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Summary 22 

 23 

Fed aquaculture is one of the fastest growing and most valuable food production industries. 24 

The efficiency with which farmed fish convert feed into biomass influences both 25 

environmental impact and economic revenue. Salmonid species, such as king salmon 26 

(Oncorhynchus tshawytscha), exhibit high levels of plasticity in vital rates such as feed intake 27 

and growth rates. Accurate estimations of individual variability in vital rates are important for 28 

production management. The use of mean trait values to evaluate feeding and growth 29 

performance can mask individual-level differences that potentially contribute to 30 

inefficiencies. Here, we apply an integral projection model (IPM) to investigate individual 31 

variation in growth performance of 1625 individually tagged king salmon fed one of three 32 

distinct rations and tracked over 276 days. To capture the observed sigmoidal growth, we 33 

compared a non-linear mixed-effects (logistic) model to a linear regression model used 34 

within the IPM framework. Ration significantly influenced several aspects of growth. Mean 35 

final body mass and mean growth rate increased with ration, however, variance in body mass 36 

and feed intake also increased significantly over time. Trends in body mass mean and 37 

variance were captured by both logistic and linear models, suggesting the linear model to be 38 

suitable for use in the IPM. Higher rations resulted in a decreasing proportion of individuals 39 

reaching the cohort’s mean size or larger by the end of the experiment. This suggests that, in 40 

our trial, feeding to satiation did not produce the desired effects of efficient and uniform 41 

growth in juvenile king salmon. While monitoring individuals through time is challenging in 42 

commercial aquaculture settings, recent technological advances combined with an IPM 43 

approach could provide new scope for tracking growth performance in experimental and 44 

farmed populations. The IPM framework also allows the exploration of other size-dependent 45 

processes affecting vital rate functions, such as competition and mortality.  46 
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1. Introduction 52 

 53 

 Over the past three decades, the aquaculture sector has been one of the fastest 54 

growing food production sectors by annual growth rate (FAO, 2018). Among the multitude of 55 

finfish species cultured worldwide, salmonids are some of the most valuable  (FAO, 2016). 56 

Salmonid production is projected to continue to grow, but meeting the nutrient requirements 57 

of salmonids and consumer expectations regarding the nutrient profile of salmon products has 58 

become more challenging due to marine resource limitations (FAO, 2020). Sustainable 59 

industry growth requires further improvements in feed innovation and management, to 60 

successfully balance fish growth performance, environmental impacts, and the nutrient 61 

composition of salmon products (Froehlich et al., 2018; Shepherd & Jackson, 2013).  62 

 63 

 For commercial aquaculture to be successful, fish cohorts are required to grow rapidly 64 

and uniformly to what is considered a usable size at the minimum cost of resources and 65 

capital (Timmons et al., 2002). A well-informed feeding regimen can increase the likelihood 66 

of optimum growth, reduce costs, and decrease environmental impacts from waste outputs 67 

(Davidson et al., 2016). Despite  extensive monitoring and control opportunities, estimating 68 

cohort properties such as growth rates, fish size distributions, and total biomass in 69 

experimental or commercial fish populations poses challenges. Particularly in commercial 70 

farms, true cohort values are often impossible to obtain due to the extensive sampling effort 71 
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involved and the negative effects of stress on the fish (Nilsson & Folkedal, 2019; Shieh & 72 

Petrell, 1998). These are key inputs for many important decisions in the production process, 73 

such as feed ration assignment, feed cost calculations, harvest planning, and estimation of 74 

production yield (Føre et al., 2018; Lugert et al., 2016). Similarly, aquaculture experiments 75 

continue to use mean body size as the primary currency by which studies measure the success 76 

of experimental treatments in growth trials. The use of mean trait values, however, 77 

potentially masks the meaningful effects of individual variation on cohort-level processes 78 

(Fritschie & Olden, 2016). Furthermore, small biases in size distribution or biomass estimates 79 

may produce significant deviations in scientific, management and economic outcomes 80 

(Nilsson & Folkedal, 2019). Size-structured population models highlight the importance of 81 

investigating growth variability and might be able to provide new insights into the 82 

mechanisms that determine size variability of cohorts in aquaculture research.  83 

 84 

 Size-structured population models that incorporate individual-level variation are 85 

useful for the exploration of population dynamics and ecosystem feedbacks (e.g. Filipe & 86 

Kyriazakis, 2019; Griffiths et al., 2020; Vincenzi et al., 2014). The common denominator is 87 

the understanding of body size as the fundamental functional trait  that influences organismal 88 

vital rates such as metabolism, uptake, mortality, and reproduction rates. Individual vital rates 89 

are then integrated and scaled up to the population, community or ecosystem level (Andersen 90 

et al., 2016; Blanchard et al., 2017). Both the mean body size and the individual variation 91 

around the mean, i.e. the frequency distribution of body size, are impacted by variation in 92 

internal and external factors. Following Jensen’s inequality, the aggregate sum of any 93 

function that scales allometrically will be altered at the population level should either the 94 

mean or the size distribution around the mean change (Fritschie & Olden, 2016). Therefore, it 95 

is necessary to select a size-structured model approach which allows the projection of both 96 
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mean and variance of changes in individual body size. One such model is the integral 97 

projection model. 98 

 99 

 Integral projection models (IPMs) are size-structured models that describe how 100 

populations structured by continuous individual-level state variables change in discrete time 101 

