References
Appleby, C.A., 1992. The origin and functions of haemoglobin in plants.
Sci. Prog. 1933- 76, 365–398.
Bailey-Serres, J., Fukao, T., Gibbs, D.J., Holdsworth, M.J., Lee, S.C.,
Licausi, F., Perata, P., Voesenek, L.A.C.J., van Dongen, J.T., 2012.
Making sense of low oxygen sensing. Trends Plant Sci. 17, 129–138.
https://doi.org/10.1016/j.tplants.2011.12.004
Baudouin, E., Pieuchot, L., Engler, G., Pauly, N., Puppo, A., 2006.
Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti
functional nodules. Mol. Plant. Microbe Interact. 19, 970–975.
https://doi.org/10.1094/MPMI-19-0970
Berger, A., Boscari, A., Frendo, P., Brouquisse, R., 2019. Nitric oxide
signaling, metabolism and toxicity in nitrogen-fixing symbiosis. J. Exp.
Bot. 70, 4505–4520. https://doi.org/10.1093/jxb/erz159
Berger, A., Boscari, A., Horta Araújo, N., Maucourt, M., Hanchi, M.,
Bernillon, S., Rolin, D., Puppo, A., Brouquisse, R., 2020a. Plant
Nitrate Reductases Regulate Nitric Oxide Production and Nitrogen-Fixing
Metabolism During the Medicago truncatula–Sinorhizobium meliloti
Symbiosis. Front. Plant Sci. 11.
Berger, A., Boscari, A., Puppo, A., Brouquisse, R., 2021. Nitrate
reductases and hemoglobins control nitrogen-fixing symbiosis by
regulating nitric oxide accumulation. J. Exp. Bot. 72, 873–884.
https://doi.org/10.1093/jxb/eraa403
Berger, A., Guinand, S., Boscari, A., Puppo, A., Brouquisse, R., 2020b.
Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and
nitrogen fixation via the regulation of nitric oxide concentration. New
Phytol. 227, 84–98. https://doi.org/10.1111/nph.16462
Biswas, B., Gresshoff, P.M., 2014. The Role of Symbiotic Nitrogen
Fixation in Sustainable Production of Biofuels. Int. J. Mol. Sci. 15,
7380–7397. https://doi.org/10.3390/ijms15057380
Boscari, A., del Giudice, J., Ferrarini, A., Venturini, L., Zaffini,
A.-L., Delledonne, M., Puppo, A., 2013. Expression Dynamics of the
Medicago truncatula Transcriptome during the Symbiotic Interaction with
Sinorhizobium meliloti: Which Role for Nitric Oxide? Plant Physiol. 161,
425–439. https://doi.org/10.1104/pp.112.208538
Bui, L.T., Giuntoli, B., Kosmacz, M., Parlanti, S., Licausi, F., 2015.
Constitutively expressed ERF-VII transcription factors redundantly
activate the core anaerobic response in Arabidopsis thaliana. Plant Sci.
236, 37–43. https://doi.org/10.1016/j.plantsci.2015.03.008
Correa-Aragunde, N., Graziano, M., Lamattina, L., 2004. Nitric oxide
plays a central role in determining lateral root development in tomato.
Planta 218, 900–905. https://doi.org/10.1007/s00425-003-1172-7
del Giudice, J., Cam, Y., Damiani, I., Fung-Chat, F., Meilhoc, E.,
Bruand, C., Brouquisse, R., Puppo, A., Boscari, A., 2011. Nitric oxide
is required for an optimal establishment of the Medicago
truncatula–Sinorhizobium meliloti symbiosis. New Phytol. 191, 405–417.
https://doi.org/10.1111/j.1469-8137.2011.03693.x
Garzón, M., Eifler, K., Faust, A., Scheel, H., Hofmann, K., Koncz, C.,
Yephremov, A., Bachmair, A., 2007. PRT6/At5g02310 encodes an Arabidopsis
ubiquitin ligase of the N-end rule pathway with arginine specificity and
is not the CER3 locus. FEBS Lett. 581, 3189–3196.
https://doi.org/10.1016/j.febslet.2007.06.005
Gasch, P., Fundinger, M., Müller, J.T., Lee, T., Bailey-Serres, J.,
Mustropha, A., 2016. Redundant ERF-VII transcription factors bind to an
evolutionarily conserved cis-motif to regulate hypoxia-responsive gene
expression in arabidopsis. Plant Cell 28, 160–180.
