

capacity has support bounded by the pre-constant of the
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Fig. 3. Stability threshold function and anytime capacity for Exam-

ple IV.2.

asymptotic order. On the other hand, if R(m) decreases

at most sub-linearly to zero, or it tends to a constant zero-

error capacity, then the anytime capacity has unbounded

support and any reliability level α can be achieved.

V. THE MARKOV ERASURE CHANNEL

We use the stability threshold function to characterize

the anytime capacity of the Markov erasure channel.

The Markov erasure channel corresponds to a two-

state Markov process where n = 2 R = {0, r̄}, p12 = q,

and p21 = p, where 0 < p, q < 1. In this case,

PT2−mR =

(

(1− q) 1
2mr̄ p

q 1
2mr̄ (1− p)

)

, (41)

and we have the following result.

Theorem 5. The anytime capacity of the Markov Erasure

Channel is

CA(α) =
αr̄

α+ log2

(

1−p−2α(1−p−q)
1−(1−q)2α

) , (42)

if 0 ≤ α < − log2(1− q), and 0 otherwise.

Proof: By (31) and the definition of R(m), for every

α there exists an m(α) such that

ρ(PT2−m(α)R) = 2−α (43)

In the case of a Markov erasure channel, a simple

calculation shows that

ρ(PT2−mR) =
tr

2
+

1

2

√

tr2 − 4det, (44)

where tr and det denote the trace and determinant of (41),

respectively. By combining (43) and (44) and squaring

both sides of the resulting equation, it follows that m(α)
must satisfy

2−αtr − 4det = 2−α+1, (45)

where tr = (1 − q) + 2−m(α)r̄(1 − p) and det =
2−m(α)r̄(1− p− q). Solving (45) yields

m(α) =
1

r̄

(

α+ log2

(

1− p− 2α(1− p− q)

1− (1− q)2α

))

(46)

for 0 ≤ α < − log2(1 − q). Finally, substituting (46)

into (32) yields (42).

A. Special cases

Several special cases recover previous results in the

literature. By (42) it follows that the anytime capacity of

the binary erasure channel (BEC) with Markov erasures

and with noiseless channel output feedback is

CA(α) =
α

α+ log2

(

1−p−2α(1−p−q)
1−(1−q)2α

) . (47)

By letting q = 1−p, the erasure process becomes i.i.d.

and we recover the anytime capacity of the memoryless

BEC with erasure probability p derived by Sahai [9, page

129] (in parametric form) and by Xu [13, Theorem 1.3]

(in non-parametric form)

CA(α) =
α

α+ log2

(

1−p
1−p2α

) . (48)

By (42), letting α → 0, we have that

lim
α→0

CA(α) =
q

p+ q
r̄ = C, (49)

This recovers the Shannon capacity of an r̄-bit erasure

channel with Markov erasures and with noiseless channel

output feedback.

In the case n = 2, r̄1 = 0, r̄2 = r, and an i.i.d. rate

process with P{Rk = 0} = p1 and P{Rk = r} = p2 for

all k, then the stability condition becomes

|λ|m
(

p1 + p22
−mr

)

< 1,
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which provides a converse to the achievable scheme of

Yüksel and Meyn [47, Theorem 3.3].

If we further let r → ∞, then the stability condition

p1 > 1/|λ|m only depends on the erasure rate of the

channel. In this case, our condition generalizes the packet

loss model result in [29].

VI. MEMORYLESS CHANNELS

We show that the stability threshold function can be

used to determine the anytime capacity of an arbitrary

memoryless channel of given rate distribution and pro-

vide three relevant examples of this computation. Beside

the memoryless erasure channel and the additive white

Gaussian noise channel with input power constraint,

these are the only cases where the anytime capacity has

been computed.

