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Abstract

In this paper, we propose a new structure-preserving algorithm for computing the singu-
lar value decomposition of a quaternion matrix A. We first define a quaternion-type matrix
and prove that the multiplication of two quaternion-type matrices still be a quaternion-type
matrix. Thus, utilizing this fact, we conduct a sequence of quaternion-type unitary trans-
formations on a half of the elements of the complex adjoint matrix χA of A instead of on
the whole χA. Then, we recover the resulting matrix with the help of the special structures.
Compared with direct performing on the complex adjoint matrix, our algorithm needs only
half of the computation and storage. This method also provides a novel proof for the existence
of the singular value decomposition of a quaternion matrix. Moreover, numerical experiments
are given to demonstrate the validity of our approach.
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1 Introduction

It is well-known that the singular value decompositions (SVD) of matrices over real and complex
number fields have important applications in many areas such as engineering, data science and
signal/image processing. Motivated by increasing applications of quaternion matrices during the
past two decades, people have been working on the singular value decompositions of quaternion
matrices, and some algorithms for computing the singular value decompositions of quaternion
matrices (QSVD) have been proposed.

In general, there are two main ways to compute the QSVD. One way is using quaternionic
transformations directly. For instance, Bihan and Sangwine [12] used the quaternionic Householder
transformations. In [2], they applied a quaternionic Jacobi method to directly compute the QSVD.
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grants from the National Natural Science Foundation of China (11571220), and the Natural Sciences and Engineering
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Another way is using real/complex representation methods to get the QSVD. For instance, Li et
al. [6] proposed a structure-preserving algorithm for QSVD by using the real counterpart of a
quaternion matrix. Bihan and Mars [1] and Pei et al. [10] used a complex adjoint matrix of a
quaternion matrix A. They derived the QSVD of A = UΣV ∗ from the SVD of its complex adjoint
matrix χA. All of above papers focus on how to find Σ instead of finding U and V from the SVD of
the χA. Except that, their methods lead to more computational round-off errors and could destroy
the particular structure of the complex adjoint matrix (see [2]).

To overcome the disadvantages above, we propose an efficient algorithm to compute QSVD for
a given quaternion matrix in this paper. By a successive of structure-preserving unitary trans-
formations on a half of the elements of χA, we can derive the QSVD of the quaternion matrix
A and produce U,Σ, and V at the same time. Moreover, this new proposed algorithm results
in a reduction by half of memory requirements and the computational effort compared with the
algorithms proposed in [1] and [10].

This paper is organized as follows. In Section 2, we first recall some basic results. In Section
3, we develop a new method to compute QSVD by utilizing Givens rotations and Householder
reflections. Two numerical experiments are presented in Section 4.

Throughout this paper, the symbols A and A∗ stand for the conjugate and the conjugate
transpose of a matrix A, respectively. The notations R,C and H denote the real number field, the
complex number field and the quaternion skew field, respectively. Also, Rm×n, Cm×n and Hm×n

represent the set of all m× n matrices over R,C and H, respectively. The n× n identity matrix
is denoted by In, and ei denotes the i-th column of an identity matrix.

2 Preliminaries

For any quaternion q = q0 + q1i + q2j + q3k ∈ H = {a + bi + cj + dk | a, b, c, d ∈ R}, it can be
rewritten as q = c + sj, where c = q0 + q1i, s = q2 + q3i ∈ C, and its 2× 2 matrix representation

is

[
c s
−s c

]
. The conjugate of q is q = q0− q1i− q2j− q3k = c− sj, and the norm of q is defined as

|q| =
√
qq =

√
qq =

√
q2

0 + q2
1 + q2

2 + q2
3 =

√
|c|2 + |s|2.

Therefore, [
c −s
s c

] [
c s
−s c

]
=

[
c s
−s c

] [
c −s
s c

]
=

[
|c|2 + |s|2 0

0 |c|2 + |s|2
]
.

Let F = 1√
|c|2+|s|2

[
c −s
s c

]
. Then FF ∗ = F ∗F = I2, and thus, F is unitary.

Definition 2.1 Given two complex matrices A,B ∈ Cm×n, we can define the quaternion-type
matrix as following: [

A B
−B A

]
∈ C2m×2n. (1)

Clearly, there is a one-to-one correspondence between quaternion-type matrices and quaternion
matrices with compatible sizes. Furthermore, for any C,D ∈ Cn×l,[

A B
−B A

] [
C D
−D C

]
=

[
AC −BD AD +BC
−A D −BC A C −BD

]
.

