References
Abrahamczyk, S., Gottleuber, P., Matauschek, C., and Kessler, M. (2011).
Diversity and community composition of euglossine bee assemblages
(Hymenoptera: Apidae) in western Amazonia. Biodiversity and
Conservation , 20, 2981-3001. doi: 10.1007/s10531-011-0105-1
Andersen, A. N., Del T. I., and
Parr, C. L. (2015). Savanna ant species richness is maintained along a
bioclimatic gradient of increasing latitude and decreasing rainfall in
northern Australia. Journal
of Biogeography , 42, 2313-2322. doi: 10.1111/jbi.12599
Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D.,
Freestone, A. L., et al. (2011). Navigating the multiple meanings of β
diversity: a roadmap for the practicing ecologist. Ecology
Letters , 14, 19-28. doi: 10.1111/j.1461- 0248.2010.01552.x
Basset, Y., Cizek, L., Cuenoud, P., Didham, R. K., Guilhaumon, F.,
Missa, O., et al. (2012). Arthropod diversity in a tropical forest.Science, 338, 1481-1484. doi: 10.1126/science.1226727
Blackburn, T. M., and Gaston, K. J. (1996). Spatial patterns in the
species richness of birds in the New World. Ecography . 19,
369-376. doi: 10.2307/3682896
Bradford, M. A., Jones, T. H., Bardgett, R. D., Black, H. I. J., Boag,
B., Bonkowski, M., et al. (2002). Impacts of soil faunal community
composition on model grassland ecosystems. Science , 298, 615-618.
doi: 10.1126/science.1075805
Briones, M. J. I., Ostle, N. J., McNamara, N. R., and Poskitt, J.
(2009). Functional shifts of grassland soil communities in response to
soil warming. Soil Biology and Biochemistry , 41, 315-322. doi:
10.1016/j.soilbio.2008.11.003
Burns, K. C. (2007). Is tree diversity different in the southern
hemisphere? Journal of Vegetation Science , 18, 307-312. doi:
10.1111/j.1654-1103.2007.tb02542.x
Carrillo, Y., Ball, B. A., and Molina, M. (2016). Stoichiometric
linkages between plant litter, trophic interactions and nitrogen
mineralization across the litter–soil interface. Soil Biology and
Biochemistry , 92, 102-110. doi: 10.1016/j.soilbio.2015.10.001
Caruso, T., La Diega, R. N., and Bernini, F. (2005). The effects of
spatial scale on the assessment of soil fauna diversity: data from the
oribatid mite community of the
Pelagian Islands (Sicilian Channel, southern Mediterranean). Acta
Oecologica - International Journal of Ecology , 28, 23-31. doi:
10.1016/j.actao.2005.01.006
Chase, J. M., and Leibold, M. A. (2002). Spatial scale dictates the
productivity-biodiversity relationship. Nature , 416, 427-430.
doi: 10.1038/416427a
Chen, Y., Yuan Z. L., Ren S.Y., Wei, B. L., Jia, H. R., and Ye, Y. Z.
(2014). Correlation analysis of soil and species of different life forms
in Baotianman Nature Reserve. Chinese Science Bulletin , 59,
2367-2376. doi: 10.1360/N972014-00323
Chen, D. M., Cheng, J. H., Chu, P. F., Hu, S. J., Xie, Y. C.,
Tuvshintogtokh, I., et al. (2015). Regional‐scale patterns of soil
microbes and nematodes across grasslands on the Mongolian plateau:
relationships with climate, soil, and plants. Ecography , 38,
622-631. doi: 10.1111/ecog.01226
Chen, Y., Yuan, Z. L., Li, P. K., Cao, R. F., Jia, H. R., and Ye, Y. Z.
