References
Bissonnette, C., Fahlman, B., Khasa, D. P., Greer, C.W., Headley, J.V.,
& Roy, S. (2014). Symbiosis with Frankia sp. benefits the
establishment of Alnus viridis ssp. crispa and Alnus
incana ssp. rugosa in tailings sand from the Canadian oil sands
industry. Ecological Engineering 68, 167–175.
https://doi.org/10.1016/j.ecoleng.2014.03.061
Blanco, J.A., Imbert, J.B., & Castillo, F.J. (2007). Thinning affects
nutrient resorption and nutrient use efficiency in two Pinus
sylvestris stands in the Pyrenees. Ecological Applications 19,
682-698. DOI:10.1890/1051-0761-19.3.682
Bowman, R.A., & Cole, C.V. (1978). Transformations of organic
phosphorus substrates in soils as evaluated by NaHCO3 extraction.Soil Science 125, 49–54.
Bünemann, E.K. (2015). Assessment of gross and net mineralization rates
of soil organic phosphorus - A review. Soil Biology and
Biochemistry 89, 82–98.
http://dx.doi.org/10.1016/j.soilbio.2015.06.026
Chodak, M., & Niklińska, M. (2010). The effect of different tree
species on the chemical and microbial properties of reclaimed mine
soils. Biology and Fertility of Soils 46, 555–566.
https://doi.org/10.1007/s00374-010-0462-z
Chodak, M., Sroka, K., & Pietrzykowski, M. (2021). Activity of
phosphatases and microbial phosphorus under various tree species growing
on reclaimed technosols. Geoderma 401, 115320.
https://doi.org/10.1016/j.geoderma.2021.115320
Còte, B., Vogel, C.S., & Dawson, J.O. (1989). Autumnal changes in
tissue nitrogen of autumn olive, black alder and eastern cottonwood.Plant and Soil 118, 23-32. https://www.jstor.org/stable/42938215
Còte, B., & Dawson, J.O. (1991). Autumnal allocation of phosphorus in
black alder, eastern cottonwood, and white basswood. Canadian
Journal of Forest Research 21, 217–221.
Cross, A.T. Ivanov, D., Stevens, J.C., Sadler, R., Zhong, H., Lambers,
H., & Dixon, K.W. (2019). Nitrogen limitation and calcifuge plant
strategies constrain the establishment of native vegetation on magnetite
mine tailings. Plant and Soil , 2019.
https://doi.org/10.1007/s11104-019-04021-0
DeBruler, D.G., Schoenholtz, S.H., Slesak, R.A., Strahm, B.D., &
Harrington, T.B. (2019). Soil phosphorus fractions vary with harvest
intensity and vegetation control at two contrasting Douglas-fir sites in
the Pacific northwest. Geoderma 350, 73–83.
https://doi.org/10.1016/j.geoderma.2019.04.038
Deng, J., Wang, S., Ren, C., Zhang, W., Zhao, F., Li, X., Zhang, D.,
Han, X., & Yang, G. (2019). Nitrogen and phosphorus resorption in
relation to nutrition limitation along the chronosequence of black
locust (Robinia pseudoacacia L.) plantation. Forests 10,
261. doi:10.3390/f10030261
Fäth, J., Kohlpaintner, M., Blum, U., Göttlein, A., & Mellert, K.H.
(2019). Assessing phosphorus nutrition of the main European tree species
by simple soil extraction methods. Forest Ecology and Management432, 895–901. https://doi.org/10.1016/j.foreco.2018.10.007
Fox, T.R., Miller, B.W., Rubilar, R., Stape, J.L., & Albaugh, T.J.
(2011). Phosphorus nutrition of forest plantations: the role of
inorganic and organic phosphorus. In: E.K. Bünemann et al. (Eds.),
Phosphorus in Action, Soil Biology 26. Springer-Verlag Berlin
Heidelberg. DOI 10.1007/978-3-642-15271-9_13
Franzluebbers, A.J., Haney, F., Hons, F.M. & Zuberer, D.A. (1996).
Active fractions of organic matter in soils with different texture.Soil Biology and Biochemistry 28, 1367–1372.
Garrido, E., & Matus, F. (2012). Are organo-mineral complexes and
allophane content determinant factors for the carbon level in Chilean
volcanic soils? Catena 92, 106–112.
doi:10.1016/j.catena.2011.12.003
Gérard, F., 2016. Clay minerals, iron/aluminum oxides, and their
contribution to phosphate sorption in soils — a myth revisited.Geoderma 262, 213–226.
https://doi.org/10.1016/j.geoderma.2015.08.036
González, I., Sixto, H., Rodríguez-Soalleiro, R., & Oliveira, N.
