REFERENCES

Albers, D., Schaefer, M. & Scheu, S. (2006). Incorporation of plant carbon into the soil animal food web of an srable system.Ecology , 87, 235–245.
Attiwill, P.M. & Adams, M.A. (1993). Nutrient cycling in forests.New Phytol. , 124, 561–582.
Averill, C., Turner, B.L. & Finzi, A.C. (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.Nature , 505, 543–545.
Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D. & Houghton, R.A. (2017). Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science , 358, 230–234.
Bardgett, R.D. & van der Putten, W.H. (2014). Belowground biodiversity and ecosystem functioning. Nature , 515, 505–511.
Bardgett, R.D. & Wardle, D.A. (2010). Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change . Oxford series in ecology and evolution. Oxford University Press, Oxford.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. , 67, 1–48.
Bluhm, S.L., Eitzinger, B., Bluhm, C., Ferlian, O., Heidemann, K., Ciobanu, M., et al. (2021). The Impact of Root-Derived Resources on Forest Soil Invertebrates Depends on Body Size and Trophic Position.Front. For. Glob. Change , 4, 622370.
Bluhm, S.L., Eitzinger, B., Ferlian, O., Bluhm, C., Schröter, K., Pena, R., et al. (2019a). Deprivation of root-derived resources affects microbial biomass but not community structure in litter and soil.PLOS ONE , 14, e0214233.
Bluhm, S.L., Potapov, A.M., Shrubovych, J., Ammerschubert, S., Polle, A. & Scheu, S. (2019b). Protura are unique: first evidence of specialized feeding on ectomycorrhizal fungi in soil invertebrates. BMC Ecol. , 19, 10.
Bradford, M.A. (2016). Re-visioning soil food webs. Soil Biol. Biochem. , 102, 1–3.
Briones, M.J.I. (2014). Soil fauna and soil functions: a jigsaw puzzle.Front. Environ. Sci. , 2.
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004). TOWARD A METABOLIC THEORY OF ECOLOGY. Ecology , 85, 1771–1789.
Butenschoen, O., Krashevska, V., Maraun, M., Marian, F., Sandmann, D. & Scheu, S. (2014). Litter mixture effects on decomposition in tropical montane rainforests vary strongly with time and turn negative at later stages of decay. Soil Biol. Biochem. , 77, 121–128.
Chen, Y., Cao, J., He, X., Liu, T., Shao, Y., Zhang, C., et al.(2020). Plant leaf litter plays a more important role than roots in maintaining earthworm communities in subtropical plantations. Soil Biol. Biochem. , 144, 107777.
Clough, Y., Krishna, V.V., Corre, M.D., Darras, K., Denmead, L.H., Meijide, A., et al. (2016). Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. , 7.
Díaz-Pinés, E., Schindlbacher, A., Pfeffer, M., Jandl, R., Zechmeister-Boltenstern, S. & Rubio, A. (2010). Root trenching: a useful tool to estimate autotrophic soil respiration? A case study in an Austrian mountain forest. Eur. J. For. Res. , 129, 101–109.
Drescher, J., Rembold, K., Allen, K., Beckschafer, P., Buchori, D., Clough, Y., et al. (2016). Ecological and socio-economic functions across tropical land use systems after rainforest conversion.Philos. Trans. R. Soc. B-Biol. Sci. , 371.
Endlweber, K., Ruess, L. & Scheu, S. (2009). Collembola switch diet in presence of plant roots thereby functioning as herbivores. Soil Biol. Biochem. , 41, 1151–1154.
Erktan, A., Or, D. & Scheu, S. (2020). The physical structure of soil: Determinant and consequence of trophic interactions. Soil Biol. Biochem. , 148, 107876.
Frey, S.D., Six, J. & Elliott, E.T. (2003). Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil–litter interface.Soil Biol. Biochem. , 35, 1001–1004.
Fujii, S., Berg, M.P. & Cornelissen, J.H.C. (2020). Living Litter: Dynamic Trait Spectra Predict Fauna Composition. Trends Ecol. Evol. , 35, 886–896.