Consider the special case of an i.i.d. rate process

Rk where Rk ∼ R has probability mass function

pi = P{R = r̄i}, r̄i ∈ R. For t real, let MR(t) = E(etR)
denote the moment generating function of R and let

M−1
R (y) denotes the inverse of the MR(t), if it exists,

i.e., M−1
R (y) = t if and only if MR(t) = y.

We have the following result.

Theorem 6. The anytime capacity of a memoryless

channel with rate distribution R is

CA(α) =
ln 2−α

M−1
R (2−α)

(50)

for α < − log p11 if r̄0 = 0, or for any α > 0 if r̄0 6= 0.

Proof: In the special case of an i.i.d. rate process,

PT2−mR =
(

p1, . . . , pn
)T(

2−mr̄1 , . . . , 2−mr̄n
)

is a rank-one matrix whose only nonzero eigenvalue is
∑n

i=1 pi2
−mr̄i = E(2−mR). Therefore, in this case

R(m) = −
1

m
logE(2−mR)

= −
1

m
logMR(−m ln 2). (51)

By combining (31) and (51), we find that α =
− logMR(−m(α) ln 2) and so

m(α) = −
1

ln 2
M−1

R (2−α), (52)

where M−1
R (y) exists in light of property 5) in Proposi-

tion 1. Thus, by (32), (50) follows.

Theorem 6 shows that in the case the channel is

memoryless, the anytime capacity can be evaluated by

computing the inverse of the moment generating function

of R, as illustrated in the next three examples.

Example VI.1. Suppose that R is a binomial random

variable with parameters k and 1− p. Then,

MR(t) = (p+ (1− p)et)k (53)

and

M−1
R (y) = ln

y1/k − p

1− p
, y < pk, (54)

and thus by (50)

CA(α) =
α

α/k + log2

(

1−p
1−p2α/k

) (55)

for α < −k log p. Notice that (55) recovers (48) in

the special case k = 1 in which R is Bernoulli with

parameter 1− p.

Example VI.2. Suppose that R is a Poisson random

variable with parameter λ. Then,

MR(t) = eλ(e
t−1) (56)

and

M−1
R (y) = ln(1 + 1/λ ln y), y > 0, (57)

and thus by (50)

CA(α) = −
α

log(1− α/λ ln 2)
(58)

for α < −λ/ ln 2.

Notice in both examples r̄1 = 0, so the anytime

capacity has bounded support. In the next example

r̄1 = 1 and thus the anytime capacity is defined for all

α > 0.

Example VI.3. Suppose that R is a geometric random

variable with parameter p. Then,

MR(t) =
pet

1− (1− p)et
(59)

for t < − ln(1− t) and

M−1
R (y) = ln

y

p+ y(1− p)
, y > 0, (60)

for y > 0, and thus

CA(α) =
α

log
(

(1− p) + p2α
) , α > 0. (61)

Plots of the anytime capacity for different memoryless

channels are given in Fig. 4. Plots for the Binomial,

Poisson, and Geometric distributions correspond to the

results in Examples VI.1, VI.2, and VI.3. The plot for the

uniform distribution is obtained by numerically inverting

the moment generating function of the rate process.
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Fig. 4. Comparison of the anytime capacity for different memoryless

channels. For the uniform distribution the plot is obtained numeri-

cally.

VII. CONCLUSION

We presented a parametric characterization of the any-

time capacity in terms of the threshold function for m-th

moment stabilization of a scalar linear system controlled

over a Markov time-varying digital feedback channel that

depends on m and on the channel’s parameters. This

parametrization allows an explicit computation of the

anytime capacity of the r-bit Markov erasure channel,

and of Binomial, Poisson, and Geometric memoryless

rate processes. It also provides a general strategy to

compute the anytime capacity of arbitrary memoryless

channels of given rate distribution, based on the inversion

of the moment generating function of the process. The

operational interpretation of the stability threshold func-

tion is that of achievable communication rate, subject

to a reliability constraint, and it has as extreme values

the Shannon capacity, corresponding to a soft reliability

constraint, and the zero-error capacity, corresponding to

hard reliability. It follows that a more stringent stability

requirement for the system, expressed in terms of higher

moment, translates in a harder reliability constraint for

communication.