https://doi.org/10.1105/tpc.15.00866
Gibbs, D.J., Bacardit, J., Bachmair, A., Holdsworth, M.J., 2014a. The
eukaryotic N-end rule pathway: Conserved mechanisms and diverse
functions. Trends Cell Biol. 24, 603–611.
https://doi.org/10.1016/j.tcb.2014.05.001
Gibbs, D.J., Conde, J.V., Berckhan, S., Prasad, G., Mendiondo, G.M.,
Holdsworth, M.J., 2015. Group VII ethylene response factors coordinate
oxygen and nitric oxide signal transduction and stress responses in
plants. Plant Physiol. 169, 23–31. https://doi.org/10.1104/pp.15.00338
Gibbs, D.J., Lee, S.C., Md Isa, N., Gramuglia, S., Fukao, T., Bassel,
G.W., Correia, C.S., Corbineau, F., Theodoulou, F.L., Bailey-Serres, J.,
Holdsworth, M.J., 2011. Homeostatic response to hypoxia is regulated by
the N-end rule pathway in plants. Nature 479, 415–418.
https://doi.org/10.1038/nature10534
Gibbs, D.J., MdIsa, N., Movahedi, M., Lozano-Juste, J., Mendiondo, G.M.,
Berckhan, S., Marín-delaRosa, N., VicenteConde, J., SousaCorreia, C.,
Pearce, S.P., Bassel, G.W., Hamali, B., Talloji, P., Tomé, D.F.A.,
Coego, A., Beynon, J., Alabadí, D., Bachmair, A., León, J., Gray, J.E.,
Theodoulou, F.L., Holdsworth, M.J., 2014b. Nitric Oxide Sensing in
Plants Is Mediated by Proteolytic Control of Group VII ERF Transcription
Factors. Mol. Cell 53, 369–379.
https://doi.org/10.1016/j.molcel.2013.12.020
Gravot, A., Richard, G., Lime, T., Lemarié, S., Jubault, M., Lariagon,
C., Lemoine, J., Vicente, J., Robert-Seilaniantz, A., Holdsworth, M.J.,
Manzanares-Dauleux, M.J., 2016. Hypoxia response in Arabidopsis roots
infected by Plasmodiophora brassicae supports the development of
clubroot. BMC Plant Biol. 16, 251–251.
https://doi.org/10.1186/s12870-016-0941-y
Gupta, K.J., Igamberdiev, A.U., 2011. The anoxic plant mitochondrion as
a nitrite: NO reductase. Mitochondrion 11, 537–543.
https://doi.org/10.1016/j.mito.2011.03.005
Hartman, S., Liu, Z., van Veen, H., Vicente, J., Reinen, E.,
Martopawiro, S., Zhang, H., van Dongen, N., Bosman, F., Bassel, G.W.,
Visser, E.J.W., Bailey-Serres, J., Theodoulou, F.L., Hebelstrup, K.H.,
Gibbs, D.J., Holdsworth, M.J., Sasidharan, R., Voesenek, L.A.C.J., 2019.
Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia
stress. Nat. Commun. 10. https://doi.org/10.1038/s41467-019-12045-4
Hess, N., Klode, M., Anders, M., Sauter, M., 2011. The hypoxia
responsive transcription factor genes ERF71/HRE2 and ERF73/HRE1 of
Arabidopsis are differentially regulated by ethylene. Physiol. Plant.
143, 41–49. https://doi.org/10.1111/j.1399-3054.2011.01486.x
Hichri, I., Boscari, A., Castella, C., Rovere, M., Puppo, A.,
Brouquisse, R., 2015. Nitric oxide: a multifaceted regulator of the
nitrogen-fixing symbiosis. J. Exp. Bot. 66, 2877–2887.
https://doi.org/10.1093/jxb/erv051
Hinz, M., Wilson, I.W., Yang, J., Buerstenbinder, K., Llewellyn, D.,
Dennis, E.S., Sauter, M., Dolferus, R., 2010. Arabidopsis RAP2.2: An
ethylene response transcription factor that is important for hypoxia
survival. Plant Physiol. 153, 757–772.
https://doi.org/10.1104/pp.110.155077
Horchani, F., Prévot, M., Boscari, A., Evangelisti, E., Meilhoc, E.,
Bruand, C., Raymond, P., Boncompagni, E., Aschi-Smiti, S., Puppo, A.,
Brouquisse, R., 2011. Both plant and bacterial nitrate reductases
contribute to nitric oxide production in medicago truncatula
nitrogen-fixing nodules. Plant Physiol. 155, 1023–1036.
