References
Bissonnette, C., Fahlman, B., Khasa, D. P., Greer, C.W., Headley, J.V., & Roy, S. (2014). Symbiosis with Frankia sp. benefits the establishment of Alnus viridis ssp. crispa and Alnus incana ssp. rugosa in tailings sand from the Canadian oil sands industry. Ecological Engineering 68, 167–175. https://doi.org/10.1016/j.ecoleng.2014.03.061
Blanco, J.A., Imbert, J.B., & Castillo, F.J. (2007). Thinning affects nutrient resorption and nutrient use efficiency in two Pinus sylvestris stands in the Pyrenees. Ecological Applications 19, 682-698. DOI:10.1890/1051-0761-19.3.682
Bowman, R.A., & Cole, C.V. (1978). Transformations of organic phosphorus substrates in soils as evaluated by NaHCO3 extraction.Soil Science 125, 49–54.
Bünemann, E.K. (2015). Assessment of gross and net mineralization rates of soil organic phosphorus - A review. Soil Biology and Biochemistry 89, 82–98. http://dx.doi.org/10.1016/j.soilbio.2015.06.026
Chodak, M., & Niklińska, M. (2010). The effect of different tree species on the chemical and microbial properties of reclaimed mine soils. Biology and Fertility of Soils 46, 555–566. https://doi.org/10.1007/s00374-010-0462-z
Chodak, M., Sroka, K., & Pietrzykowski, M. (2021). Activity of phosphatases and microbial phosphorus under various tree species growing on reclaimed technosols. Geoderma 401, 115320. https://doi.org/10.1016/j.geoderma.2021.115320
Còte, B., Vogel, C.S., & Dawson, J.O. (1989). Autumnal changes in tissue nitrogen of autumn olive, black alder and eastern cottonwood.Plant and Soil 118, 23-32. https://www.jstor.org/stable/42938215
Còte, B., & Dawson, J.O. (1991). Autumnal allocation of phosphorus in black alder, eastern cottonwood, and white basswood. Canadian Journal of Forest Research 21, 217–221.
Cross, A.T. Ivanov, D., Stevens, J.C., Sadler, R., Zhong, H., Lambers, H., & Dixon, K.W. (2019). Nitrogen limitation and calcifuge plant strategies constrain the establishment of native vegetation on magnetite mine tailings. Plant and Soil , 2019. https://doi.org/10.1007/s11104-019-04021-0
DeBruler, D.G., Schoenholtz, S.H., Slesak, R.A., Strahm, B.D., & Harrington, T.B. (2019). Soil phosphorus fractions vary with harvest intensity and vegetation control at two contrasting Douglas-fir sites in the Pacific northwest. Geoderma 350, 73–83. https://doi.org/10.1016/j.geoderma.2019.04.038
Deng, J., Wang, S., Ren, C., Zhang, W., Zhao, F., Li, X., Zhang, D., Han, X., & Yang, G. (2019). Nitrogen and phosphorus resorption in relation to nutrition limitation along the chronosequence of black locust (Robinia pseudoacacia L.) plantation. Forests 10, 261. doi:10.3390/f10030261
Fäth, J., Kohlpaintner, M., Blum, U., Göttlein, A., & Mellert, K.H. (2019). Assessing phosphorus nutrition of the main European tree species by simple soil extraction methods. Forest Ecology and Management432, 895–901. https://doi.org/10.1016/j.foreco.2018.10.007
Fox, T.R., Miller, B.W., Rubilar, R., Stape, J.L., & Albaugh, T.J. (2011). Phosphorus nutrition of forest plantations: the role of inorganic and organic phosphorus. In: E.K. Bünemann et al. (Eds.), Phosphorus in Action, Soil Biology 26. Springer-Verlag Berlin Heidelberg. DOI 10.1007/978-3-642-15271-9_13
Franzluebbers, A.J., Haney, F., Hons, F.M. & Zuberer, D.A. (1996). Active fractions of organic matter in soils with different texture.Soil Biology and Biochemistry 28, 1367–1372.