Our technical derivation relies on some extensions of

the theory of MJLS. We provide the generalization of the

necessary and sufficient conditions for second moment

stability of MJLS to m-th moment stability. A commonly

encountered notion of stochastic stability in the MJLS

literature [44] is the one of strong moment stability,

according to which the MJLS (1) is stable if there exists

a finite αm ∈ R such that E[|Z|m] → αm, as m → ∞.
Clearly, if a MJLS is strongly stable, then it is also

weakly stable according to our definition. It can be

verified that our proof of the necessary condition in The-

orem 1 extends to the case of strong moment stability,

thereby establishing the necessity of (6) for the strong

moment stability of (1). In contrast, the subsampling

technique used in the direct part of Theorem 1 is not

suitable to prove strong moment stability because it

cannot prevent undesirable fluctuations in the system

dynamics between any two sampling periods. In [48]

we presented a different proof technique based on the

binomial expansion of (akzk + wk)
m which can be

used to prove that (6) is a sufficient condition for the

strong moment stability of (1). This approach however

requires m to be an integer number, as opposed to

the subsampling technique which can be applied to any

m > 0.

Finally, there is no difficulty, sic et simpliciter, but at

the expense of a more technical treatment, to extend our

results to vector systems using bit-allocation techniques

outlined in [27], [28], and to disturbances of unbounded

support using standard adaptive schemes [20], [27], [28].

APPENDIX A

AUXILIARY RESULTS

We state a series of auxiliary results that are needed in

the rest of the paper. We begin with a maximum entropy

result which generalizes the well-know result that the

second moment of a continuous random variable X is

lower bounded by its entropy power e2h(X) to the case

of the Lm-norm of a continuous random vector.

Lemma 1. Let X be a continuous n-dimensional vector-

valued random variable with E[||X||mm] < ∞, where m
is a positive real number. Let ‖X‖m = (

∑

i |Xi|
m)1/m

denote the Lm-norm of X. Then,

E[||X||mm] ≥
n

cm
e

m

n
h(X) (62)

where cm = 2mm1−me
(

Γ( 1
m )
)m

and Γ(x) =
∫∞
0 e−ttx−1dt. Equality holds if and only if X1, · · · ,Xn

are i.i.d ∼ X, where

fX(x) =
exp

(

− |x|m

mµm

)

2m(1−m)/mµΓ
(

1
m

) , x ∈ R. (63)

Proof: First, notice that by the maximum entropy

theorem [49, Theorem 12.1.1], the unique density fX(x)
that maximizes the differential entropy h(X) over all

probability densities f having m-th moment equal to

|X|m is given in (63). Notice that if X ∼ fX(x), then

h(X) = 1
m log[cmE[|X|m]]. Next, by using the fact that

conditioning reduces the entropy,

h(X) ≤
n
∑

i=1

h(Xi)
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≤
n
∑

i=1

1

m
log[cmE[|Xi|

m]]

≤
n

m
log

[

cm
n

n
∑

i=1

E[|Xi|
m]

]

=
n

m
log
[cm
n
E[||X||mm]

]

where the second inequality follows from the maximum

entropy theorem applied to each random variable Xi,

while the last inequality follows from Jensen’s inequality.

It should be remarked that inequality (62) with n = 1
is a special case of a result proved in [50] relating the m-

th moment and the Renyi entropy of a random variable.

Next, we state a known result on the log-convexity

of the spectral radius of a nonnegative matrix which is

needed to prove some of the properties of R(m).

