References
Abrahamczyk, S., Gottleuber, P., Matauschek, C., and Kessler, M. (2011). Diversity and community composition of euglossine bee assemblages (Hymenoptera: Apidae) in western Amazonia. Biodiversity and Conservation , 20, 2981-3001. doi: 10.1007/s10531-011-0105-1
Andersen, A. N., Del T. I., and Parr, C. L. (2015). Savanna ant species richness is maintained along a bioclimatic gradient of increasing latitude and decreasing rainfall in northern Australia. Journal of Biogeography , 42, 2313-2322. doi: 10.1111/jbi.12599
Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., et al. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters , 14, 19-28. doi: 10.1111/j.1461- 0248.2010.01552.x
Basset, Y., Cizek, L., Cuenoud, P., Didham, R. K., Guilhaumon, F., Missa, O., et al. (2012). Arthropod diversity in a tropical forest.Science, 338, 1481-1484. doi: 10.1126/science.1226727
Blackburn, T. M., and Gaston, K. J. (1996). Spatial patterns in the species richness of birds in the New World. Ecography . 19, 369-376. doi: 10.2307/3682896
Bradford, M. A., Jones, T. H., Bardgett, R. D., Black, H. I. J., Boag, B., Bonkowski, M., et al. (2002). Impacts of soil faunal community composition on model grassland ecosystems. Science , 298, 615-618. doi: 10.1126/science.1075805
Briones, M. J. I., Ostle, N. J., McNamara, N. R., and Poskitt, J. (2009). Functional shifts of grassland soil communities in response to soil warming. Soil Biology and Biochemistry , 41, 315-322. doi: 10.1016/j.soilbio.2008.11.003
Burns, K. C. (2007). Is tree diversity different in the southern hemisphere? Journal of Vegetation Science , 18, 307-312. doi: 10.1111/j.1654-1103.2007.tb02542.x
Carrillo, Y., Ball, B. A., and Molina, M. (2016). Stoichiometric linkages between plant litter, trophic interactions and nitrogen mineralization across the litter–soil interface. Soil Biology and Biochemistry , 92, 102-110. doi: 10.1016/j.soilbio.2015.10.001
Caruso, T., La Diega, R. N., and Bernini, F. (2005). The effects of spatial scale on the assessment of soil fauna diversity: data from the oribatid mite community of the Pelagian Islands (Sicilian Channel, southern Mediterranean). Acta Oecologica - International Journal of Ecology , 28, 23-31. doi: 10.1016/j.actao.2005.01.006
Chase, J. M., and Leibold, M. A. (2002). Spatial scale dictates the productivity-biodiversity relationship. Nature , 416, 427-430. doi: 10.1038/416427a
Chen, Y., Yuan Z. L., Ren S.Y., Wei, B. L., Jia, H. R., and Ye, Y. Z. (2014). Correlation analysis of soil and species of different life forms in Baotianman Nature Reserve. Chinese Science Bulletin , 59, 2367-2376. doi: 10.1360/N972014-00323
Chen, D. M., Cheng, J. H., Chu, P. F., Hu, S. J., Xie, Y. C., Tuvshintogtokh, I., et al. (2015). Regional‐scale patterns of soil microbes and nematodes across grasslands on the Mongolian plateau: relationships with climate, soil, and plants. Ecography , 38, 622-631. doi: 10.1111/ecog.01226
Chen, Y., Yuan, Z. L., Li, P. K., Cao, R. F., Jia, H. R., and Ye, Y. Z. (2016). Effects of Environment and Space on Species Turnover of Woody Plants across Multiple Forest Dynamic Plots in East Asia.Frontiers in Plant Science , 7, 1533. doi: 10.3389/fpls.2016.01533
Convey, P. (2013). Antarctic ecosystems. Encyclopedia of Biodiversity (Second Edition). Elsevier , Pages 179-188. doi: 10.1016/B978-0-12-384719-5.00264-1
Crowther, T. W., van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D., Mo, L., et al. (2019). The global soil community and its influence on biogeochemistry. Science , 365, 772. doi: 10.1126/science.aav0550
de Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R., Berg, M. P., de Ruiter, P. C., Verhoef, H. A., et al. (2003). Soil invertebrate fauna enhances grassland succession and diversity. Nature , 422, 711-713. doi: 10.1038/nature01548
Decaëns, T. (2010). Macroecological patterns in soil communities.Global Ecology and Biogeography , 19, 287-302. doi: 10.1111/j.1466-8238.2009.00517.x
