References
Appleby, C.A., 1992. The origin and functions of haemoglobin in plants. Sci. Prog. 1933- 76, 365–398.
Bailey-Serres, J., Fukao, T., Gibbs, D.J., Holdsworth, M.J., Lee, S.C., Licausi, F., Perata, P., Voesenek, L.A.C.J., van Dongen, J.T., 2012. Making sense of low oxygen sensing. Trends Plant Sci. 17, 129–138. https://doi.org/10.1016/j.tplants.2011.12.004
Baudouin, E., Pieuchot, L., Engler, G., Pauly, N., Puppo, A., 2006. Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules. Mol. Plant. Microbe Interact. 19, 970–975. https://doi.org/10.1094/MPMI-19-0970
Berger, A., Boscari, A., Frendo, P., Brouquisse, R., 2019. Nitric oxide signaling, metabolism and toxicity in nitrogen-fixing symbiosis. J. Exp. Bot. 70, 4505–4520. https://doi.org/10.1093/jxb/erz159
Berger, A., Boscari, A., Horta Araújo, N., Maucourt, M., Hanchi, M., Bernillon, S., Rolin, D., Puppo, A., Brouquisse, R., 2020a. Plant Nitrate Reductases Regulate Nitric Oxide Production and Nitrogen-Fixing Metabolism During the Medicago truncatula–Sinorhizobium meliloti Symbiosis. Front. Plant Sci. 11.
Berger, A., Boscari, A., Puppo, A., Brouquisse, R., 2021. Nitrate reductases and hemoglobins control nitrogen-fixing symbiosis by regulating nitric oxide accumulation. J. Exp. Bot. 72, 873–884. https://doi.org/10.1093/jxb/eraa403
Berger, A., Guinand, S., Boscari, A., Puppo, A., Brouquisse, R., 2020b. Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentration. New Phytol. 227, 84–98. https://doi.org/10.1111/nph.16462
Biswas, B., Gresshoff, P.M., 2014. The Role of Symbiotic Nitrogen Fixation in Sustainable Production of Biofuels. Int. J. Mol. Sci. 15, 7380–7397. https://doi.org/10.3390/ijms15057380
Boscari, A., del Giudice, J., Ferrarini, A., Venturini, L., Zaffini, A.-L., Delledonne, M., Puppo, A., 2013. Expression Dynamics of the Medicago truncatula Transcriptome during the Symbiotic Interaction with Sinorhizobium meliloti: Which Role for Nitric Oxide? Plant Physiol. 161, 425–439. https://doi.org/10.1104/pp.112.208538
Bui, L.T., Giuntoli, B., Kosmacz, M., Parlanti, S., Licausi, F., 2015. Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Sci. 236, 37–43. https://doi.org/10.1016/j.plantsci.2015.03.008
Correa-Aragunde, N., Graziano, M., Lamattina, L., 2004. Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218, 900–905. https://doi.org/10.1007/s00425-003-1172-7
del Giudice, J., Cam, Y., Damiani, I., Fung-Chat, F., Meilhoc, E., Bruand, C., Brouquisse, R., Puppo, A., Boscari, A., 2011. Nitric oxide is required for an optimal establishment of the Medicago truncatula–Sinorhizobium meliloti symbiosis. New Phytol. 191, 405–417. https://doi.org/10.1111/j.1469-8137.2011.03693.x
Garzón, M., Eifler, K., Faust, A., Scheel, H., Hofmann, K., Koncz, C., Yephremov, A., Bachmair, A., 2007. PRT6/At5g02310 encodes an Arabidopsis ubiquitin ligase of the N-end rule pathway with arginine specificity and is not the CER3 locus. FEBS Lett. 581, 3189–3196. https://doi.org/10.1016/j.febslet.2007.06.005
Gasch, P., Fundinger, M., Müller, J.T., Lee, T., Bailey-Serres, J., Mustropha, A., 2016. Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-motif to regulate hypoxia-responsive gene expression in arabidopsis. Plant Cell 28, 160–180. https://doi.org/10.1105/tpc.15.00866
Gibbs, D.J., Bacardit, J., Bachmair, A., Holdsworth, M.J., 2014a. The eukaryotic N-end rule pathway: Conserved mechanisms and diverse functions. Trends Cell Biol. 24, 603–611. https://doi.org/10.1016/j.tcb.2014.05.001
Gibbs, D.J., Conde, J.V., Berckhan, S., Prasad, G., Mendiondo, G.M., Holdsworth, M.J., 2015. Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress responses in plants. Plant Physiol. 169, 23–31. https://doi.org/10.1104/pp.15.00338