Lemma 2 (Friedland, Theorem 4.2 [51]). Let Dn be the

set of n× n real-valued diagonal matrices. Let A be a

fixed n×n non-negative matrix having a positive spectral

radius. Define φ : Dn → R by φ(D) := log ρ(eDA).
Then φ(D) is a convex functional on Dn. Specifically:

for every D1,D2 ∈ Dn and α ∈ (0, 1),

φ(αD1 + (1−α)D2) ≤ αφ(D1) + (1− α)φ(D2). (64)

Moreover, if A is irreducible and the diagonal entries

of A are positive (or A is fully indecomposable) then

equality holds in (64) if and only if

D1 −D2 = cI (65)

for some c ∈ R, where I is the identity matrix.

Next, we state a result on the derivative of the spectral

radius as a function of non-negative matrix elements.

Lemma 3 (Cohen, Theorem 1 [52]). Let A be a fixed

n × n non-negative matrix having a positive spectral

radius. Define D := ρ(A)I − A, where I denotes the

n× n identity matrix. Then,

0 <
dρ(A)

da11
=

|D(1)|
∑n

i=1 |D(i)|
< 1 (66)

where D := ρ(A)I − A, I denotes the n × n identity

matrix, and |D(i)| is the determinant of the matrix

obtained by eliminating the ith row and the ith column

from D.

Finally, we show a result on the asymptotic behavior

of PT2−mR as m → ∞.

Lemma 4. The following equality holds

lim
m→0

(PT2−mR)
1

m = lim
m→0













π12
−mr̄1 · · · π12

−mr̄n

...
...

...

πn2
−mr̄1 · · · πn2

−mr̄n













1

m

Proof. Let 1/m = k. By the monotonicity property of

R(m), it is sufficient to prove the claim for k integer.

Therefore, let

A :=







p112
−r̄1/k · · · p1n2

−r̄1/k

...
...

...

pn12
−r̄n/k · · · pnn2

−r̄n/k






=
(

PT2−1/kR
)

T

and

B :=







π12
−r̄1/k · · · πn2

−r̄1/k

...
...

...

π12
−r̄n/k · · · πn2

−r̄n/k







To establish the claim it suffices to show that

lim
k→∞

Ak = lim
k→∞

Bk.

To do so, we prove that

lim
k→∞

[Ak]i,j = lim
k→∞

[Bk]i,j.

Note that

[Ak]i,j =
∑

l1,...,lk−1

(

pil12
−i/k

)

· · ·
(

plk−1j2
−lk−1/k

)

=
∑

l1,...,lk−1

(

pil1 · · · plk−1j

)

2−(i+···+lk−1)/k

and

[Bk]i,j =
∑

l1,...,lk−1

(

πl12
−i/k

)

· · ·
(

πlj2
−lk−1/k

)

=
∑

l1,...,lk−1

(

πl1 · · · πlj
)

2−(i+···+lk−1)/k

Then, we denoting the stationary distribution of P as

Π = limk→∞Pk

lim
k→∞

([Ak]i,j − [Bk]i,j)

= lim
k→∞

∑

l1,...,lk−1

(

pil1 · · · plk−1j − πl1 · · · πlj
)

2−(i+···+lk−1)/k

≤ lim
k→∞

∑

l1,...,lk−1

(

pil1 · · · plk−1j − πl1 · · · πlj
)

=







 lim
k→∞

∑

l1,...,lk−1

pil1 · · · plk−1j





−



 lim
k→∞

∑

l1,...,lk−1

πl1 · · · πlj









=

(

lim
k→∞

[Pk]i,j − lim
k→∞

[Πk]i,j

)

= 0.
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APPENDIX B

PROOF OF THEOREM 2

Necessity. To establish the necessary condition, we

prove that for every k = 0, 1, . . .,

cm E[|Xk|
m] ≥ E[|Zk|

m], (67)

where cm is a constant defined in Lemma 1 and {zk} is

a homogeneous MJLS with dynamics

zk+1 =
|λ|

2rk
zk (68)

and z0 = eh(X0).