(2020). Nutrient Contribution of Litterfall in a Short Rotation
Plantation of Pure or Mixed Plots of Populus alba L. andRobinia pseudoacacia L. Forests 11, 1133;
doi:10.3390/f11111133
Göttlein, A. (2015). Ranges of threshold values for the nutritional
assessment of the main tree species spruce, pine, oak and beech.Allgemeine Forst und Jagdtzeitung 186, 110–116.
Gruba, P., & Socha, J. (2019). Exploring the effects of dominant forest
tree species, soil texture, altitude, and pHH2O on soil
carbon stocks using generalized additive models. Forest Ecology
and Management 447, 105–114.
https://doi.org/10.1016/j.foreco.2019.05.061
Hassink, J. (1997). The capacity of soils to preserve organic C and N by
their association with clay and silt particles. Plant and Soil191, 77–87.
Heuck, C., Weig, A., & Spohn, M. (2015). Soil microbial biomass C:N:P
stoichiometry and microbial use of organic phosphorus. Soil
Biology and Biochemistry 85,119–129.
http://dx.doi.org/10.1016/j.soilbio.2015.02.029
Hinsinger, P. (2001). Bioavailability of soil inorganic P in the
rhizosphere as affected by root-induced chemical changes: a review.Plant and Soil 237, 173–195.
https://doi.org/10.1023/A:1013351617532
Hinsinger, P., Brauman, A., Devau, N., Gérard, F., Jourdan, C., Laclau,
J-P., Le Cadre, E., Jaillard, B., & Plassard, C. (2011). Acquisition of
phosphorus and other poorly mobile nutrients by roots. Where do plant
nutrition models fail? Plant and Soil 348, 29–61. DOI
10.1007/s11104-011-0903-y
Hüttl, R.F. & Weber, E. (2001). Forest ecosystem development in
post-mining landscapes: a case study of the Lusatian lignite district.Naturwissenschaften 88, 322–329.
https://doi.org/10.1007/s001140100241
Ingestad, T. (1987). New concepts on soil fertility and plant nutrition
as illustrated by research on forest trees and stands. Geoderma40, 237–252. https://doi.org/10.1016/0016-7061(87)90035-8
Ivanoff, D.B., Reddy, K.R. & Robinson, S. (1998). Chemical
fractionation of organic phosphorus in selected histosols. Soil
Science 163, 36–45.
Jensen, R.R., Brake, S.S., Wolf, S.F., Bekker, M.F., Hardin, P.J., &
Jackson, M.W. (2010). Chemical element concentrations in black locust
(Robinia pseudoacacia L.) and green ash (Fraxinus
pennsylvanica Marsh.) leaves at the reclaimed Green Valley coal Mine,
Indiana, USA. Environmental Earth Sciences 60, 1391–1405. DOI
10.1007/s12665-009-0275-2
Knecht, M.F., & Göranson, A. (2004). Terrestrial plants require
nutrients in similar proportions. Tree Physiology 24, 447–460.
Krzaklewski, W., Pietrzykowski M., & Woś, B. (2012). Survival and
growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus
incana (L.) Moench) on fly ash technosols at different substrate
improvement. Ecological Engineering 49, 35–40.
https://doi.org/10.1016/j.ecoleng.2012.08.026
Kuznetsova, T., Lukjanova, A., Mandre, M., & Lõhmus, K. (2011).
Aboveground biomass and nutrient accumulation dynamics in young black
alder, silver birch and scots pine plantations on reclaimed oil shale
mining areas in Estonia. Forest Ecology and Management 262,
56–64. https://doi.org/10.1016/j.foreco.2010.09.030
Macdonald, S.E., Landhausser, S.M., Skousen, J., Franklin, J., Frouz,
J., Hall, S., Jacobs, D., & Quideau, S. (2015). Forest restoration
following surface mining disturbance: challenges and solutions.New Forests 46, 703–732.
https://doi.org/10.1007/s11056-015-9506-4
Manimel Wadu, M.C.W., Duan, M., & Chang, S.X. (2017). Phosphorus
availability and fractionation vary among forest site types in
reconstructed oil sands soils. Canadian Journal of Forest
Research 47, 1372–1380. https://doi.org/10.1139/cjfr-2017-0169
Marschner, H. (2012). Mineral nutrition of higher plants. Third Edition
(second ed.). Academic Press Limited, London
Müller, T., & Höper, H. (2004). Soil organic matter turnover as a
function of the soil clay content: consequences for model applications.Soil Biology and Biochemistry 36, 877–888.