2



Thus, we have the following simple result. But it will be critical for the design of the new algorithm
for QSVD in Section 3.

Lemma 2.2 The multiplication of two quaternion-type matrices with compatible sizes is also a
quaternion-type matrix.

Given a quaternion matrix A = A1 +A2j ∈ Hm×n with A1, A2 ∈ Cm×n. A well-known complex
adjoint matrix of A is given by

χA =

[
A1 A2

−A2 A1

]
. (2)

Obviously, by Definition 2.1, χA is a quaternion-type matrix which is corresponding to the quater-
nion matrix A = A1 + A2j.

Next, we summarize some important properties of the complex adjoint matrix of a quaternion
matrix. We refer to the readers to [11, 13] for more details.

Lemma 2.3 Let A,B ∈ Hm×n, C ∈ Hn×l, D ∈ Hm×m. Then

(1) A = B ⇐⇒ χA = χB;

(2) χA+B = χA + χB;

(3) χAC = χAχC ;

(4) χIn = I2n;

(5) χA∗ = χ∗A;

(6) χD is unitary, Hermitian, or normal if and only if D is unitary, Hermitian, or normal,
respectively;

By Lemma 2.2, if some quaternion-type transformations T1, . . . , Tk act on the complex adjoint
matrix 2 of A ∈ Hm×n, then the resulting matrix (Tk · · ·T1)χA is still a quaternion-type matrix.

3 QSVD based on structure-preserving unitary transfor-

mations

Recall that the Givens rotation can zero out a particular entry in a vector, and Householder
reflection can be used to simultaneously zero out up to n − 1 elements in an n-vectors. In this
section, we will mix the Givens rotations and Householder transformations to derive our QSVD
algorithms.

For any quaternion matrix A = A1 + A2j ∈ Hm×n, without loss of generality, we assume
m ≥ n. Our method can be divided into two steps. In this first step, we will conduct a series of
quaternion-type unitary matrices on a half of χA to derive a real upper-bidiagonal matrix Â, that
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is,

A =



∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ · · · ∗ ∗
...

... · · · ...
...

∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ · · · ∗ ∗
...

...
... · · · ...

...
∗ ∗ ∗ · · · ∗ ∗


−→ Â =



× × 0 · · · 0 0
0 × × · · · 0 0
...

... · · · ...
...

0 0 0 · · · × ×
0 0 0 · · · 0 ×
0 0 0 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 0


.

In the second step, we derive the QSVD of A from the SVD of Â = ÛΣV̂ T , that is,

Â =



× × 0 · · · 0 0
0 × × · · · 0 0
...

... · · · ...
...

0 0 0 · · · × ×
0 0 0 · · · 0 ×
0 0 0 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 0


−→ Σ =



σ1 0 0 · · · 0 0
0 σ2 0 · · · 0 0
...

... · · · ...
...

0 0 0 · · · σn−1 0
0 0 0 · · · 0 σn
0 0 0 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 0


.

Now we show how step (1) works correctly. For A = A1 + A2j = (qts)m×n = (ats + btsj)m×n ∈
Hm×n, where A1, A2 ∈ Cm×n, qts ∈ H and ats, bts ∈ C, 1 ≤ t ≤ m, 1 ≤ s ≤ n. We define a complex
Givens rotation matrix for nonzero qts as follows:

Gts =



It−1 0 0 0 0 0
0 āts

|qts| 0 0 − bts
|qts| 0

0 0 Im−t 0 0 0
0 0 0 It−1 0 0

0 b̄ts
|qts| 0 0 ats

|qts| 0

0 0 0 0 0 Im−t


∈ C2m×2m.

When qts = 0, we just define Gts = I2m. It is easy to verify that Gts is a unitary quaternion-type

matrix by |qts| =
√
atsāts + btsb̄ts. Let

B =

[
A1

−A2

]
=



a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...
am1 am2 · · · amn

−b̄11 −b̄12 · · · −b̄1n

−b̄21 −b̄22 · · · −b̄2n
...

...
...

...
−b̄m1 −b̄m2 · · · −b̄mn


.
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Then multiplying G11 on the left-hand side of B, we obtain

G11B =



|q11| a
(1)
12 · · · a

(1)
1n

a21 a22 · · · a2n
...