https://doi.org/10.1104/pp.110.166140
Hu, R.-G., Sheng, J., Qi, X., Xu, Z., Takahashi, T.T., Varshavsky, A.,
2005. The N-end rule pathway as a nitric oxide sensor controlling the
levels of multiple regulators. Nature 437, 981–986.
https://doi.org/10.1038/nature04027
Hunt, S., Layzell, D.B., 1993. Gas exchange of legume nodules and the
regulation of nitrogenase activity. Annu. Rev. Plant Physiol. Plant Mol.
Biol. 44, 483–511. https://doi.org/10.1146/annurev.pp.44.060193.002411
Igamberdiev, A.U., Hill, R.D., 2009. Plant mitochondrial function during
anaerobiosis. Ann. Bot. 103, 259–268.
https://doi.org/10.1093/aob/mcn100
Kerpen, L., Niccolini, L., Licausi, F., van Dongen, J.T., Weits, D.A.,
2019. Hypoxic Conditions in Crown Galls Induce Plant Anaerobic Responses
That Support Tumor Proliferation. Front. Plant Sci. 10, 56.
https://doi.org/10.3389/fpls.2019.00056
Kuzma, M.M., Hunt, S., Layzell, D.B., 1993. Role of oxygen in the
limitation and inhibition of nitrogenase activity and respiration rate
in individual soybean nodules. Plant Physiol. 101, 161–169.
https://doi.org/10.1104/pp.101.1.161
Licausi, F., 2011. Regulation of the molecular response to oxygen
limitations in plants. New Phytol. 190, 550–555.
https://doi.org/10.1111/j.1469-8137.2010.03562.x
Licausi, F., Kosmacz, M., Weits, D.A., Giuntoli, B., Giorgi, F.M.,
Voesenek, L.A.C.J., Perata, P., Van Dongen, J.T., 2011. Oxygen sensing
in plants is mediated by an N-end rule pathway for protein
destabilization. Nature 479, 419–422.
https://doi.org/10.1038/nature10536
Licausi, F., Van Dongen, J.T., Giuntoli, B., Novi, G., Santaniello, A.,
Geigenberger, P., Perata, P., 2010. HRE1 and HRE2, two hypoxia-inducible
ethylene response factors, affect anaerobic responses in Arabidopsis
thaliana. Plant J. 62, 302–315.
https://doi.org/10.1111/j.1365-313X.2010.04149.x
Loreti, E., van Veen, H., Perata, P., 2016. Plant responses to flooding
stress. Curr. Opin. Plant Biol. 33, 64–71.
https://doi.org/10.1016/j.pbi.2016.06.005
Mustroph, A., Lee, S.C., Oosumi, T., Zanetti, M.E., Yang, H., Ma, K.,
Yaghoubi-Masihi, A., Fukao, T., Bailey-Serres, J., 2010. Cross-Kingdom
comparison of transcriptomic adjustments to low-oxygen stress highlights
conserved and plant-specific responses. Plant Physiol. 152, 1484–1500.
https://doi.org/10.1104/pp.109.151845
Mustroph, A., Zanetti, M.E., Jang, C.J.H., Holtan, H.E., Repetti, P.P.,
Galbraith, D.W., Girke, T., Bailey-Serres, J., 2009. Profiling
translatomes of discrete cell populations resolves altered cellular
priorities during hypoxia in Arabidopsis. Proc. Natl. Acad. Sci. U. S.
A. 106, 18843–18848. https://doi.org/10.1073/pnas.0906131106
Ott, T., Sullivan, J., James, E.K., Flemetakis, E., Günther, C., Gibon,
Y., Ronson, C., Udvardi, M., 2009. Absence of symbiotic leghemoglobins
alters bacteroid and plant cell differentiation during development of
Lotus japonicus root nodules. Mol. Plant-Microbe Interact. MPMI 22,
800–808. https://doi.org/10.1094/MPMI-22-7-0800
Ott, T., van Dongen, J.T., Günther, C., Krusell, L., Desbrosses, G.,
Vigeolas, H., Bock, V., Czechowski, T., Geigenberger, P., Udvardi, M.K.,
2005. Symbiotic leghemoglobins are crucial for nitrogen fixation in
legume root nodules but not for general plant growth and development.