Dunck, B., Schneck, F., and Rodrigues, L. (2016). Patterns in species and functional dissimilarity: insights from periphytic algae in subtropical floodplain lakes. Hydrobiologia , 763, 237-247. doi: 10.1007/s10750-015-2379-x
Dunn, R. R., Agosti, D., Andersen, A. N., Arnan, X., Bruhl, C. A., Cerda, X., et al. (2009). Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters , 12, 324-333. doi: 10.1111/j.1461-0248.2009.01291.x
Eggleton, P., Williams, P. H., and Gaston, K. J. (1994). Explaining global termite diversity: productivity or history? Biodiversity and Conservation , 3, 318-330. doi: 10.1007/BF00056505
Eisenhauer, N., Cesarz, S., Koller, R., Worm, K., and Reich, P. B. (2012). Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Global Change Biology , 18, 435-447. doi: 10.1111/j.1365-2486.2011.02555.x
Eisenhauer, N., Stefanski, A., Fisichelli, N. A., Rice, K., Rich, R., and Reich, P. B. (2015). Warming shifts ‘worming’: effects of experimental warming on invasive earthworms in northern North America.Science Reports , 4, 6890. doi: 10.1038/srep06890
Escudero, A., and Valladares, F. (2016). Trait-based plant ecology: moving towards a unifying species coexistence theory. Oecologia , 180, 919-922. doi: 10.1007/s00442-016-3578-5
Marchan, DF., Refoyo, P., Novo, M., Fernandez, R., Trigo, D., and Cosin, D. J. D. (2015). Predicting soil micro-variables and the distribution of an endogeic earthworm species through a model based on large-scale variables. Soil Biology and Biochemistry , 81, 124-127. doi: 10.1016/j.soilbio.2014.10.023
Fu, S. L., Zou, X. M., and Coleman, D. (2009). Highlights and perspectives of soil biology and ecology. Research in China. Soil Biology and Biochemistry , 41, 868-876. doi: 10.1016/j.soilbio.2008.10.014
Gao, M. X., Guo, Y. X., Liu, J., Liu, J. W., Adl, S., Wu, D. H., et al. (2021). Contrasting beta diversity of spiders, carabids, and ants at local and regional scales in a black soil region, northeast China Soil.Soil Ecology Letters , 3, 103-114. doi: 10.1007/s42832-020-0071-1
Gao, M. X., He, P., Zhang, X. P., Liu, D., and Wu, D. H. (2014). Relative roles of spatial factors, environmental filtering and biotic interactions in fine-scale structuring of a soil mite community.Soil Biology and Biochemistry , 79, 68-77. doi: 10.1016/j.soilbio.2014.09.003
Gao, M. X., Lin, L., Chang, L., Sun, X., Liu, D., and Wu, D. H. (2018). Spatial patterns and assembly rules in soil fauna communities.Biodiversity Science , 26, 1034-1050. doi: 10.17520/biods.2018122
Gaston, K. J. (2000). Global patterns in biodiversity. Nature , 405, 220-227. doi: 10.1038/35012228
Gaston, K.J., Williams, P.H., Eggleton, P., and Humphries, C. J. (1995). Large scale patterns of biodiversity: spatial variation in family richness. Proceedings of the Royal Society of London , 260, 149-154. doi: 10.1098/rspb.1995.0072
Geisen, S., Mitchell, E. A. D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., et al. (2018). Soil protists: a fertile frontier in soil biology research. Fems Microbiology Reviews , 42, 293-323. doi: 10.1093/femsre/fuy006
Getzin, S., Wiegand, T., Wiegand, K., and He, F. L., (2008) Heterogeneity influences spatial patterns and demographics in forest stands. Journal of Ecology , 96, 807-820. doi: 10.1111/j.1365-2745.2008. 01377.x
Guo, Y. X., Gao, M. X., Liu, J., Zaitsev, A. S., and Wu, D. H. (2018). Disentangling the drivers of ground-dwelling macro-arthropod metacommunity structure at two different spatial scales. Soil Biology and Biochemistry , 130, 55-62. doi: 10.1016/j.soilbio.2018.12.002
Handa, I. T., Aerts, R., Berendse, F., Berg, M. P., Bruder, A., Butenschoen, O., et al. (2014). Consequences of biodiversity loss for litter decomposition across biomes. Nature , 509, 218. doi: 10.1038/nature13247
Hubbell, C. S. (2001). A Unified Theory of Biodiversity and Biogeography . Princeton, NJ: Princeton University Press.