(2016). Effects of Environment and Space on Species Turnover of Woody
Plants across Multiple Forest Dynamic Plots in East Asia.Frontiers in Plant Science , 7, 1533. doi: 10.3389/fpls.2016.01533
Convey, P. (2013). Antarctic ecosystems. Encyclopedia of Biodiversity
(Second Edition). Elsevier , Pages 179-188. doi:
10.1016/B978-0-12-384719-5.00264-1
Crowther, T. W., van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A.
D., Mo, L., et al. (2019). The global soil community and its influence
on biogeochemistry. Science , 365, 772. doi:
10.1126/science.aav0550
de Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R., Berg, M. P., de
Ruiter, P. C., Verhoef, H. A., et al. (2003). Soil invertebrate fauna
enhances grassland succession and diversity. Nature , 422,
711-713. doi: 10.1038/nature01548
Decaëns, T. (2010). Macroecological patterns in soil communities.Global Ecology and Biogeography , 19, 287-302. doi:
10.1111/j.1466-8238.2009.00517.x
Dunck, B., Schneck, F., and Rodrigues, L. (2016). Patterns in species
and functional dissimilarity: insights from periphytic algae in
subtropical floodplain lakes. Hydrobiologia , 763, 237-247. doi:
10.1007/s10750-015-2379-x
Dunn, R. R., Agosti, D., Andersen, A. N., Arnan, X., Bruhl, C. A.,
Cerda, X., et al. (2009). Climatic drivers of hemispheric asymmetry in
global patterns of ant species richness. Ecology Letters , 12,
324-333. doi: 10.1111/j.1461-0248.2009.01291.x
Eggleton, P., Williams, P. H., and Gaston, K. J. (1994). Explaining
global termite diversity: productivity or history? Biodiversity
and Conservation , 3, 318-330. doi: 10.1007/BF00056505
Eisenhauer, N., Cesarz, S., Koller, R., Worm, K., and Reich, P. B.
(2012). Global change belowground: impacts of elevated
CO2, nitrogen, and summer drought on soil food webs and
biodiversity. Global Change Biology , 18, 435-447. doi:
10.1111/j.1365-2486.2011.02555.x
Eisenhauer, N., Stefanski, A., Fisichelli, N. A., Rice, K., Rich, R.,
and Reich, P. B. (2015). Warming shifts ‘worming’: effects of
experimental warming on invasive earthworms in northern North America.Science Reports , 4, 6890. doi: 10.1038/srep06890
Escudero, A., and Valladares, F. (2016). Trait-based plant ecology:
moving towards a unifying species coexistence theory. Oecologia ,
180, 919-922. doi: 10.1007/s00442-016-3578-5
Marchan, DF., Refoyo, P., Novo,
M., Fernandez, R., Trigo, D., and Cosin, D. J. D. (2015). Predicting
soil micro-variables and the distribution of an endogeic earthworm
species through a model based on large-scale variables. Soil
Biology and Biochemistry , 81, 124-127. doi:
10.1016/j.soilbio.2014.10.023
Fu, S. L., Zou, X. M., and Coleman, D. (2009). Highlights and
perspectives of soil biology and ecology. Research in China. Soil
Biology and Biochemistry , 41, 868-876. doi:
10.1016/j.soilbio.2008.10.014
Gao, M. X., Guo, Y. X., Liu, J., Liu, J. W., Adl, S., Wu, D. H., et al.
(2021). Contrasting beta diversity of spiders, carabids, and ants at
local and regional scales in a black soil region, northeast China Soil.Soil Ecology Letters , 3, 103-114. doi: 10.1007/s42832-020-0071-1
Gao, M. X., He, P., Zhang, X. P., Liu, D., and Wu, D. H. (2014).
Relative roles of spatial factors, environmental filtering and biotic
interactions in fine-scale structuring of a soil mite community.Soil Biology and Biochemistry , 79, 68-77. doi:
10.1016/j.soilbio.2014.09.003
Gao, M. X., Lin, L., Chang, L., Sun, X., Liu, D., and Wu, D. H. (2018).