Curr. Biol. CB 15, 531–535. https://doi.org/10.1016/j.cub.2005.01.042
Papdi, C., Pérez-Salamõ, I., Joseph, M.P., Giuntoli, B., Bögre, L.,
Koncz, C., Szabados, L., 2015. The low oxygen, oxidative and osmotic
stress responses synergistically act through the ethylene response
factor VII genes RAP2.12, RAP2.2 and RAP2.3. Plant J. 82, 772–784.
https://doi.org/10.1111/tpj.12848
Perata, P., Alpi, A., 1993. Plant responses to anaerobiosis. Plant Sci.
93, 1–17. https://doi.org/10.1016/0168-9452(93)90029-Y
Pierre, O., Hopkins, J., Combier, M., Baldacci, F., Engler, G.,
Brouquisse, R., Hérouart, D., Boncompagni, E., 2014. Involvement of
papain and legumain proteinase in the senescence process of Medicago
truncatula nodules. New Phytol. 202, 849–863.
https://doi.org/10.1111/nph.12717
Postgate, J.R., 1982. Biology Nitrogen Fixation: Fundamentals. Philos.
Trans. R. Soc. Lond. B. Biol. Sci. 296, 375–385.
Quandt, H.-J., Pühler, Alfred, Broer, Inge, 1993. Transgenic Root
Nodules of Vicia hirsuta: A Fast and Efficient System for the
Study of Gene Expression in Indeterminate-Type Nodules. Mol. Plant.
Microbe Interact. 6, 699. https://doi.org/10.1094/MPMI-6-699
Rancurel, C., van Tran, T., Elie, C., Hilliou, F., 2019. SATQPCR:
Website for statistical analysis of real-time quantitative PCR data.
Mol. Cell. Probes 46, 101418. https://doi.org/10.1016/j.mcp.2019.07.001
Ricoult, C., Cliquet, J.B., Limami, A.M., 2005. Stimulation of alanine
amino transferase (AlaAT) gene expression and alanine accumulation in
embryo axis of the model legume Medicago truncatula contribute to anoxia
stress tolerance. Physiol. Plant. 123, 30–39.
https://doi.org/10.1111/j.1399-3054.2005.00449.x
Roux, B., Rodde, N., Jardinaud, M.-F., Timmers, T., Sauviac, L.,
Cottret, L., Carrère, S., Sallet, E., Courcelle, E., Moreau, S.,
Debellé, F., Capela, D., de Carvalho-Niebel, F., Gouzy, J., Bruand, C.,
Gamas, P., 2014. An integrated analysis of plant and bacterial gene
expression in symbiotic root nodules using laser-capture microdissection
coupled to RNA sequencing. Plant J. 77, 817–837.
https://doi.org/10.1111/tpj.12442
Schiessl, K., Lilley, J.L.S., Lee, T., Tamvakis, I., Kohlen, W., Bailey,
P.C., Thomas, A., Luptak, J., Ramakrishnan, K., Carpenter, M.D., Mysore,
K.S., Wen, J., Ahnert, S., Grieneisen, V.A., Oldroyd, G.E.D., 2019.
NODULE INCEPTION Recruits the Lateral Root Developmental Program for
Symbiotic Nodule Organogenesis in Medicago truncatula. Curr. Biol. 29,
3657-3668.e5. https://doi.org/10.1016/j.cub.2019.09.005
Shimoda, Y., Shimoda-Sasakura, F., Kucho, K.I., Kanamori, N., Nagata,
M., Suzuki, A., Abe, M., Higashi, S., Uchiumi, T., 2009. Overexpression
of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation
activity between Mesorhizobium loti and Lotus japonicus. Plant J. 57,
254–263. https://doi.org/10.1111/j.1365-313X.2008.03689.x
Shu, Y., Liu, Y., Zhang, J., Song, L., Guo, C., 2016. Genome-wide
analysis of the AP2/ERF superfamily genes and their responses to abiotic
stress in Medicago truncatula. Front. Plant Sci. 6, 1–17.
https://doi.org/10.3389/fpls.2015.01247
Shukla, V., Lombardi, L., Iacopino, S., Pencik, A., Novak, O., Perata,
P., Giuntoli, B., Licausi, F., 2019. Endogenous Hypoxia in Lateral Root
Primordia Controls Root Architecture by Antagonizing Auxin Signaling in
Arabidopsis. Mol. Plant 12, 538–551.
https://doi.org/10.1016/j.molp.2019.01.007
Soupène, E., Foussard, M., Boistard, P., Truchet, G., Batut, J., 1995.