Garrido, E., & Matus, F. (2012). Are organo-mineral complexes and allophane content determinant factors for the carbon level in Chilean volcanic soils? Catena 92, 106–112. doi:10.1016/j.catena.2011.12.003
Gérard, F., 2016. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils — a myth revisited.Geoderma 262, 213–226. https://doi.org/10.1016/j.geoderma.2015.08.036
González, I., Sixto, H., Rodríguez-Soalleiro, R., & Oliveira, N. (2020). Nutrient Contribution of Litterfall in a Short Rotation Plantation of Pure or Mixed Plots of Populus alba L. andRobinia pseudoacacia L. Forests 11, 1133; doi:10.3390/f11111133
Göttlein, A. (2015). Ranges of threshold values for the nutritional assessment of the main tree species spruce, pine, oak and beech.Allgemeine Forst und Jagdtzeitung 186, 110–116.
Gruba, P., & Socha, J. (2019). Exploring the effects of dominant forest tree species, soil texture, altitude, and pHH2O on soil carbon stocks using generalized additive models. Forest Ecology and Management 447, 105–114. https://doi.org/10.1016/j.foreco.2019.05.061
Hassink, J. (1997). The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil191, 77–87.
Heuck, C., Weig, A., & Spohn, M. (2015). Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biology and Biochemistry 85,119–129. http://dx.doi.org/10.1016/j.soilbio.2015.02.029
Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review.Plant and Soil 237, 173–195. https://doi.org/10.1023/A:1013351617532
Hinsinger, P., Brauman, A., Devau, N., Gérard, F., Jourdan, C., Laclau, J-P., Le Cadre, E., Jaillard, B., & Plassard, C. (2011). Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant and Soil 348, 29–61. DOI 10.1007/s11104-011-0903-y
Hüttl, R.F. & Weber, E. (2001). Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district.Naturwissenschaften 88, 322–329. https://doi.org/10.1007/s001140100241
Ingestad, T. (1987). New concepts on soil fertility and plant nutrition as illustrated by research on forest trees and stands. Geoderma40, 237–252. https://doi.org/10.1016/0016-7061(87)90035-8
Ivanoff, D.B., Reddy, K.R. & Robinson, S. (1998). Chemical fractionation of organic phosphorus in selected histosols. Soil Science 163, 36–45.
Jensen, R.R., Brake, S.S., Wolf, S.F., Bekker, M.F., Hardin, P.J., & Jackson, M.W. (2010). Chemical element concentrations in black locust (Robinia pseudoacacia L.) and green ash (Fraxinus pennsylvanica Marsh.) leaves at the reclaimed Green Valley coal Mine, Indiana, USA. Environmental Earth Sciences 60, 1391–1405. DOI 10.1007/s12665-009-0275-2
Knecht, M.F., & Göranson, A. (2004). Terrestrial plants require nutrients in similar proportions. Tree Physiology 24, 447–460.
Krzaklewski, W., Pietrzykowski M., & Woś, B. (2012). Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench) on fly ash technosols at different substrate improvement. Ecological Engineering 49, 35–40. https://doi.org/10.1016/j.ecoleng.2012.08.026
Kuznetsova, T., Lukjanova, A., Mandre, M., & Lõhmus, K. (2011). Aboveground biomass and nutrient accumulation dynamics in young black alder, silver birch and scots pine plantations on reclaimed oil shale mining areas in Estonia. Forest Ecology and Management 262, 56–64. https://doi.org/10.1016/j.foreco.2010.09.030
Macdonald, S.E., Landhausser, S.M., Skousen, J., Franklin, J., Frouz, J., Hall, S., Jacobs, D., & Quideau, S. (2015). Forest restoration following surface mining disturbance: challenges and solutions.New Forests 46, 703–732. https://doi.org/10.1007/s11056-015-9506-4
Manimel Wadu, M.C.W., Duan, M., & Chang, S.X. (2017). Phosphorus availability and fractionation vary among forest site types in reconstructed oil sands soils. Canadian Journal of Forest Research 47, 1372–1380. https://doi.org/10.1139/cjfr-2017-0169
Marschner, H. (2012). Mineral nutrition of higher plants. Third Edition (second ed.). Academic Press Limited, London
Müller, T., & Höper, H. (2004). Soil organic matter turnover as a function of the soil clay content: consequences for model applications.Soil Biology and Biochemistry 36, 877–888.