Spatial patterns and assembly rules in soil fauna communities.Biodiversity Science , 26, 1034-1050. doi: 10.17520/biods.2018122
Gaston, K. J. (2000). Global patterns in biodiversity. Nature ,
405, 220-227. doi: 10.1038/35012228
Gaston, K.J., Williams, P.H., Eggleton, P., and Humphries, C. J. (1995).
Large scale patterns of biodiversity: spatial variation in family
richness. Proceedings of the Royal Society of London , 260,
149-154. doi: 10.1098/rspb.1995.0072
Geisen, S., Mitchell, E. A. D., Adl, S., Bonkowski, M., Dunthorn, M.,
Ekelund, F., et al. (2018). Soil protists: a fertile frontier in soil
biology research. Fems Microbiology Reviews , 42, 293-323. doi:
10.1093/femsre/fuy006
Getzin, S., Wiegand, T., Wiegand, K., and He, F. L., (2008)
Heterogeneity influences spatial patterns and demographics in forest
stands. Journal of Ecology , 96, 807-820. doi:
10.1111/j.1365-2745.2008. 01377.x
Guo, Y. X., Gao, M. X., Liu, J., Zaitsev, A. S., and Wu, D. H. (2018).
Disentangling the drivers of ground-dwelling macro-arthropod
metacommunity structure at two different spatial scales. Soil
Biology and Biochemistry , 130, 55-62. doi:
10.1016/j.soilbio.2018.12.002
Handa, I. T., Aerts, R., Berendse, F., Berg, M. P., Bruder, A.,
Butenschoen, O., et al. (2014). Consequences of biodiversity loss for
litter decomposition across biomes. Nature , 509, 218. doi:
10.1038/nature13247
Hubbell, C. S. (2001). A Unified Theory of Biodiversity and
Biogeography . Princeton, NJ: Princeton University Press.
Jaccard, P. (1912). The distribution of the flora in the alpine zone.New Phytologist , 11, 37-50. doi: 10.1111/j.1469-8137.
1912.tb05611.x
Janion-Scheepers, C., Bengtsson, J., Duffy, G. A., Deharveng, L.,
Leinaas, H. P. and Chown, S. L. (2019). High spatial turnover in
springtails of the Cape Floristic Region. Journal of
Biogeography , 47, 1007-1018. doi: 10.1111/jbi.13801
Jia, H. R., Chen, Y., Yuan, Z. L., Ye, Y. Z., and Huang, Q. C. (2015).
Effects of environmental and spatial heterogeneity on tree community
assembly in Baotianman National Nature Reserve, Henan, China.Polish Journal of Ecology , 63, 175-183. doi:
10.3161/15052249PJE2015.63.2.002
Johnston, A. S. A., and Sibly, R. M. (2018). The influence of soil
communities on the temperature sensitivity of soil respiration.Nature Ecology and Evolution , 2, 1597-1602. doi:
10.1038/s41559-018-0648-6
Johnston, A. S. A., and Sibly, R.
M. (2020). Multiple environmental controls explain global patterns in
soil animal communities. Oecologia , 192, 1047-1056. doi:
10.1007/s00442-020-04640-w
John, R., Dalling, J. W., Harms, K. E., Yavitt, J. B., Stallard, R. F.,
Mirabello, M., et al. (2007). Soil nutrients influence spatial
distributions of tropical tree species. Proceedings of the
National Academy of Sciences of The United States of America , 104,
864-869. doi: 10.1073/pnas.0604666104
Jones, D. T., and Eggleton, P.