Let Sk = {S0, . . . , Sk} denote the symbols transmit-

ted over the digital link up to time k. By the law of total

expectation and Lemma 1 ,

E(|Xk+1|
m) ≥

1

cm
ESk

(

emh(Xk+1|Sk=sk)
)

. (69)

It follows that the m-th moment of the state is lower

bounded by the average entropy power of Xk conditional

on Sk. From the translation invariance property of the

differential entropy, the conditional version of entropy

power inequality [53], and Assumption A2, it follows

that

ESk

(

emh(Xk+1|Sk=sk)
)

= ESk

(

emh(λXk+x̂(sk)+Vk|Sk=sk)
)

≥ ESk

(

(

e2h(λXk |Sk=sk) + e2h(Vk)
)

m

2

)

≥ ESk

(

emh(λXk |Sk=sk)
)

= |λ|m ESk

(

emh(Xk|Sk=sk)
)

(70)

We can further lower bound (70) as in Lemma 1 in [27],

and obtain that for every k ≥ 0

ESk|Sk−1,Rk

(

emh(Xk|Sk=sk)
)

≥
1

2mRk
emh(Xk |Sk−1=sk−1),

(71)

with S−1 = ∅. By the tower rule of conditional expec-

tation, it then follows that

ESk

(

emh(Xk|Sk=sk)
)

≥

ESk−1,Rk

(

1

2mRk
emh(Xk|Sk−1=sk−1)

)

. (72)

Combining (72) and (70) gives

ESk

(

emh(Xk+1|Sk=sk)
)

≥ ERk

(

|λ|m

2mRk
ESk−1|Rk

(

emh(Xk|Sk−1=sk−1)
)

)

. (73)

Following similar steps and using the Markov chain

Sk−1 → (Sk−2, Rk−1) → Rk, we obtain

ESk−1|Rk

(

emh(Xk|Sk−1=sk−1)
)

≥ |λ|m ESk−1|Rk

(

emh(Xk−1|Sk−1=sk−1)
)

≥ ESk−2,Rk−1|Rk

(

|λ|m

2mRk−1
emh(Xk−1|Sk−2=sk−2)

)

= ERk−1|Rk

(

|λ|m

22Rk−1
ESk−2|Rk−1,Rk

[

e2h(Xk−1|Sk−2=sk−2)
]

)

.

(74)

Substituting (74) into (73) and re-iterating k times, it

follows that ESk

(

emh(Xk+1|Sk=sk)
)

is lower bounded by

ERk−1,Rk

( |λ|m

2m(Rk−1+Rk)

× ESk−2|Rk−1,Rk

(

emh(Xk−1|Sk−2=sk−2)
))

≥ ER1,...,Rk

(

|λ|mk

2m(R1+···+Rk)
ES1|R1,...,Rk

(

emh(X1|S0=s0)
)

)

(75)

= E

(

|λ|m(k+1)

2m(R1+···+Rk)

)

emh(X0), (76)

where (75) uses the fact that the initial condition of the

state x0 is independent of the rate process Rk. Let {Zk}
be a non-homogeneous MJLS with dynamics

zk+1 = |λ|/2rkzk, (77)

with z0 = eh(X0). By taking the expectation on both

sides of (77) and iterating k times, it is easy to see that

the right hand side of (76) is equal to the mth moment

of Zk+1. Hence, combining (69)–(76) we conclude that

E(|Xk|
m) > 1

cm
E(|Zk|

m), which is the claim.