... · · · ...
am1 am2 · · · amn

0 −b̄(1)
12 · · · −b̄(1)

1n

−b̄21 −b̄22 · · · −b̄2n
...

...
...

...
−b̄m1 −b̄m2 · · · −b̄mn


.

Next multiplying G21 on the left side of G11B,

G21G11B =



|q11| a
(1)
12 · · · a

(1)
1n

|q21| a
(1)
22 · · · a

(1)
2n

...
... · · · ...

am1 am2 · · · amn

0 −b̄(1)
12 · · · −b̄(1)

1n

0 −b̄(1)
22 · · · −b̄(1)

2n

...
...

...
...

−b̄m1 −b̄m2 · · · −b̄mn


.

In an analogous way, we have

Gm1 . . . G21G11B =



|q11| a
(1)
12 · · · a

(1)
1n

|q21| a
(1)
22 . . . a

(1)
2n

...
... · · · ...

|qm1| a
(1)
m2 · · · a

(1)
mn

0 −b̄(1)
12 · · · −b̄(1)

1n

0 −b̄(1)
22 · · · −b̄(1)

2n

...
... · · · ...

0 −b̄(1)
m2 · · · −b̄

(1)
mn


. (3)

Denoting Gl1 = Gm1 · · ·G21G11. By Lemma 2.2, Gl1 is still a 2m × 2m unitary quaternion-type
matrix.

For the real vector v1 =
[
|q11|, |q21|, · · · , |qm1|

]T
, we define a real Householder reflection

H1 such that H1v1 = ‖v1‖e1, where ‖v1‖ =
√
|q11|2 + |q21|2 + · · ·+ |qm1|2 . We denote

Hl1 =

[
H1 0
0 H1

]
. (4)
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Clearly, Hl1 is a 2m× 2m quaternion-type unitary matrix, and

Hl1Gl1B =



a
(2)
11 a

(2)
12 · · · a

(2)
1n

0 a
(2)
22 · · · a

(2)
2n

...
... · · · ...

0 a
(2)
m2 · · · a

(2)
mn

0 −b̄(2)
12 · · · −b̄(2)

1n

0 −b̄(2)
22 · · · −b̄(2)

2n
...

... · · · ...

0 −b̄(2)
m2 · · · −b̄

(2)
mn


,

[
A

(1)
1

−A(1)
2

]
, (5)

where a
(2)
11 = ‖v1‖, A(1)

1 , A
(1)
2 ∈ Cm×n.

By Lemma 2.2, Hl1Gl1χA should be a quaternion-type matrix. Note that Hl1Gl1B is the first
block column of Hl1Gl1χA. Thus, we can recover from (5) that

Hl1Gl1χA =

[
A

(1)
1 A

(1)
2

−A(1)
2 A

(1)
1

]
, (6)

Next, we take a half of Hl1Gl1χA as follows:

C ,
[
A

(1)
1 , A

(1)
2

]
=


a

(2)
11 a

(2)
12 · · · a

(2)
1n 0 b

(2)
12 · · · b

(2)
1n

0 a
(2)
22 · · · a

(2)
2n 0 b

(2)
22 · · · b

(2)
2n

...
... · · · ...

...
... · · · ...

0 a
(2)
m2 · · · a

(2)
mn 0 b

(2)
m2 · · · b

(2)
mn

 . (7)

We define a complex Givens rotation matrix

G
(2)
ts =



Is−1 0 0 0 0 0

0
ā
(2)
ts

|q(2)ts |
0 0 − b

(2)
ts

|q(2)ts |
0

0 0 In−s 0 0 0
0 0 0 Is−1 0 0

0
b̄
(2)
ts

|q(2)ts |
0 0

a
(2)
ts

|q(2)ts |
0

0 0 0 0 0 In−s


when |q(2)

ts | =
√
|a(2)

ts |2 + |b(2)
ts |2 6= 0. In case, q

(2)
ts = 0, we just simply set G

(2)
ts = I2n. Obviously, the

2n× 2n complex matrix G
(2)
ts is a unitary quaternion-type matrix.