(2010). Global Biogeography of Termites: A Compilation of Sources.Biology of Termites: A Modern Synthesis , 477-498. doi:
10.1007/978-90-481-3977-4_17
Jost, L. (2007). Partitioning diversity into independent alpha and beta
components. Ecology , 88, 2427-2439. doi: 10.1890/06-1736.1
Kent, D. R., Lynn, J. S., Pennings, S. C., Souza, L. A., Smith, M. D.,
and Rudgers, J. A. (2020). Weak latitudinal gradients in insect
herbivory for dominant rangeland grasses of North America. Ecology
and Evolution , 10, 6385-6394. doi: 10.1002/ece3.6374
Lennon, J. J., Koleff, P., Greenwood, J. J. D., and Gaston, K. J.
(2001). The geographical structure of British bird distributions:
diversity, spatial turnover and scale. Journal of Animal Ecology ,
70, 966-979. doi: 10.1046/j.0021-8790.2001. 00563.x
Kraft, N. J., Comita, L. S., Chase, J. M., Sanders, N. J., Swenson, N.
G., Crist, T. O., et al. (2011). Disentangling the drivers of β
diversity along latitudinal and elevational gradients. Science ,
333, 1755-1758. doi: 10.1126/science.1208584
Lafage, D., Maugenest, S., Bouzille, J. B., and Petillon, J. (2015).
Disentangling the influence of local and landscape factors on alpha and
beta diversities: opposite response of plants and ground-dwelling
arthropods in wet meadows. Ecological Research , 30, 1025-1035.
doi: 10.1007/s11284-015-1304-0
Levin, S. A. (1992). The problem of patterns and scale in ecology: The
Robert H. MacArthur Award lecture. Ecology , 73, 1943-1967. doi:
10.2307/1941447
Li, Z. F., Heino, J., Liu, Z. Y., Meng, X. L., Chen, X., Ge, Y. H., et
al. (2020). The drivers of multiple dimensions of stream
macroinvertebrate beta diversity across a large montane landscape.Limnology and Oceanography , 66, 226-236. doi: 10.1002/lno.11599
Liu, J. J., Sui, Y. Y., Yu, Z. H., Shi, Y., Chu, H. Y., Jin, J., et al.
(2015). Soil carbon content drives the biogeographical distribution of
fungal communities in the black soil zone of northeast China. Soil
Biology and Biochemistry , 83, 29-39. doi: 10.1016/j.soilbio.2015.01.009
Lososova,
Z.,
Chytry,
M.,
Cimalova,
S.,
Kropac,
Z.,
Otypkova,
Z.,
Pysek,
P., et al. (2004). Weed vegetation of arable land in central Europe:
gradients of diversity and species composition. Journal of
Vegetation Science , 15, 415-422. doi:
10.1111/j.1654-1103.2004.tb02279.x
Lubbers, I. M., Berg, M. P., de
Deyn, G. B., van der Putten, W. H., and van Groenigen, J. W. (2020).
Soil fauna diversity increases CO2 but suppresses
N2O emissions from soil. Global Change Biology ,
26, 1886-1898. doi: 10.1111/gcb.14860
Maass, S., Maraun, M., Scheu, S., Rillig, M. C., and Caruso, T. (2015).
Environmental filtering vs. resource-based niche partitioning in diverse
soil animal assemblages. Soil Biology and Biochemistry, 85, 145-152.
doi: 10.1016/j.soilbio.2015.03.005
Medini, D., Donati, C., Tettelin,
H., Masignani, V., and Rappuoli, R. (2005) The microbial pan- genome.Current Opinion in Genetics and Development , 15, 589-594. doi:
10.1016/j.gde.2005.09.006
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R.,
and O’Hara, B. (2013). Vegan community ecology package. IEEE
Spectrum . doi: 10.1109/MSPEC.2006.1611759
Oliver, T., Hill, J. K., Thomas, C. D., Brereton, T., and Roy, D. B.