Gibbs, D.J., Lee, S.C., Md Isa, N., Gramuglia, S., Fukao, T., Bassel, G.W., Correia, C.S., Corbineau, F., Theodoulou, F.L., Bailey-Serres, J., Holdsworth, M.J., 2011. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479, 415–418. https://doi.org/10.1038/nature10534
Gibbs, D.J., MdIsa, N., Movahedi, M., Lozano-Juste, J., Mendiondo, G.M., Berckhan, S., Marín-delaRosa, N., VicenteConde, J., SousaCorreia, C., Pearce, S.P., Bassel, G.W., Hamali, B., Talloji, P., Tomé, D.F.A., Coego, A., Beynon, J., Alabadí, D., Bachmair, A., León, J., Gray, J.E., Theodoulou, F.L., Holdsworth, M.J., 2014b. Nitric Oxide Sensing in Plants Is Mediated by Proteolytic Control of Group VII ERF Transcription Factors. Mol. Cell 53, 369–379. https://doi.org/10.1016/j.molcel.2013.12.020
Gravot, A., Richard, G., Lime, T., Lemarié, S., Jubault, M., Lariagon, C., Lemoine, J., Vicente, J., Robert-Seilaniantz, A., Holdsworth, M.J., Manzanares-Dauleux, M.J., 2016. Hypoxia response in Arabidopsis roots infected by Plasmodiophora brassicae supports the development of clubroot. BMC Plant Biol. 16, 251–251. https://doi.org/10.1186/s12870-016-0941-y
Gupta, K.J., Igamberdiev, A.U., 2011. The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion 11, 537–543. https://doi.org/10.1016/j.mito.2011.03.005
Hartman, S., Liu, Z., van Veen, H., Vicente, J., Reinen, E., Martopawiro, S., Zhang, H., van Dongen, N., Bosman, F., Bassel, G.W., Visser, E.J.W., Bailey-Serres, J., Theodoulou, F.L., Hebelstrup, K.H., Gibbs, D.J., Holdsworth, M.J., Sasidharan, R., Voesenek, L.A.C.J., 2019. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat. Commun. 10. https://doi.org/10.1038/s41467-019-12045-4
Hess, N., Klode, M., Anders, M., Sauter, M., 2011. The hypoxia responsive transcription factor genes ERF71/HRE2 and ERF73/HRE1 of Arabidopsis are differentially regulated by ethylene. Physiol. Plant. 143, 41–49. https://doi.org/10.1111/j.1399-3054.2011.01486.x
Hichri, I., Boscari, A., Castella, C., Rovere, M., Puppo, A., Brouquisse, R., 2015. Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis. J. Exp. Bot. 66, 2877–2887. https://doi.org/10.1093/jxb/erv051
Hinz, M., Wilson, I.W., Yang, J., Buerstenbinder, K., Llewellyn, D., Dennis, E.S., Sauter, M., Dolferus, R., 2010. Arabidopsis RAP2.2: An ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 153, 757–772. https://doi.org/10.1104/pp.110.155077
Horchani, F., Prévot, M., Boscari, A., Evangelisti, E., Meilhoc, E., Bruand, C., Raymond, P., Boncompagni, E., Aschi-Smiti, S., Puppo, A., Brouquisse, R., 2011. Both plant and bacterial nitrate reductases contribute to nitric oxide production in medicago truncatula nitrogen-fixing nodules. Plant Physiol. 155, 1023–1036. https://doi.org/10.1104/pp.110.166140
Hu, R.-G., Sheng, J., Qi, X., Xu, Z., Takahashi, T.T., Varshavsky, A., 2005. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature 437, 981–986. https://doi.org/10.1038/nature04027
Hunt, S., Layzell, D.B., 1993. Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 483–511. https://doi.org/10.1146/annurev.pp.44.060193.002411
Igamberdiev, A.U., Hill, R.D., 2009. Plant mitochondrial function during anaerobiosis. Ann. Bot. 103, 259–268. https://doi.org/10.1093/aob/mcn100
Kerpen, L., Niccolini, L., Licausi, F., van Dongen, J.T., Weits, D.A., 2019. Hypoxic Conditions in Crown Galls Induce Plant Anaerobic Responses That Support Tumor Proliferation. Front. Plant Sci. 10, 56. https://doi.org/10.3389/fpls.2019.00056
Kuzma, M.M., Hunt, S., Layzell, D.B., 1993. Role of oxygen in the limitation and inhibition of nitrogenase activity and respiration rate in individual soybean nodules. Plant Physiol. 101, 161–169. https://doi.org/10.1104/pp.101.1.161
Licausi, F., 2011. Regulation of the molecular response to oxygen limitations in plants. New Phytol. 190, 550–555. https://doi.org/10.1111/j.1469-8137.2010.03562.x