Similarly, we conduct a series of quaternion-type unitary matrices on C by G
(2)
12 , G

(2)
13 , · · · , G

(2)
1n

such that

CG
(2)
12 G

(2)
13 · · ·G

(2)
1n =


a

(2)
11 |q(2)

12 | · · · |q
(2)
1n | 0 0 · · · 0

0 a
(3)
22 · · · a

(3)
2n 0 b

(3)
22 · · · b

(3)
2n

...
... · · · ...

...
... · · · ...

0 a
(3)
m2 · · · a

(3)
mn 0 b

(3)
m2 · · · b

(3)
mn

 . (8)

6



Denoting Gr1 = G
(2)
12 G

(2)
13 · · ·G

(2)
1n . Then it is still a 2n× 2n quaternion-type unitary matrix. For a

nonzero real vector uT1 =
[
|q(2)

12 |, |q
(2)
13 |, · · · , |q

(2)
1n |
]T
, we define a real Householder reflection H̃1

such that u1H̃1 = ‖u1‖eT1 . For a zero vector, we just choose In. Let

Hr1 =


1 0 0 0

0 H̃1 0 0
0 0 1 0

0 0 0 H̃1

 . (9)

Then Hr1 is a 2n× 2n quaternion-type unitary matrix, and

CGr1Hr1 =


a

(4)
11 a

(4)
12 · · · 0 0 0 · · · 0

0 a
(4)
22 · · · a

(4)
2n 0 b

(4)
22 · · · b

(4)
2n

...
... · · · ...

...
... · · · ...

0 a
(4)
m2 · · · a

(4)
mn 0 b

(4)
m2 · · · b

(4)
mn

 ,
[
A

(2)
1 , A

(2)
2

]
, (10)

where a
(4)
11 = a

(2)
11 , a

(4)
12 =

√
|q(2)

12 |2 + · · ·+ |q(2)
1n |2, A

(2)
1 , A

(2)
2 ∈ Cm×n. Since Hl1Gl1χAGr1Hr1 is a

quaternion-type unitary matrix and CGr1Hr1 is the first block row of Hl1Gl1χAGr1Hr1, we can
recover the matrix

Hl1Gl1χAGr1Hr1 =

[
A

(2)
1 A

(2)
2

−A(2)
2 A

(2)
1

]
(11)

from (6), (7) and (10).
Since Hl1Gl1 and Gr1Hr1 are unitary quaternion-type matrices, by Definition 2.1, equality (2),

and (6) of Lemma 2.3, we can read two unitary quaternion matrices U1, V1 from Hl1Gl1 and Gr1Hr1

such that Hl1Gl1 = χU1 , Gr1Hr1 = χV1 . Thus (11) is equivalent to χU1χAχV1 = χ
A

(2)
1 +A

(2)
2 j
. By (3)

of Lemma 2.3,
χU1AV1 = χ

A
(2)
1 +A

(2)
2 j
. (12)

Hence (12) is equivalent to U1AV1 = A
(2)
1 + A

(2)
2 j. As the process described above, there exist

unitary matrices U1, U2, · · · , Un−1, Un ∈ Hm×m and V1, V2, · · · , Vn−1 ∈ Hn×n such that

UnUn−1 · · ·U1AV1 · · ·Vn−1 = Â1 + Â2j,

where

Â1 =



â11 â12 0 · · · 0 0
0 â22 â23 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · â(n−1)(n−1) â(n−1)n

0 0 0 · · · 0 ânn
...

...
... · · · ...

...
0 0 0 0 · · · 0


∈ Rm×n, Â2 = 0,

i.e., there exist unitary matrices Ũ , UnUn−1 · · ·U2U1 ∈ Hm×m and Ṽ , V1V2 · · ·Vn−1 ∈ Hn×n

such that
ŨAṼ = Â1. (13)
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Since Â1 is a real upper-bidiagonal matrix, thus there exist orthogonal matrices Û ∈ Rm×m, V̂ ∈
Rn×n and a diagonal matrix Σ ∈ Rm×n such that

Â1 = ÛΣV̂ T , (14)

where Σ =

[
Σ̂ 0
0 0

]
, Σ̂ = diag(σ1, σ2, · · · , σr), r = rank(Â1) , and σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Thus, up to now, we have already proved that any quaternion matrix has a QSVD decompo-
sition.