Fujii, S., Mori, A.S., Kominami, Y., Tawa, Y., Inagaki, Y., Takanashi, S., et al. (2016). Differential utilization of root-derived carbon among collembolan species. Pedobiologia , 59, 225–227.
Gessner, M.O., Swan, C.M., Dang, C.K., McKie, B.G., Bardgett, R.D., Wall, D.H., et al. (2010). Diversity meets decomposition.Trends Ecol. Evol. , 25, 372–380.
Gilbert, K.J., Fahey, T.J., Maerz, J.C., Sherman, R.E., Bohlen, P., Dombroskie, J.J., et al. (2014). Exploring carbon flow through the root channel in a temperate forest soil food web. Soil Biol. Biochem. , 76, 45–52.
Glavatska, O., Müller, K., Butenschoen, O., Schmalwasser, A., Kandeler, E., Scheu, S., et al. (2017). Disentangling the root- and detritus-based food chain in the micro-food web of an arable soil by plant removal. PLOS ONE , 12, e0180264.
Goncharov, A.A., Tsurikov, S.M., Potapov, A.M. & Tiunov, A.V. (2016). Short-term incorporation of freshly fixed plant carbon into the soil animal food web: field study in a spruce forest. Ecol. Res. , 31, 923–933.
Guerra, C.A., Bardgett, R.D., Caon, L., Crowther, T.W., Delgado-Baquerizo, M., Montanarella, L., et al. (2021). Tracking, targeting, and conserving soil biodiversity. Science , 371, 239–241.
Guillaume, T., Kotowska, M.M., Hertel, D., Knohl, A., Krashevska, V., Murtilaksono, K., et al. (2018). Carbon costs and benefits of Indonesian rainforest conversion to plantations. Nat. Commun. , 9, 2388.
Hättenschwiler, S. & Jørgensen, H.B. (2010). Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest: Decomposition in a tropical rain forest. J. Ecol. , 98, 754–763.
Hoang, N.T. & Kanemoto, K. (2021). Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. , 5, 845–853.
Högberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Ekblad, A., Högberg, M.N., et al. (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature , 411, 789–792.
Jones, D.L., Nguyen, C. & Finlay, R.D. (2009). Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil , 321, 5–33.
Kempson, D., Lloyd, M. & Ghelardi, R. (1963). A new extractor for woodland litter. Pedobiologia , 3, 1–21.
Kögel-Knabner, I. (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter.Soil Biol. Biochem. , 34, 139–162.
Krashevska, V., Klarner, B., Widyastuti, R., Maraun, M. & Scheu, S. (2015). Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities. Biol. Fertil. Soils , 51, 697–705.
Krause, A., Sandmann, D., Potapov, A., Ermilov, S., Widyastuti, R., Haneda, N.F., et al. (2021). Variation in community-level trophic niches of soil microarthropods with conversion of tropical rainforest into plantation systems as indicated by stable isotopes (15N, 13C).Front. Ecol. Evol. , 9, 592149.
Kudrin, A.A., Zuev, A.G., Taskaeva, A.A., Konakova, T.N., Kolesnikova, A.A., Gruzdev, I.V., et al. (2021). Spruce girdling decreases abundance of fungivorous soil nematodes in a boreal forest. Soil Biol. Biochem. , 155, 108184.
Laurance, W.F., Sayer, J. & Cassman, K.G. (2014). Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. , 29, 107–116.
Lenth, R.V. (2021). emmeans: Estimated Marginal Means, aka Least-Squares Means .
Li, Z. (2021). The flux of root-derived carbon via fungi and bacteria into soil microarthropods (Collembola) differs markedly between cropping systems. Soil Biol. Biochem. , 10.
Li, Z., Bluhm, S.L., Scheu, S. & Pollierer, M.M. (2022). Amino Acid Isotopes in Functional Assemblages of Collembola Reveal the Influence of Vertical Resource Heterogeneity and Root Energy Supply on Trophic Interactions in Soil Food Webs. SSRN Electron. J.