(2009). Changes in habitat specificity of species at their climatic
range boundaries. Ecology Letters, 12, 1091-1102. doi:
10.1111/j.1461-0248.2009.01367.x
Petersen, H., and Luxton, M. A. (1982). A comparative analysis of soil
fauna populations and their role in decomposition processes.Oikos, 39, 287-388. doi: 10.2307/3544689
Phillips, H. R. P., Guerra, C. A., Bartz, M. L. C., Briones, M. J. I.,
Brown, G., Crowther, T. W., et al. (2019). Global distribution of
earthworm diversity. Science , 366, 480-485. doi:
10.1126/science.aax4851
Platnick, and Norman, I. (1991). Patterns of biodiversity: tropical vs
temperate. Annals and Magazine of Natural History , 25, 1083-1088.
doi: 10.1080/00222939100770701
Ponge, J. F., and Salmon, S. (2013). Spatial and taxonomic correlates of
species and species trait assemblages in soil invertebrate communities.Pedobiologia . 56, 129-136. doi: 10.1016/j.pedobi.2013.02.001
Rodriguero, M. S., and Gorla, D. E. (2004). Latitudinal gradient in
species richness of the New World Triatominae (Reduviidae). Global
Ecology and Biogeography . 13, 75-84. doi:
10.1111/j.1466-882X.2004.00071.x
Roslin, T., Hardwick, B., Novotny, V., Petry, W. K., Andrew, N. R.,
Asmus, A., et al. (2017). Higher Predation Risk for Insect Prey at Low
Latitudes and Elevations. Science , 356, 742-744. doi:
10.1126/science.aaj1631
Sasaki, T., and Yoshihara, Y. (2013). Local-scale disturbance by
Siberian marmots has little influence on regional plant richness in a
Mongolian grassland. Plant Ecology , 214, 29-34. doi:
10.1007/s11258-012-0142-1
Singh, D., Slik, J. W. F., Jeon,
Y. S., Tomlinson, K. W., Yang, X. D., Wang, J., et al. (2019). Tropical
forest conversion to rubber plantation affects soil micro- and
mesofaunal community and diversity. Scientific Reports , 9. doi:
10.1038/s41598-019-42333-4
Sjursen, H., Michelsen, A., and Jonasson, S. (2005). Effects of
long-term soil warming and fertilisation on microarthropod abundances in
three sub-arctic ecosystems. Apply Soil Ecology , 30, 148-161.
doi: 10.1016/j.apsoil.2005.02.013
Song, D. G., Pan, K. W., Tariq,
A., Sun, F., Li, Z. L., Sun, X. M., et al. (2017). Large-scale patterns
of distribution and diversity of terrestrial nematodes. Applied
Soil Ecology , 114, 161-169. doi: 10.1016/j.apsoil.2017.02.013
Sorensen, T. A. (1948). A method of establishing groups of equal
amplitude in plant sociology based on similarity of species content.Kongelige Danske Videnskabernes Selskab , 5, 4-7.
Sreekar, R., Koh, L. P., Mammides,
C., Corlett, R. T., Dayananda, S., Goodale, U. M., et al. (2020).
Drivers of bird beta diversity in the
Western Ghats-Sri Lanka biodiversity hotspot are scale dependent: roles
of land use, climate, and distance. Oecologia , 193, 801-809. doi:
10.1007/s00442-020-04671-3
Suttle, K. B., Thomsen, M. A., and Power, M. E. (2007). Species
interactions reverse grassland responses to changing climate.Science , 315, 640-642. doi: 10.1126/science.1136401
Team, D. C. R. (2017). R: a Language and Environment for
Statistical Computing . R Foundation for Statistical Computing, Vienna,
Austria.
Tedersoo, L., Bahram, M., Polme, S., Koljalg, U., Yorou, N. S.,
Wijesundera, R., et al. (2014). Global diversity and geography of soil
fungi. Science , 346, 1078. doi: 10.1126/science.1256688
Terlizzi, A., Anderson, M. J., Bevilacqua, S., Fraschetti, S.,
Włodarska- Kowalczuk, M., and Ellingsen, K. E. (2009). Beta diversity
and taxonomic sufficiency: Do higher-level taxa reflect heterogeneity in
species composition? Diversity and Distributions , 15, 450-458.
doi: 10.1111/j.1472-4642.2008.00551.x
Turney, S., and Buddle, C. M.