Oleksyn, J., Reich, P.B., Zytkowiak, R., Karolewski, P., & Tjoelker,
M.G. (2003). Nutrient conservation increases with latitude of origin in
European Pinus sylvestris populations. Oecologia 136,
220–235. DOI 10.1007/s00442-003-1265-9
Orczewska, A., Piotrowska, A., & Lemanowicz, J. (2012). Soil acid
phosphomonoesterase activity and phosphorus forms in ancient and
post-agricultural black alder (Alnus glutinosa (L.) Gaertn.)
woodlands. Acta Societatis Botanicorum Poloniae 81, 81–86.https://doi.org/10.5586/asbp.2012.013
Peng, Y., Schmidt, I.K., Zheng, H., Heděnec, P., Bachega, L.R., Yue, K.,
Wu, F. & Vesterdal, L. (2020). Tree species effects on soil carbon
stock and concentration are mediated by tree species type, mycorrhizal
association, and N-fixing ability. Forest Ecology and Management478, 118510. https://doi.org/10.1016/j.foreco.2020.118510
Pietrzykowski M., Krzaklewski W., & Woś B. (2015). Preliminary
assessment of growth and survival of green alder (Alnus viridis ),
a potential biological stabilizer on fly ash disposal sites.Journal of Forestry Research 26, 131–136.
doi:10.1007/s11676-015-0016-1
Pietrzykowski, M. (2019). Tree species selection and reaction to mine
soil reconstructed at reforested post-mine sites: Central and eastern
European experiences. Ecological Engineering: X , 3,100012.
https://doi.org/10.1016/j.ecoena.2019.100012
Rasmussen, C., Heckman, K., Wieder, W.R., Keiluweit, M., Lawrence, C.R.,
Berhe, A.A., Blankinship, J.C., Crow, S.E., Druhan, J.L., Hicks Pries,
C.E., Marin-Spiotta, E., Plante, A.F., Schädel, C., Schimel, J.P.,
Sierra, C.A., Thompson, A., & Wagai, R. (2018). Beyond clay: towards an
improved set of variables for predicting soil organic matter content.Biogeochemistry 137, 297–306.
https://doi.org/10.1007/s10533-018-0424-3
Rautio, P., & Fürst, A. (2013). Tree foliage: sampling and chemical
analyses. Developments in Environmental Science 12, 223–236.
http://dx.doi.org/10.1016/B978-0-08-098222-9.00012-1
Redel, Y., Rubio, R., Godoy, R., & Borie, F. (2008). Phosphorus
fractions and phosphatase activity in an Andisol under different forest
ecosystems. Geoderma 145, 216–221.
doi:10.1016/j.geoderma.2008.03.007
Richardson, A.E., Hocking, P.J., Simpson, R.J., & George, T.S. (2009).
Plant mechanisms to optimise access to soil phosphorus. Crop and
Pasture Science 60, 124–143. DOI: 10.1071/CP07125
Rodríguez-Barrueco, C., Miguel, C., & Subramaniam, P. (1984). Seasonal
fluctuations of the mineral concentration of alder (Alnus
glutinosa (L.) Gaertn.) from the field. Plant and Soil 78,
201–208. https://www.jstor.org/stable/42934572
Saramäki, J., & Hytönen, J. (2004). Nutritional status and development
of mixed plantations of silver birch (Betula pendula Roth.) and
downy birch (Betula pubescens Ehrh.) on former agricultural
soils. Baltic Forestry 10, 2–11.
Sheoran, V., Sheoran, A.V., & Poonia, P. (2010). Soil reclamation of
abandoned mine land by revegetation: a review. International
Journal of Soil, Sediment and Water 3, Iss. 2, Article 13
Spohn, M., & Stendahl, J. (2022). Carbon, nitrogen, and phosphorus
stoichiometry of organic matter in Swedish forest soils and its
relationship with climate, tree species, and soil texture.Biogeosciences 19, 2171–2186.
https://doi.org/10.5194/bg-19-2171-2022
Stewart, J.R., Kennedy, G.J., Landes, R.D., & Dawson, J.O. (2008).