Sufficiency. Let ω denote a uniform bound on the

measure of the support of the initial condition, the

noise, and the disturbance. Then, we claim that the plant

dynamics can be bounded as follows

|xk| ≤ zk, k = 0, 1, . . . , (78)

where Zk is a homogeneous MJLS with dynamics

zk+1 =
|λ|

2Rk
zk + ω, k = 0, 1, . . .

and z0 = ω. To see this, consider the following inductive

proof. By assumption, |x0| ≤ ω = z0. Assume that the

claim holds for all times up to k, so |xk| ≤ zk. Suppose

that at time k the uncertainty set [−zk, zk] is quantized

using a rk-bit uniform quantizer, and that the encoder

communicates to the decoder the interval containing the

state. Then, the decoder approximates the state by the

centroid x̂k of this interval and sends to the plant the

control input uk = −λx̂k. By construction |xk − x̂k| ≤
zk/2

rk , thus

|xk+1| = |λ(xk − x̂k) + vk|

≤ |λ||xk − x̂k|+ ω
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≤
|λ|

2rk
zk + ω

= zk+1 (79)

i.e., the claim holds at time k+1 as well. It follows that

xk is m-th moment stable if the homogeneous MJLS Zk

is weakly m-th moment stable, i.e., if and only if (21)

holds.

APPENDIX C

PROOF OF PROPOSITION 1

The monotonicity property is an immediate conse-

quence of the log-convexity of the spectral radius of

a nonnegative matrix stated in Lemma 2. Let D1 =
−mR ln 2, D2 = 0n×n and α = n

m . Notice that 2−mR =
eD1 , log ρ(PTeD2) = 0, and PT2−mR = PTeαD1 . Then,

for every n < m, by Lemma 2

−nR(m) =
n

m
log ρ(PT2−mR)

= α log ρ(PTeD1) + (1− α) log ρ(PTeD2)

> log ρ(PTeαD1+(1−α)D2)

= log ρ(PT2−nR)

= −nR(n). (80)

By dividing both sides by −n, it then follows that

R(n) > R(m), establishing that R(m) is a strictly

decreasing function of m.

To establish the convergence of R(m) to the Shannon

capacity as m → 0, observe that

lim
m→0

R(m)

= lim
m→0

log ρ
(

(PT2−mR)
1

m

)

= log ρ
(

lim
m→0

(PT2−mR)
1

m

)

(a)
= log ρ









lim
m→0













π12
−mr̄1 · · · π12

−mr̄n

...
...

...

πn2
−mr̄1 · · · πn2

−mr̄n













1

m









= lim
m→0

1

m
log ρ













π12
−mr̄1 · · · π12

−mr̄n

...
...

...

πn2
−mr̄1 · · · πn2

−mr̄n













= lim
m→0

1

m
log

(

∑

i

πi2
−mr̄i

)

(b)
= lim

m→0

∑

i πiri2
−mr̄i

∑

i πi2
−mr̄i

=
∑

i

πir̄i

where (a) follows from Lemma 4 and (b) follows from

l’Hôpital’s rule.

The convergence of R(m) to the zero-error capacity

as m → ∞ can be proved using the fact that, as m → ∞

R(m) = −
1

m
log ρ(PT2−mR)

= − log ρ
(

(PT2−mR)1/m
)

= r̄1 − log ρ















p11 · · · pn12
−m(r̄n−r̄1)

...
...

...

p1n · · · pnn2
−m(r̄n−r̄1)







1/m








∼ r̄1 −
1

m
log p11,

where the last equation follows from the fact that for any

column vector v = (v1, . . . , vn)
T, ρ(

[

v 0n×(n−1)

]

) =
v1. From the above asymptotic approximation it imme-

diately follows that if r̄1 = 0, then

lim
m→∞

mR(m) = − log p11. (81)

Next, the property on the sensitivity with respect to

self-loop probabilities is a direct application of a result

in [52], which is re-stated here as Lemma 3, on the

derivative of the spectral radius as a function of non-

negative matrix elements.

Next, the monotonicity property of −mR(m) =
log ρ(PT2−mR) follows from the fact that all the entries

of the matrix PT2−mR are monotonically decreasing in

m. Finally, the strict concavity of mR(m) is again a

direct consequence of the log-convexity of the spectral

radius of a nonnegative matrix stated in Lemma 2.
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