Oleksyn, J., Reich, P.B., Zytkowiak, R., Karolewski, P., & Tjoelker, M.G. (2003). Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations. Oecologia 136, 220–235. DOI 10.1007/s00442-003-1265-9
Orczewska, A., Piotrowska, A., & Lemanowicz, J. (2012). Soil acid phosphomonoesterase activity and phosphorus forms in ancient and post-agricultural black alder (Alnus glutinosa (L.) Gaertn.) woodlands. Acta Societatis Botanicorum Poloniae 81, 81–86.https://doi.org/10.5586/asbp.2012.013
Peng, Y., Schmidt, I.K., Zheng, H., Heděnec, P., Bachega, L.R., Yue, K., Wu, F. & Vesterdal, L. (2020). Tree species effects on soil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability. Forest Ecology and Management478, 118510. https://doi.org/10.1016/j.foreco.2020.118510
Pietrzykowski M., Krzaklewski W., & Woś B. (2015). Preliminary assessment of growth and survival of green alder (Alnus viridis ), a potential biological stabilizer on fly ash disposal sites.Journal of Forestry Research 26, 131–136. doi:10.1007/s11676-015-0016-1
Pietrzykowski, M. (2019). Tree species selection and reaction to mine soil reconstructed at reforested post-mine sites: Central and eastern European experiences. Ecological Engineering: X , 3,100012. https://doi.org/10.1016/j.ecoena.2019.100012
Rasmussen, C., Heckman, K., Wieder, W.R., Keiluweit, M., Lawrence, C.R., Berhe, A.A., Blankinship, J.C., Crow, S.E., Druhan, J.L., Hicks Pries, C.E., Marin-Spiotta, E., Plante, A.F., Schädel, C., Schimel, J.P., Sierra, C.A., Thompson, A., & Wagai, R. (2018). Beyond clay: towards an improved set of variables for predicting soil organic matter content.Biogeochemistry 137, 297–306. https://doi.org/10.1007/s10533-018-0424-3
Rautio, P., & Fürst, A. (2013). Tree foliage: sampling and chemical analyses. Developments in Environmental Science 12, 223–236. http://dx.doi.org/10.1016/B978-0-08-098222-9.00012-1
Redel, Y., Rubio, R., Godoy, R., & Borie, F. (2008). Phosphorus fractions and phosphatase activity in an Andisol under different forest ecosystems. Geoderma 145, 216–221. doi:10.1016/j.geoderma.2008.03.007
Richardson, A.E., Hocking, P.J., Simpson, R.J., & George, T.S. (2009). Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science 60, 124–143. DOI: 10.1071/CP07125
Rodríguez-Barrueco, C., Miguel, C., & Subramaniam, P. (1984). Seasonal fluctuations of the mineral concentration of alder (Alnus glutinosa (L.) Gaertn.) from the field. Plant and Soil 78, 201–208. https://www.jstor.org/stable/42934572
Saramäki, J., & Hytönen, J. (2004). Nutritional status and development of mixed plantations of silver birch (Betula pendula Roth.) and downy birch (Betula pubescens Ehrh.) on former agricultural soils. Baltic Forestry 10, 2–11.