Theorem 3.1 For any matrix A ∈ Hm×n, there exist unitary matrices U ∈ Hm×m, V ∈ Hn×n and
a diagonal matrix Σ ∈ Rm×n such that

A = UΣV ∗, (15)

where U = Ũ∗Û ∈ Hm×m and V = Ṽ V̂ ∈ Hn×n are unitary, Σ ∈ Rm×n is diagonal, and Ũ , Ṽ , Û , V̂
and Σ are given as equations (13) and (14).

Remark 3.2 For A ∈ Hm×n, if m < n, to find the QSVD for A , we just need to take

A∗ = UΣV ∗,

and then form
A = V ΣU∗.

4 Algorithms and Numerical experiments

In this section, we first propose two algorithms for computing QSVDs which are based on two
steps discussed in Section 3.

Algorithm 1. Computing the upper-bidiagonalization form of a quaternion matrix
Input: A = A1 + A2j ∈ Hm×n with A1, A2 ∈ Cm×n.

Output: Ũ ∈ Hm×m, Ṽ ∈ Hn×n, Â ∈ Rm×n satisfying ŨAṼ = Â in the upper-bidiagonalization
form and χŨ = HlnGln · · ·Hl1Gl1, χṼ = Gr1Hr1 · · ·Gr(n−2)Hr(n−2)Gr(n−1).

(i) Calculate Gl1, · · · , Gln (similar to (3));
(ii) Calculate Hl1, · · · , Hln (similar to (4));
(iii) Calculate Gr1, · · · , Gr(n−1) (similar to (8));
(iv) Calculate Hr1, · · · , Hr(n−2) (similar to (9));

Algorithm 2. Computing the QSVD of a quaternion matrix
Input: A = A1 + A2j ∈ Hm×n, A1, A2 ∈ Cm×n.

Output: U,Σ, V satisfying A = UΣV ∗, where U = Ũ∗Û and V = Ṽ V̂ .

(i) Calculate Ũ , Ṽ , Â based on Algorithm 1;

(ii) Compute the SVD for the real diagonal matrix Â by (14) and Theorem 3.1.

Finally, we give two numerical examples.
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Example 4.1 Find the QSVD of the quaternion matrix A = A1 + A2j with

A1 =


2− i −3 + i 4− i 1 + i
−2 5i −4i 3i

1 + 2i 3− 4i 2i 3− i
−4i −4 1− 3i 4 + 2i

9− 2i 3 2− 2i 5i

 , A2 =


3− 5i −3i 8− 5i 6
2 + i −2 + 4i −4i 3i
2− 5i 5i −4− 4i 7− 2i
2− i 6− 2i −1 + i 5 + 5i
3− 3i −2 3− 2i −6i

 .
Using Algorithm 2, we obtain the following result (which quoted in three decimal places):

Σ =

[
19.681 0 0 0

0 16.266 0 0
0 0 13.109 0
0 0 0 4.717
0 0 0 0

]
, U = U1 + U2j, and V = V1 + V2j with

U1 =

[ −0.178+0.131i 0.154+0.059i 0.122+0.160i −0.188+0.185i 0.060+0.201i
−0.011+0.001i −0.260−0.200i −0.017−0.207i 0.088+0.320i −0.010−0.010i
−0.209−0.063i −0.105+0.175i −0.194+0.109i −0.368+0.126i 0.075+0.118i
−0.249+0.296i −0.330+0.097i −0.012+0.479i 0.261+0.108i 0.236−0.329i
−0.083+0.038i 0.580−0.018i −0.425+0.126i 0.272−0.329i −0.056−0.113i

]
,

U2 =

[ −0.527+0.175i 0.009−0.310i 0.241+0.229i −0.312+0.256i 0.069+0.296i
−0.255+0.179i −0.091+0.303i 0.000−0.049i 0.179−0.154i −0.567+0.403i
0.065+0.419i 0.314−0.242i 0.104−0.390i 0.080−0.305i −0.153−0.259i
−0.112−0.037i 0.070+0.049i 0.069+0.331i 0.252−0.052i −0.002−0.239i
−0.246+0.293i −0.089−0.022i −0.225−0.002i 0.152−0.027i −0.180−0.012i

]
,

V1 =

[ −0.476+0.000i 0.572+0.000i −0.383+0.000i 0.548+0.000i
0.190+0.001i 0.139+0.120i −0.467−0.377i −0.306−0.387i
−0.576+0.169i 0.132+0.045i 0.042−0.247i −0.609−0.072i
−0.322−0.088i 0.140+0.156i 0.406+0.418i −0.142+0.053i

]
,

V2 =

[
0.000+0.000i 0.000+0.000i 0.000+0.000i 0.000+0.000i
0.177+0.284i 0.335+0.248i 0.083+0.107i −0.138+0.062i
−0.125−0.093i −0.321−0.109i −0.116+0.054i 0.145+0.070i
0.168+0.320i 0.239+0.480i 0.140+0.193i −0.006−0.089i

]
.