Oxygen as a key developmental regulator of Rhizobium meliloti
N2-fixation gene expression within the alfalfa root nodule. Proc. Natl.
Acad. Sci. U. S. A. 92, 3759–3763.
https://doi.org/10.1073/pnas.92.9.3759
van VEEN, H., Akman, M., Jamar, D.C.L., Vreugdenhil, D., Kooiker, M.,
van TIENDEREN, P., Voesenek, L. a. C.J., Schranz, M.E., Sasidharan, R.,
2014. Group VII Ethylene Response Factor diversification and regulation
in four species from flood-prone environments. Plant Cell Environ. 37,
2421–2432. https://doi.org/10.1111/pce.12302
Vance, C.P., Gantt, J.S., 1992. Control of nitrogen and carbon
metabolism in root nodules. Physiol. Plant. 85, 266–274.
https://doi.org/10.1111/j.1399-3054.1992.tb04731.x
Varshavsky, A., 2011. The N-end rule pathway and regulation by
proteolysis. Protein Sci. 20, 1298–1345.
https://doi.org/10.1002/pro.666
Vicente, J., Mendiondo, G.M., Movahedi, M., Peirats-Llobet, M., Juan, Y.
ting, Shen, Y. yen, Dambire, C., Smart, K., Rodriguez, P.L., Charng, Y.
yung, Gray, J.E., Holdsworth, M.J., 2017. The Cys-Arg/N-End Rule Pathway
Is a General Sensor of Abiotic Stress in Flowering Plants. Curr. Biol.
27, 3183-3190.e4. https://doi.org/10.1016/j.cub.2017.09.006
Voesenek, L.A.C.J., Bailey-Serres, J., 2015. Flood adaptive traits and
processes: An overview. New Phytol. 206, 57–73.
https://doi.org/10.1111/nph.13209
von Arnim, A.G., Deng, X.W., Stacey, M.G., 1998. Cloning vectors for the
expression of green fluorescent protein fusion proteins in transgenic
plants. Gene 221, 35–43. https://doi.org/10.1016/s0378-1119(98)00433-8
Weits, D.A., Giuntoli, B., Kosmacz, M., Parlanti, S., Hubberten, H.M.,
Riegler, H., Hoefgen, R., Perata, P., Van Dongen, J.T., Licausi, F.,
2014. Plant cysteine oxidases control the oxygen-dependent branch of the
N-end-rule pathway. Nat. Commun. 5, 1–10.
https://doi.org/10.1038/ncomms4425
Weits, D.A., Kunkowska, A.B., Kamps, N.C.W., Portz, K.M.S., Packbier,
N.K., Nemec Venza, Z., Gaillochet, C., Lohmann, J.U., Pedersen, O., van
Dongen, J.T., Licausi, F., 2019. An apical hypoxic niche sets the pace
of shoot meristem activity. Nature 569, 714–717.
https://doi.org/10.1038/s41586-019-1203-6
Weits, D.A., van Dongen, J.T., Licausi, F., 2021. Molecular oxygen as a
signaling component in plant development. New Phytol. 229, 24–35.
https://doi.org/10.1111/nph.16424
White, M.D., Klecker, M., Hopkinson, R.J., Weits, D.A., Mueller, C.,
Naumann, C., O’Neill, R., Wickens, J., Yang, J., Brooks-Bartlett, J.C.,
Garman, E.F., Grossmann, T.N., Dissmeyer, N., Flashman, E., 2017. Plant
cysteine oxidases are dioxygenases that directly enable arginyl
transferase-catalysed arginylation of N-end rule targets. Nat. Commun.
8. https://doi.org/10.1038/ncomms14690
Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer,
S., Ismail, A.M., Bailey-Serres, J., Ronald, P.C., Mackill, D.J., 2006.
Sub1A is an ethylene-response-factor-like gene that confers submergence
tolerance to rice. Nature 442, 705–708.
https://doi.org/10.1038/nature04920
Yang, C.-Y., Hsu, F.-C., Li, J.-P., Wang, N.-N., Shih, M.-C., 2011. The
AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses
during hypoxia in Arabidopsis. Plant Physiol. 156, 202–212.
https://doi.org/10.1104/pp.111.172486