(2016). Pyramids of species richness: the determinants and distribution
of species diversity across trophic levels. Oikos , 125,
1224-1232. doi: 10.1111/oik.03404
Ulrich, W., Zalewski, M., and
Uvarov, A. V. (2012). Spatial distribution and species co-occurrence in
soil invertebrate and plant communities on northern taiga islands.Annales Zoologici Fennici , 49, 161-173 doi: 10.5735/086.049.0304
van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W.,
Wardle, D. A., et al. (2019). Soil nematode abundance and functional
group composition at a global scale. Nature , 572, 194-198. doi:
10.1038/s41586-019-1418-6
Wagg, C., Bender, S. F., Widmer, F., and van der Heijden, M. G. A.
(2014). Soil biodiversity and soil community composition determine
ecosystem multifunctionality. Proceedings of the National Academy
of Sciences of The United States of America , 111, 5266-5270.doi:
10.1073/pnas.1320054111
Widenfalk, L. A., Bengtsson, J., Berggren, A., Zwiggelaar, K., Spijkman,
E., Huyer-Brugman, F., et al. (2015). Spatially structured environmental
filtering of collembolan traits in late successional salt marsh
vegetation. Oecologia , 179, 537-549. doi:
10.1007/s00442-015-3345-z
Wu, T. H., Ayres, E., Bargett, R. D., Wall, D. H., and Garey, J. R.
(2011). Molecular study of worldwide distribution and diversity of soil
animals. Proceedings of the National Academy of Sciences of The
United States of America , 108, 17720-17725. doi:
10.1073/pnas.1103824108
Xu, G. R., Lin, Y. H., Zhang, S., Zhang, Y. X., Li, G. X., and Ma, K. M.
(2017). Shifting mechanisms of elevational diversity and biomass
patterns in soil invertebrates at treeline. Soil Biology and
Biochemistry , 113, 80-88. doi: 10.1016/j.soilbio.2017.05.012
Yin, W. Y. (2000). Soil Animals of China . Beijing, Chinese
Sciences Press.
Yin, W. Y., Hu, S. H., Shen, Y. F., Ning, Y. Z., Sun, X. D., Wu, J. H.,
et al. (1998). Pictorical Keys to Soil Animals of China . Science
Press, Beijing, China.
Yin, X. Q., Song, B., Dong, W. H.,
Xin, W. D., and Wang, Y. Q. (2010). A review on the eco-geography of
soil fauna in China. Journal of Geographical Sciences , 20,
333-346. doi: 10.1007/s11442-010-0333-4
Zhang, L. M., Gao, M. X., Liu, D., Zhang, X. P., and Wu, D. H. (2016).
Relative contributions of environmental filtering and dispersal
limitation in species co-occurrence of above- and below-ground soil mite
communities. Acta Ecologica Sinica , 36, 3951-3959. doi:
10.5846/stxb201411212306
Zhang, X. P., Hou, W. L., and Chen, P. (2001). Soil animal guilds and
their ecological distribution in the northeast of China. Chinese
Journal of Applied and Environmental Biology , 7, 370-374. doi:
10.3321/j.issn:1006-687X.2001.04.014
Zou, Y., van der Werf, W., Liu, Y. H., and Axmacher, J. C. (2020).
Predictability of species diversity by family diversity across global
terrestrial animal taxa. Global Ecology and Biogeography , 29,
629-644. doi: 10.1111/geb.13043
Li, Y. Z., Shipley, B., Price, J. N., Dantas, V. D., Tamme, R., Westoby,
M., et al. (2017). Habitat filtering determines the functional niche
occupancy of plant communities worldwide. Journal of Ecology ,
106, 1001-1009. doi: 10.1111/1365-2745.12802