Sheoran, V., Sheoran, A.V., & Poonia, P. (2010). Soil reclamation of abandoned mine land by revegetation: a review. International Journal of Soil, Sediment and Water 3, Iss. 2, Article 13
Spohn, M., & Stendahl, J. (2022). Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture.Biogeosciences 19, 2171–2186. https://doi.org/10.5194/bg-19-2171-2022
Stewart, J.R., Kennedy, G.J., Landes, R.D., & Dawson, J.O. (2008). Foliar‐nitrogen and phosphorus resorption patterns differ among nitrogen‐fixing and nonfixing temperate‐deciduous trees and shrubs.International Journal of Plant Sciences 169, 495–502. DOI:10.1086/528749
Sulieman, S., & Mühling, K.H. (2021). Game Changer in plant nutrition. Utilization of soil organic phosphorus as a strategic approach for sustainable agriculture. Journal of Plant Nutrition and Soil Science , 184, 311–319. DOI: 10.1002/jpln.202100057
Sürmen, B., Kutbay, H.G., Kiliç, D.D. & Sürmen, M. (2014). Foliar resorption in nitrogen-fixing and non-fixing species in a swamp forest in northern Turkey. Revue d’Ecologie (La Terre et la Vie) 69, 318 –327.
Świątek, B., Woś, B., Chodak, M., Maitic, S.K., Józefowska, A., & Pietrzykowski, M. (2019). Fine root biomass and the associated C and nutrient pool under the alder (Alnus spp.) plantings on reclaimed technosols. Geoderma 337, 1021–1027. https://doi.org/10.1016/j.geoderma.2018.11.025
Temperton, V.M., Grayston, S.J., Jackson, G., Barton, C.V.M., Millard, P., & Jarvis, P.G. (2003). Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosain a long-term field experiment. Tree Physiology 23, 1051–1059.
Tipping, E., Benham, S., Boyle, J.F., Crow, P., Davies, J., Fischer, U., Guyatt, H., Helliwell, R., Jackson-Blake, L., Lawlor A.J., Monteith, D.T., Roweg, E.C., & Toberman, H. (2014). Atmospheric deposition of phosphorus to land and freshwater. Environmental Science: Processes & Impacts 16, 1608–1617. DOI: 10.1039/c3em00641g
Turner, B.L., Cade-Menun, B.J., Condron, L.M., & Newman, S. (2005). Extraction of soil organic phosphorus. Talanta 66, 294–306. doi:10.1016/j.talanta.2004.11.012
Tzvetkova, N., & Petkova, K. (2015). Bioaccumulation of heavy metals by the leaves of Robinia pseudoacacia as a bioindicator tree in industrial zones. Journal of Environmental Biology 36, Special issue, 59–63.
Uri, V., Lõhmus, K., Ostonen, I., Tullus, H., Renal Lastik, R., & Vildo, M. (2007). Biomass production, foliar and root characteristics and nutrient accumulation in young silver birch (Betula pendulaRoth.) stand growing on abandoned agricultural land. European Journal of Forest Research 126, 495–506. DOI 10.1007/s10342-007-0171-9
Vlachodimos, K., Papatheodorou, E.M., Diamantopoulos, J., & Monokrousos, N. (2013). Assessment of Robinia pseudoacaciacultivations as a restoration strategy for reclaimed mine spoil heaps.Environmental Monitoring and Assessment 185, 6921–6932. https://doi.org/10.1007/s10661-013-3075-9
Wang, F., Li, Z., Xia, H., , Zou, B., Li, N., Liu, J., & Zhu, W. (2010). Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China. Soil Science and Plant Nutrition 56, 297–306. https://doi.org/10.1111/j.1747-0765.2010.00454.x
Woś, B., & Pietrzykowski, P. (2020). Characteristics of technogenic soils developed from Neogene and Quaternary sediments substrate on reclaimed sulphur and sand extraction mine sites. Soil Science Annual 1, 344–351. https://doi.org/10.37501/soilsa/126996
Zhang, H., & Kovar, J.L., (2009). Fractionation of soil phosphorus. In: Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters. Second Edition. J.L. Kovar and G.M. Pierzynski (Eds). Southern Cooperative Series Bulletin No. 408. pp. 50–60.
Zipper, C.E., Burger, J., Skousen, J.G., Angel, P.N., Barton, C.D., Davis, V., & Franklin, J. (2011). Restoring forests and associated ecosystem services on Appalachian coal surface mines.Environmental Management 47, 751–765. https://doi.org/10.1007/s00267-011-9670-z