Licausi, F., Kosmacz, M., Weits, D.A., Giuntoli, B., Giorgi, F.M., Voesenek, L.A.C.J., Perata, P., Van Dongen, J.T., 2011. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479, 419–422. https://doi.org/10.1038/nature10536
Licausi, F., Van Dongen, J.T., Giuntoli, B., Novi, G., Santaniello, A., Geigenberger, P., Perata, P., 2010. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 62, 302–315. https://doi.org/10.1111/j.1365-313X.2010.04149.x
Loreti, E., van Veen, H., Perata, P., 2016. Plant responses to flooding stress. Curr. Opin. Plant Biol. 33, 64–71. https://doi.org/10.1016/j.pbi.2016.06.005
Mustroph, A., Lee, S.C., Oosumi, T., Zanetti, M.E., Yang, H., Ma, K., Yaghoubi-Masihi, A., Fukao, T., Bailey-Serres, J., 2010. Cross-Kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiol. 152, 1484–1500. https://doi.org/10.1104/pp.109.151845
Mustroph, A., Zanetti, M.E., Jang, C.J.H., Holtan, H.E., Repetti, P.P., Galbraith, D.W., Girke, T., Bailey-Serres, J., 2009. Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 106, 18843–18848. https://doi.org/10.1073/pnas.0906131106
Ott, T., Sullivan, J., James, E.K., Flemetakis, E., Günther, C., Gibon, Y., Ronson, C., Udvardi, M., 2009. Absence of symbiotic leghemoglobins alters bacteroid and plant cell differentiation during development of Lotus japonicus root nodules. Mol. Plant-Microbe Interact. MPMI 22, 800–808. https://doi.org/10.1094/MPMI-22-7-0800
Ott, T., van Dongen, J.T., Günther, C., Krusell, L., Desbrosses, G., Vigeolas, H., Bock, V., Czechowski, T., Geigenberger, P., Udvardi, M.K., 2005. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr. Biol. CB 15, 531–535. https://doi.org/10.1016/j.cub.2005.01.042
Papdi, C., Pérez-Salamõ, I., Joseph, M.P., Giuntoli, B., Bögre, L., Koncz, C., Szabados, L., 2015. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. Plant J. 82, 772–784. https://doi.org/10.1111/tpj.12848
Perata, P., Alpi, A., 1993. Plant responses to anaerobiosis. Plant Sci. 93, 1–17. https://doi.org/10.1016/0168-9452(93)90029-Y
Pierre, O., Hopkins, J., Combier, M., Baldacci, F., Engler, G., Brouquisse, R., Hérouart, D., Boncompagni, E., 2014. Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules. New Phytol. 202, 849–863. https://doi.org/10.1111/nph.12717
Postgate, J.R., 1982. Biology Nitrogen Fixation: Fundamentals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 296, 375–385.
Quandt, H.-J., Pühler, Alfred, Broer, Inge, 1993. Transgenic Root Nodules of Vicia hirsuta: A Fast and Efficient System for the Study of Gene Expression in Indeterminate-Type Nodules. Mol. Plant. Microbe Interact. 6, 699. https://doi.org/10.1094/MPMI-6-699
Rancurel, C., van Tran, T., Elie, C., Hilliou, F., 2019. SATQPCR: Website for statistical analysis of real-time quantitative PCR data. Mol. Cell. Probes 46, 101418. https://doi.org/10.1016/j.mcp.2019.07.001
Ricoult, C., Cliquet, J.B., Limami, A.M., 2005. Stimulation of alanine amino transferase (AlaAT) gene expression and alanine accumulation in embryo axis of the model legume Medicago truncatula contribute to anoxia stress tolerance. Physiol. Plant. 123, 30–39. https://doi.org/10.1111/j.1399-3054.2005.00449.x
Roux, B., Rodde, N., Jardinaud, M.-F., Timmers, T., Sauviac, L., Cottret, L., Carrère, S., Sallet, E., Courcelle, E., Moreau, S., Debellé, F., Capela, D., de Carvalho-Niebel, F., Gouzy, J., Bruand, C., Gamas, P., 2014. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J. 77, 817–837. https://doi.org/10.1111/tpj.12442
Schiessl, K., Lilley, J.L.S., Lee, T., Tamvakis, I., Kohlen, W., Bailey, P.C., Thomas, A., Luptak, J., Ramakrishnan, K., Carpenter, M.D., Mysore, K.S., Wen, J., Ahnert, S., Grieneisen, V.A., Oldroyd, G.E.D., 2019. NODULE INCEPTION Recruits the Lateral Root Developmental Program for Symbiotic Nodule Organogenesis in Medicago truncatula. Curr. Biol. 29, 3657-3668.e5. https://doi.org/10.1016/j.cub.2019.09.005