Li, Z., Scheunemann, N., Potapov, A.M., Shi, L., Pausch, J., Scheu, S.,et al. (2020). Incorporation of root-derived carbon into soil microarthropods varies between cropping systems. Biol. Fertil. Soils , 56, 839–851.
Margono, B.A., Turubanova, S., Zhuravleva, I., Potapov, P., Tyukavina, A., Baccini, A., et al. (2012). Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010. Environ. Res. Lett. , 7, 034010.
Marian, F., Sandmann, D., Krashevska, V., Maraun, M. & Scheu, S. (2018). Altitude and decomposition stage rather than litter origin structure soil microarthropod communities in tropical montane rainforests. Soil Biol. Biochem. , 125, 263–274.
Mitchard, E.T.A. (2018). The tropical forest carbon cycle and climate change. Nature , 559, 527–534.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2020). vegan: Community Ecology Package .
Pinheiro, J., Bates, D., & R Core Team. (2022). nlme: Linear and Nonlinear Mixed Effects Models .
Pollierer, M.M., Dyckmans, J., Scheu, S. & Haubert, D. (2012). Carbon flux through fungi and bacteria into the forest soil animal food web as indicated by compound-specific 13C fatty acid analysis. Funct. Ecol. , 26, 978–990.
Pollierer, M.M., Langel, R., Körner, C., Maraun, M. & Scheu, S. (2007). The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol. Lett. , 10, 729–736.
Pollierer, M.M., Langel, R., Scheu, S. & Maraun, M. (2009). Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biol. Biochem. , 41, 1221–1226.
Post, D.M. (2002). Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology , 83, 703–718.
Potapov, A., Beaulieu, F., Birkhofer, K., Bluhm, S.L., Degtyarev, M.I., Devetter, M., et al. (2022). Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates. Biol. Rev. , brv.12832.
Potapov, A., Dupérré, N., Jochum, M., Dreczko, K., Klarner, B., Barnes, A.D., et al. (2020). Functional losses in ground spider communities due to habitat structure degradation under tropical land‐use change. Ecology , 101.
Potapov, A., Klarner, B., Sandmann, D., Widyastuti, R. & Scheu, S. (2019a). Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land‐use systems.J. Anim. Ecol. , 88, 1845–1859.
Potapov, A., Tiunov, A.V. & Scheu, S. (2019b). Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition: Stable isotopes in soil food web studies.Biol. Rev. , 94, 37–59.
Potapov, A.A., Semenina, E.E., Korotkevich, A.Yu., Kuznetsova, N.A. & Tiunov, A.V. (2016a). Connecting taxonomy and ecology: Trophic niches of collembolans as related to taxonomic identity and life forms. Soil Biol. Biochem. , 101, 20–31.
Potapov, A.M. (2022). Multifunctionality of belowground food webs: resource, size and spatial energy channels. Biol. Rev. , brv.12857.
Potapov, A.M., Goncharov, A.A., Tsurikov, S.M., Tully, T. & Tiunov, A.V. (2016b). Assimilation of plant-derived freshly fixed carbon by soil collembolans: Not only via roots? Pedobiologia , 59, 189–193.
Potapov, A.M., Klarner, B., Sandmann, D., Widyastuti, R. & Scheu, S. (2019c). Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems.J Anim Ecol , 88, 1845–1859.
Potapov, A.M., Pollierer, M.M., Salmon, S., Šustr, V. & Chen, T. (2021a). Multidimensional trophic niche revealed by complementary approaches: Gut content, digestive enzymes, fatty acids and stable isotopes in Collembola. J. Anim. Ecol. , 90, 1919–1933.
Potapov, A.M., Rozanova, O.L., Semenina, E.E., Leonov, V.D., Belyakova, O.I., Bogatyreva, V.Yu., et al. (2021b). Size compartmentalization of energy channeling in terrestrial belowground food webs. Ecology , 102.
R Core Team. (2020). R: A Language and Environment for Statistical Computing . R Foundation for Statistical Computing, Vienna, Austria.