Jaccard, P. (1912). The distribution of the flora in the alpine zone.New Phytologist , 11, 37-50. doi: 10.1111/j.1469-8137. 1912.tb05611.x
Janion-Scheepers, C., Bengtsson, J., Duffy, G. A., Deharveng, L., Leinaas, H. P. and Chown, S. L. (2019). High spatial turnover in springtails of the Cape Floristic Region. Journal of Biogeography , 47, 1007-1018. doi: 10.1111/jbi.13801
Jia, H. R., Chen, Y., Yuan, Z. L., Ye, Y. Z., and Huang, Q. C. (2015). Effects of environmental and spatial heterogeneity on tree community assembly in Baotianman National Nature Reserve, Henan, China.Polish Journal of Ecology , 63, 175-183. doi: 10.3161/15052249PJE2015.63.2.002
Johnston, A. S. A., and Sibly, R. M. (2018). The influence of soil communities on the temperature sensitivity of soil respiration.Nature Ecology and Evolution , 2, 1597-1602. doi: 10.1038/s41559-018-0648-6
Johnston, A. S. A., and Sibly, R. M. (2020). Multiple environmental controls explain global patterns in soil animal communities. Oecologia , 192, 1047-1056. doi: 10.1007/s00442-020-04640-w
John, R., Dalling, J. W., Harms, K. E., Yavitt, J. B., Stallard, R. F., Mirabello, M., et al. (2007). Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of The United States of America , 104, 864-869. doi: 10.1073/pnas.0604666104
Jones, D. T., and Eggleton, P. (2010). Global Biogeography of Termites: A Compilation of Sources.Biology of Termites: A Modern Synthesis , 477-498. doi: 10.1007/978-90-481-3977-4_17
Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology , 88, 2427-2439. doi: 10.1890/06-1736.1
Kent, D. R., Lynn, J. S., Pennings, S. C., Souza, L. A., Smith, M. D., and Rudgers, J. A. (2020). Weak latitudinal gradients in insect herbivory for dominant rangeland grasses of North America. Ecology and Evolution , 10, 6385-6394. doi: 10.1002/ece3.6374
Lennon, J. J., Koleff, P., Greenwood, J. J. D., and Gaston, K. J. (2001). The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology , 70, 966-979. doi: 10.1046/j.0021-8790.2001. 00563.x
Kraft, N. J., Comita, L. S., Chase, J. M., Sanders, N. J., Swenson, N. G., Crist, T. O., et al. (2011). Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science , 333, 1755-1758. doi: 10.1126/science.1208584
Lafage, D., Maugenest, S., Bouzille, J. B., and Petillon, J. (2015). Disentangling the influence of local and landscape factors on alpha and beta diversities: opposite response of plants and ground-dwelling arthropods in wet meadows. Ecological Research , 30, 1025-1035. doi: 10.1007/s11284-015-1304-0
Levin, S. A. (1992). The problem of patterns and scale in ecology: The Robert H. MacArthur Award lecture. Ecology , 73, 1943-1967. doi: 10.2307/1941447
Li, Z. F., Heino, J., Liu, Z. Y., Meng, X. L., Chen, X., Ge, Y. H., et al. (2020). The drivers of multiple dimensions of stream macroinvertebrate beta diversity across a large montane landscape.Limnology and Oceanography , 66, 226-236. doi: 10.1002/lno.11599
Liu, J. J., Sui, Y. Y., Yu, Z. H., Shi, Y., Chu, H. Y., Jin, J., et al. (2015). Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biology and Biochemistry , 83, 29-39. doi: 10.1016/j.soilbio.2015.01.009
Lososova, Z., Chytry, M., Cimalova, S., Kropac, Z., Otypkova, Z., Pysek, P., et al. (2004). Weed vegetation of arable land in central Europe: gradients of diversity and species composition. Journal of Vegetation Science , 15, 415-422. doi: 10.1111/j.1654-1103.2004.tb02279.x
Lubbers, I. M., Berg, M. P., de Deyn, G. B., van der Putten, W. H., and van Groenigen, J. W. (2020). Soil fauna diversity increases CO2 but suppresses N2O emissions from soil. Global Change Biology , 26, 1886-1898. doi: 10.1111/gcb.14860