Foliar‐nitrogen and phosphorus resorption patterns differ among
nitrogen‐fixing and nonfixing temperate‐deciduous trees and shrubs.International Journal of Plant Sciences 169, 495–502.
DOI:10.1086/528749
Sulieman, S., & Mühling, K.H. (2021). Game Changer in plant nutrition.
Utilization of soil organic phosphorus as a strategic approach for
sustainable agriculture. Journal of Plant Nutrition and Soil
Science , 184, 311–319. DOI: 10.1002/jpln.202100057
Sürmen, B., Kutbay, H.G., Kiliç, D.D. & Sürmen, M. (2014). Foliar
resorption in nitrogen-fixing and non-fixing species in a swamp forest
in northern Turkey. Revue d’Ecologie (La Terre et la Vie) 69, 318
–327.
Świątek, B., Woś, B., Chodak, M., Maitic, S.K., Józefowska, A., &
Pietrzykowski, M. (2019). Fine root biomass and the associated C and
nutrient pool under the alder (Alnus spp.) plantings on reclaimed
technosols. Geoderma 337, 1021–1027.
https://doi.org/10.1016/j.geoderma.2018.11.025
Temperton, V.M., Grayston, S.J., Jackson, G., Barton, C.V.M., Millard,
P., & Jarvis, P.G. (2003). Effects of elevated carbon dioxide
concentration on growth and nitrogen fixation in Alnus glutinosain a long-term field experiment. Tree Physiology 23, 1051–1059.
Tipping, E., Benham, S., Boyle, J.F., Crow, P., Davies, J., Fischer, U.,
Guyatt, H., Helliwell, R., Jackson-Blake, L., Lawlor A.J., Monteith,
D.T., Roweg, E.C., & Toberman, H. (2014). Atmospheric deposition of
phosphorus to land and freshwater. Environmental Science:
Processes & Impacts 16, 1608–1617. DOI: 10.1039/c3em00641g
Turner, B.L., Cade-Menun, B.J., Condron, L.M., & Newman, S. (2005).
Extraction of soil organic phosphorus. Talanta 66, 294–306.
doi:10.1016/j.talanta.2004.11.012
Tzvetkova, N., & Petkova, K. (2015). Bioaccumulation of heavy metals by
the leaves of Robinia pseudoacacia as a bioindicator tree in
industrial zones. Journal of Environmental Biology 36, Special
issue, 59–63.
Uri, V., Lõhmus, K., Ostonen, I., Tullus, H., Renal Lastik, R., &
Vildo, M. (2007). Biomass production, foliar and root characteristics
and nutrient accumulation in young silver birch (Betula pendulaRoth.) stand growing on abandoned agricultural land. European
Journal of Forest Research 126, 495–506. DOI 10.1007/s10342-007-0171-9
Vlachodimos, K., Papatheodorou, E.M., Diamantopoulos, J., &
Monokrousos, N. (2013). Assessment of Robinia pseudoacaciacultivations as a restoration strategy for reclaimed mine spoil heaps.Environmental Monitoring and Assessment 185, 6921–6932.
https://doi.org/10.1007/s10661-013-3075-9
Wang, F., Li, Z., Xia, H., , Zou, B., Li, N., Liu, J., & Zhu, W.
(2010). Effects of nitrogen-fixing and non-nitrogen-fixing tree species
on soil properties and nitrogen transformation during forest restoration
in southern China. Soil Science and Plant Nutrition 56, 297–306.
https://doi.org/10.1111/j.1747-0765.2010.00454.x
Woś, B., & Pietrzykowski, P. (2020). Characteristics of technogenic
soils developed from Neogene and Quaternary sediments substrate on
reclaimed sulphur and sand extraction mine sites. Soil Science
Annual 1, 344–351. https://doi.org/10.37501/soilsa/126996
Zhang, H., & Kovar, J.L., (2009). Fractionation of soil phosphorus. In:
Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and
Waters. Second Edition. J.L. Kovar and G.M. Pierzynski (Eds). Southern
Cooperative Series Bulletin No. 408. pp. 50–60.
Zipper, C.E., Burger, J., Skousen, J.G., Angel, P.N., Barton, C.D.,
Davis, V., & Franklin, J. (2011). Restoring forests and associated
ecosystem services on Appalachian coal surface mines.Environmental Management 47, 751–765.
https://doi.org/10.1007/s00267-011-9670-z