Rembold, K., Mangopo, H., Tjitrosoedirdjo, S.S. & Kreft, H. (2017). Plant diversity, forest dependency, and alien plant invasions in tropical agricultural landscapes. Biol. Conserv. , 213, 234–242.
Remén, C., Persson, T., Finlay, R. & Ahlström, K. (2008). Responses of oribatid mites to tree girdling and nutrient addition in boreal coniferous forests. Soil Biol. Biochem. , 40, 2881–2890.
Sayer, E.J., Tanner, E.V.J. & Lacey, A.L. (2006). Effects of litter manipulation on early-stage decomposition and meso-arthropod abundance in a tropical moist forest. For. Ecol. Manag. , 229, 285–293.
Scheu, S. & Setälä, H. (2002). Multitrophic interactions in decomposer food-webs. In: Multitrophic Level Interactions (eds. Tscharntke, T. & Hawkins, B.A.). Cambridge University Press, pp. 223–264.
Scheunemann, N., Digel, C., Scheu, S. & Butenschoen, O. (2015). Roots rather than shoot residues drive soil arthropod communities of arable fields. Oecologia , 179, 1135–1145.
Schmitz, O.J. & Leroux, S.J. (2020). Food Webs and Ecosystems: Linking Species Interactions to the Carbon Cycle. Annu. Rev. Ecol. Evol. Syst. , 51, 271–295.
Sokol, N.W., Kuebbing, Sara.E., Karlsen-Ayala, E. & Bradford, M.A. (2019). Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol. , 221, 233–246.
Susanti, W.I., Pollierer, M.M., Widyastuti, R., Scheu, S. & Potapov, A. (2019). Conversion of rainforest to oil palm and rubber plantations alters energy channels in soil food webs. Ecol. Evol. , 9, 9027–9039.
Tao, H.-H., Snaddon, J.L., Slade, E.M., Henneron, L., Caliman, J.-P. & Willis, K.J. (2018). Application of oil palm empty fruit bunch effects on soil biota and functions: A case study in Sumatra, Indonesia.Agric. Ecosyst. Environ. , 256, 105–113.
Veldkamp, E., Schmidt, M., Powers, J.S. & Corre, M.D. (2020). Deforestation and reforestation impacts on soils in the tropics.Nat. Rev. Earth Environ. , 1, 590–605.
Vitousek, P.M. (1984). Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical Forests. Ecology , 65, 285–298.
de Vries, F.T. & Caruso, T. (2016). Eating from the same plate? Revisiting the role of labile carbon inputs in the soil food web.Soil Biol. Biochem. , 102, 4–9.
Wallander, H., Lindahl, B.D. & Nilsson, L.O. (2006). Limited transfer of nitrogen between wood decomposing and ectomycorrhizal mycelia when studied in the field. Mycorrhiza , 16, 213–217.
White, E.P., Ernest, S.K.M., Kerkhoff, A.J. & Enquist, B.J. (2007). Relationships between body size and abundance in ecology. Trends Ecol. Evol. , 22, 323–330.
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis . Springer-Verlag New York.
Wolkovich, E.M. (2016). Reticulated channels in soil food webs.Soil Biol. Biochem. , 102, 18–21.
Zhou, Z., Krashevska, V., Widyastuti, R., Scheu, S. & Potapov, A. (2022). Tropical land use alters functional diversity of soil food webs and leads to monopolization of the detrital energy channel.eLife , 11, e75428.
Zieger, S.L., Ammerschubert, S., Polle, A. & Scheu, S. (2017). Root-derived carbon and nitrogen from beech and ash trees differentially fuel soil animal food webs of deciduous forests. PLOS ONE , 12, e0189502.
Table 1. ANOVA table of F- and p-values of linear mixed-effects models on the effect of litter removal, root trenching, land use system (rainforest, rubber and oil palm plantations) and taxonomic groups (total n = 24) on abundance of groups, with plot as random factor; num DF, numerator degrees of freedom; den DF, denominator degrees of freedom.