Maass, S., Maraun, M., Scheu, S., Rillig, M. C., and Caruso, T. (2015). Environmental filtering vs. resource-based niche partitioning in diverse soil animal assemblages. Soil Biology and Biochemistry, 85, 145-152. doi: 10.1016/j.soilbio.2015.03.005
Medini, D., Donati, C., Tettelin, H., Masignani, V., and Rappuoli, R. (2005) The microbial pan- genome.Current Opinion in Genetics and Development , 15, 589-594. doi: 10.1016/j.gde.2005.09.006
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., and O’Hara, B. (2013). Vegan community ecology package. IEEE Spectrum . doi: 10.1109/MSPEC.2006.1611759
Oliver, T., Hill, J. K., Thomas, C. D., Brereton, T., and Roy, D. B. (2009). Changes in habitat specificity of species at their climatic range boundaries. Ecology Letters, 12, 1091-1102. doi: 10.1111/j.1461-0248.2009.01367.x
Petersen, H., and Luxton, M. A. (1982). A comparative analysis of soil fauna populations and their role in decomposition processes.Oikos, 39, 287-388. doi: 10.2307/3544689
Phillips, H. R. P., Guerra, C. A., Bartz, M. L. C., Briones, M. J. I., Brown, G., Crowther, T. W., et al. (2019). Global distribution of earthworm diversity. Science , 366, 480-485. doi: 10.1126/science.aax4851
Platnick, and Norman, I. (1991). Patterns of biodiversity: tropical vs temperate. Annals and Magazine of Natural History , 25, 1083-1088. doi: 10.1080/00222939100770701
Ponge, J. F., and Salmon, S. (2013). Spatial and taxonomic correlates of species and species trait assemblages in soil invertebrate communities.Pedobiologia . 56, 129-136. doi: 10.1016/j.pedobi.2013.02.001
Rodriguero, M. S., and Gorla, D. E. (2004). Latitudinal gradient in species richness of the New World Triatominae (Reduviidae). Global Ecology and Biogeography . 13, 75-84. doi: 10.1111/j.1466-882X.2004.00071.x
Roslin, T., Hardwick, B., Novotny, V., Petry, W. K., Andrew, N. R., Asmus, A., et al. (2017). Higher Predation Risk for Insect Prey at Low Latitudes and Elevations. Science , 356, 742-744. doi: 10.1126/science.aaj1631
Sasaki, T., and Yoshihara, Y. (2013). Local-scale disturbance by Siberian marmots has little influence on regional plant richness in a Mongolian grassland. Plant Ecology , 214, 29-34. doi: 10.1007/s11258-012-0142-1
Singh, D., Slik, J. W. F., Jeon, Y. S., Tomlinson, K. W., Yang, X. D., Wang, J., et al. (2019). Tropical forest conversion to rubber plantation affects soil micro- and mesofaunal community and diversity. Scientific Reports , 9. doi: 10.1038/s41598-019-42333-4
Sjursen, H., Michelsen, A., and Jonasson, S. (2005). Effects of long-term soil warming and fertilisation on microarthropod abundances in three sub-arctic ecosystems. Apply Soil Ecology , 30, 148-161. doi: 10.1016/j.apsoil.2005.02.013
Song, D. G., Pan, K. W., Tariq, A., Sun, F., Li, Z. L., Sun, X. M., et al. (2017). Large-scale patterns of distribution and diversity of terrestrial nematodes. Applied Soil Ecology , 114, 161-169. doi: 10.1016/j.apsoil.2017.02.013
Sorensen, T. A. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species content.Kongelige Danske Videnskabernes Selskab , 5, 4-7.
Sreekar, R., Koh, L. P., Mammides, C., Corlett, R. T., Dayananda, S., Goodale, U. M., et al. (2020). Drivers of bird beta diversity in the Western Ghats-Sri Lanka biodiversity hotspot are scale dependent: roles of land use, climate, and distance. Oecologia , 193, 801-809. doi: 10.1007/s00442-020-04671-3
Suttle, K. B., Thomsen, M. A., and Power, M. E. (2007). Species interactions reverse grassland responses to changing climate.Science , 315, 640-642. doi: 10.1126/science.1136401
Team, D. C. R. (2017). R: a Language and Environment for Statistical Computing . R Foundation for Statistical Computing, Vienna, Austria.