It can be verified that UU∗ = U∗U = I5, V V
∗ = V ∗V = I4, and UΣV ∗−A = 1.0e−14(W1+W2j),

where

W1 =

[ −0.311+0.100i 0.355−0.344i −0.355+0.111i 0.133−0.089i
0.178+0.217i 0.000−0.178i −0.150+0.089i 0.222−0.222i
−0.289−0.222i −0.178−0.355i 0.044+0.133i −0.711−0.222i
−0.071+0.178i 0.044−0.411i −0.511+0.044i 0.267−0.089i
−0.178+0.000i 0.355−0.666i −0.022−0.044i −0.427+0.000i

]
,

W2 =

[ −0.622+0.355i 0.233−0.267i −0.444+0.355i −0.533+0.022i
−0.289+0.044i 0.022+0.178i −0.178+0.267i −0.067−0.089i
−0.200+0.799i 0.644−0.533i 0.089+0.622i 0.000+0.489i
−0.089−0.133i 0.178−0.267i 0.067−0.011i −0.355−0.355i
−0.133+0.311i −0.178+0.000i 0.267+0.311i −0.511−0.267i

]
.

That is, A = UΣV ∗.

Example 4.2 Find the QSVD of A = A1 + A2j with

A1 = rand(3) + rand(3)i =
[

0.0975+0.8003i 0.9575+0.9157i 0.9706+0.6557i
0.2785+0.1419i 0.9649+0.7922i 0.9572+0.0357i
0.5469+0.4218i 0.1576+0.9595i 0.4854+0.8491i

]
,

A2 = rand(3) + rand(3)i =
[

0.9340+0.2769i 0.7431+0.8235i 0.1712+0.9502i
0.6787+0.0462i 0.3922+0.6948i 0.7060+0.0344i
0.7577+0.0971i 0.6555+0.3171i 0.0318+0.4387i

]
.

By using Algorithm 2, we obtain the following result (which quoted in four decimal places):
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U =
[ −0.2330−0.3360i −0.0884+0.3398i 0.6046−0.1289i
−0.2546−0.2114i −0.5383−0.4193i −0.4140−0.0768i
−0.0384−0.2801i 0.4957+0.1586i −0.5117+0.3357i

]
+
[ −0.5439−0.1699i 0.0297−0.0085i −0.0420−0.0012i
−0.3967+0.0421i 0.1283+0.2314i 0.1299+0.0399i
−0.3845−0.1085i 0.1017−0.2428i −0.1607−0.1411i

]
j,

V =
[ −0.4506+0.0000i 0.6038+0.0000i −0.6575+0.0000i
−0.5920−0.2129i −0.1899+0.2103i 0.2313+0.3391i
−0.4210−0.3174i −0.0272−0.4411i 0.2635−0.1876i

]
+
[

0.0000+0.0000i 0.0000+0.0000i 0.0000+0.0000i
−0.1034+0.2468i 0.0255+0.4589i 0.0943+0.2523i
−0.1703+0.1500i −0.0012−0.3854i 0.1157−0.4568i

]
j,

Σ =
[

3.6747 0 0
0 0.9415 0
0 0 0.5987

]
.

It can be verified that UU∗ = U∗U = I3, V V
∗ = V ∗V = I3,

UΣV ∗ − A =

1.0e−15 ·
{[

0.2220+0.3331i 0.3331−0.4441i 0.1110−0.2220i
0.1665+0.1110i −0.3331+0.2220i −0.2220−0.3886i
0.0000+0.0000i −0.4718+0.1110i −0.2220+0.1110i

]
+
[

0.1110+0.0555i −0.1110−0.2220i −0.2220+0.2220i
0.0000−0.0139i −0.7772+0.3331i 0.1110−0.7216i
0.1110+0.0416i 0.1110−0.3331i −0.2220+0.0000i

]
j
}
.

That is, A = UΣV ∗.
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