Shimoda, Y., Shimoda-Sasakura, F., Kucho, K.I., Kanamori, N., Nagata, M., Suzuki, A., Abe, M., Higashi, S., Uchiumi, T., 2009. Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus. Plant J. 57, 254–263. https://doi.org/10.1111/j.1365-313X.2008.03689.x
Shu, Y., Liu, Y., Zhang, J., Song, L., Guo, C., 2016. Genome-wide analysis of the AP2/ERF superfamily genes and their responses to abiotic stress in Medicago truncatula. Front. Plant Sci. 6, 1–17. https://doi.org/10.3389/fpls.2015.01247
Shukla, V., Lombardi, L., Iacopino, S., Pencik, A., Novak, O., Perata, P., Giuntoli, B., Licausi, F., 2019. Endogenous Hypoxia in Lateral Root Primordia Controls Root Architecture by Antagonizing Auxin Signaling in Arabidopsis. Mol. Plant 12, 538–551. https://doi.org/10.1016/j.molp.2019.01.007
Soupène, E., Foussard, M., Boistard, P., Truchet, G., Batut, J., 1995. Oxygen as a key developmental regulator of Rhizobium meliloti N2-fixation gene expression within the alfalfa root nodule. Proc. Natl. Acad. Sci. U. S. A. 92, 3759–3763. https://doi.org/10.1073/pnas.92.9.3759
van VEEN, H., Akman, M., Jamar, D.C.L., Vreugdenhil, D., Kooiker, M., van TIENDEREN, P., Voesenek, L. a. C.J., Schranz, M.E., Sasidharan, R., 2014. Group VII Ethylene Response Factor diversification and regulation in four species from flood-prone environments. Plant Cell Environ. 37, 2421–2432. https://doi.org/10.1111/pce.12302
Vance, C.P., Gantt, J.S., 1992. Control of nitrogen and carbon metabolism in root nodules. Physiol. Plant. 85, 266–274. https://doi.org/10.1111/j.1399-3054.1992.tb04731.x
Varshavsky, A., 2011. The N-end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298–1345. https://doi.org/10.1002/pro.666
Vicente, J., Mendiondo, G.M., Movahedi, M., Peirats-Llobet, M., Juan, Y. ting, Shen, Y. yen, Dambire, C., Smart, K., Rodriguez, P.L., Charng, Y. yung, Gray, J.E., Holdsworth, M.J., 2017. The Cys-Arg/N-End Rule Pathway Is a General Sensor of Abiotic Stress in Flowering Plants. Curr. Biol. 27, 3183-3190.e4. https://doi.org/10.1016/j.cub.2017.09.006
Voesenek, L.A.C.J., Bailey-Serres, J., 2015. Flood adaptive traits and processes: An overview. New Phytol. 206, 57–73. https://doi.org/10.1111/nph.13209
von Arnim, A.G., Deng, X.W., Stacey, M.G., 1998. Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene 221, 35–43. https://doi.org/10.1016/s0378-1119(98)00433-8
Weits, D.A., Giuntoli, B., Kosmacz, M., Parlanti, S., Hubberten, H.M., Riegler, H., Hoefgen, R., Perata, P., Van Dongen, J.T., Licausi, F., 2014. Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat. Commun. 5, 1–10. https://doi.org/10.1038/ncomms4425
Weits, D.A., Kunkowska, A.B., Kamps, N.C.W., Portz, K.M.S., Packbier, N.K., Nemec Venza, Z., Gaillochet, C., Lohmann, J.U., Pedersen, O., van Dongen, J.T., Licausi, F., 2019. An apical hypoxic niche sets the pace of shoot meristem activity. Nature 569, 714–717. https://doi.org/10.1038/s41586-019-1203-6
Weits, D.A., van Dongen, J.T., Licausi, F., 2021. Molecular oxygen as a signaling component in plant development. New Phytol. 229, 24–35. https://doi.org/10.1111/nph.16424
White, M.D., Klecker, M., Hopkinson, R.J., Weits, D.A., Mueller, C., Naumann, C., O’Neill, R., Wickens, J., Yang, J., Brooks-Bartlett, J.C., Garman, E.F., Grossmann, T.N., Dissmeyer, N., Flashman, E., 2017. Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nat. Commun. 8. https://doi.org/10.1038/ncomms14690
Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A.M., Bailey-Serres, J., Ronald, P.C., Mackill, D.J., 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705–708. https://doi.org/10.1038/nature04920
Yang, C.-Y., Hsu, F.-C., Li, J.-P., Wang, N.-N., Shih, M.-C., 2011. The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol. 156, 202–212. https://doi.org/10.1104/pp.111.172486