Tedersoo, L., Bahram, M., Polme, S., Koljalg, U., Yorou, N. S., Wijesundera, R., et al. (2014). Global diversity and geography of soil fungi. Science , 346, 1078. doi: 10.1126/science.1256688
Terlizzi, A., Anderson, M. J., Bevilacqua, S., Fraschetti, S., Włodarska- Kowalczuk, M., and Ellingsen, K. E. (2009). Beta diversity and taxonomic sufficiency: Do higher-level taxa reflect heterogeneity in species composition? Diversity and Distributions , 15, 450-458. doi: 10.1111/j.1472-4642.2008.00551.x
Turney, S., and Buddle, C. M. (2016). Pyramids of species richness: the determinants and distribution of species diversity across trophic levels. Oikos , 125, 1224-1232. doi: 10.1111/oik.03404
Ulrich, W., Zalewski, M., and Uvarov, A. V. (2012). Spatial distribution and species co-occurrence in soil invertebrate and plant communities on northern taiga islands.Annales Zoologici Fennici , 49, 161-173 doi: 10.5735/086.049.0304
van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., et al. (2019). Soil nematode abundance and functional group composition at a global scale. Nature , 572, 194-198. doi: 10.1038/s41586-019-1418-6
Wagg, C., Bender, S. F., Widmer, F., and van der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of The United States of America , 111, 5266-5270.doi: 10.1073/pnas.1320054111
Widenfalk, L. A., Bengtsson, J., Berggren, A., Zwiggelaar, K., Spijkman, E., Huyer-Brugman, F., et al. (2015). Spatially structured environmental filtering of collembolan traits in late successional salt marsh vegetation. Oecologia , 179, 537-549. doi: 10.1007/s00442-015-3345-z
Wu, T. H., Ayres, E., Bargett, R. D., Wall, D. H., and Garey, J. R. (2011). Molecular study of worldwide distribution and diversity of soil animals. Proceedings of the National Academy of Sciences of The United States of America , 108, 17720-17725. doi: 10.1073/pnas.1103824108
Xu, G. R., Lin, Y. H., Zhang, S., Zhang, Y. X., Li, G. X., and Ma, K. M. (2017). Shifting mechanisms of elevational diversity and biomass patterns in soil invertebrates at treeline. Soil Biology and Biochemistry , 113, 80-88. doi: 10.1016/j.soilbio.2017.05.012
Yin, W. Y. (2000). Soil Animals of China . Beijing, Chinese Sciences Press.
Yin, W. Y., Hu, S. H., Shen, Y. F., Ning, Y. Z., Sun, X. D., Wu, J. H., et al. (1998). Pictorical Keys to Soil Animals of China . Science Press, Beijing, China.
Yin, X. Q., Song, B., Dong, W. H., Xin, W. D., and Wang, Y. Q. (2010). A review on the eco-geography of soil fauna in China. Journal of Geographical Sciences , 20, 333-346. doi: 10.1007/s11442-010-0333-4
Zhang, L. M., Gao, M. X., Liu, D., Zhang, X. P., and Wu, D. H. (2016). Relative contributions of environmental filtering and dispersal limitation in species co-occurrence of above- and below-ground soil mite communities. Acta Ecologica Sinica , 36, 3951-3959. doi: 10.5846/stxb201411212306
Zhang, X. P., Hou, W. L., and Chen, P. (2001). Soil animal guilds and their ecological distribution in the northeast of China. Chinese Journal of Applied and Environmental Biology , 7, 370-374. doi: 10.3321/j.issn:1006-687X.2001.04.014
Zou, Y., van der Werf, W., Liu, Y. H., and Axmacher, J. C. (2020). Predictability of species diversity by family diversity across global terrestrial animal taxa. Global Ecology and Biogeography , 29, 629-644. doi: 10.1111/geb.13043
Li, Y. Z., Shipley, B., Price, J. N., Dantas, V. D., Tamme, R., Westoby, M., et al. (2017). Habitat filtering determines the functional niche occupancy of plant communities worldwide. Journal of Ecology , 106, 1001-1009. doi: 10.1111/1365-2745.12802