(Easterling et al., 2000). These models perform well with body size as the state variable. 102 

Deterministic IPMs are data-driven and parameterised with simple regressions that relate an 103 

individual’s state to its vital rates, such as growth, survival and reproduction (Coulson, 2012; 104 

Merow et al., 2014). The core of the IPM is the kernel which is the function that predicts how 105 

the body size distribution of a population changes from one time step to the next. In addition 106 

to the mean change in the state variable at the population level, the IPM allows the flexible 107 

modelling of the changes in variance. The level of complexity of the biological processes 108 

included in the model is determined by the extent and quality of the available data. One 109 

exceptional feature of IPMs is that they provide insights into mechanistic population-level 110 

processes from individual-level observations that cannot easily be inferred from statistical 111 

models of vital rates alone, while remaining computationally simple. So far, IPMs have been 112 

employed in ecological studies to estimate population growth rates under variable 113 

environmental conditions (Coulson, 2012; Ellner & Rees, 2006; Heather et al., 2018). This 114 

type of growth modelling has been shown to accurately capture growth trajectories in many 115 

plant and animal species, including fishes (e.g. Heather et al., 2018; White et al., 2016). To 116 

the authors’ knowledge, the present study will be the first application of an IPM in 117 

aquaculture.  118 

 119 

 To adapt the IPM framework for application in aquaculture it is necessary to identify 120 

the relevant biological processes and select a state variable that allows inferences about said 121 
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processes. The present study uses body mass as the state variable, measured in grams of wet 122 

weight, because body mass is a key determinant of fish performance in aquaculture. Since 123 

grow-out and reproduction are isolated operations in commercial aquaculture, and because 124 

the experimental animals were pre-reproductive juveniles, with negligible mortality rates, 125 

only growth rates are considered. We use the IPM to assess the effects of ration on individual 126 

growth performance in New Zealand King or Chinook salmon (Oncorhynchus tshawytscha) 127 

reared in a freshwater recirculation aquaculture system (RAS). The advantage of using data 128 

from RAS is that the majority of biotic and abiotic factors are kept stable and can hence be 129 

excluded from the analysis. This case study is ideal because the experimental fish had not 130 

undergone extensive selective breeding and their performance with respect to growth and 131 

feed efficiency remains highly variable (Araujo et al., 2021; Semeniuk et al., 2019).  132 

 133 

2. Materials and methods  134 

 135 

The current project made retrospective use of data and did not require Animal Ethics 136 

approval. The experimental setup has previously been described in detail by Esmaeili et al. 137 

(2021) and Zhao et al. (2021). Below we focus only on the aspects of the experiment vital to 138 

this study. 139 

 140 

2.1 King salmon growth trial dataset 141 

  142 

 A single cohort of all-female king salmon juveniles were sourced from a local 143 

hatchery (Clearwater Hatchery, Mt Cook Alpine Salmon, Twizel, New Zealand), where the 144 

fish were individually implanted with a passive integrated transponder (PIT) tag (HID 145 

Global, EM4305 684,230, 12 mm glass tags). The growth trial was conducted over a period 146 
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of 276 days in the Finfish Research Centre (FRC) at the Cawthron Aquaculture Park (CAP), 147 

New Zealand. After a 21-to-24-day acclimation period to tank conditions at 15°C, 1625 fish 148 

(average wet weight ± SD: 40.67 ± 8.13 g, wet weight range: 21.14g – 63.75 g) were 149 

haphazardly distributed amongst nine 8000 L circular freshwater tanks. The initial stocking 150 

was 176 to 187 fish per tank with a coefficient of variation for wet weight between 16% and 151 

21%. Throughout the experiment, water temperature was maintained at 17 ± 0.5°C and 152 

photoperiod was set to 24 h continuous light to prevent early maturation. 153 

 154 

2.2 Feeding regimes and sampling  155 

  156 

The experiment tested the effects of three feed rations, 60%, 80%, or 100% satiation 157 

(n=3) on growth performance. One extruded feed with pellet sizes of 4 mm and 6 mm was 158 

used throughout the experiment (Tasman Freshwater experimental diet, Ridley, Australia). 159 

Fish were handfed one meal per day. The 100% satiation ration was determined by hand 160 

feeding until apparent satiation, defined as the time when the feeding response of all 161 

individuals within a tank had ceased. The respective feed amounts for the 60% and 80% feed 162 

ration treatment groups were calculated using a feed model based on daily observations of 163 

feed amount consumed by the 100% satiation treatment group and adjusted for predicted 164 

average weight and tank biomass. For simplicity, the rations of 60%, 80% and 100% satiation 165 

will be referred to as treatments 60S, 80S, and 100S, respectively. Fish were removed if they 166 

ceased feeding or lost weight, or for biomass reduction at the later stages of the experiment. 167 

Tank feed intake was measured daily: uneaten pellets were collected, counted, and subtracted 168 

from the weight of feed delivered. In addition to repeated measurements of individual wet 169 

weight and fork length under anaesthesia (65 ppm tricaine methane sulfonate (Syndel, 170 

Canada)) on six occasions (days 0, 91, 124, 173, 221 and 276), individual daily feed intake 171 
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(DFI) was quantified using the x-ray “ballotini” bead method (McCarthy et al., 1993; Talbot 172 

& Higgins, 1983; Walker et al., 2012) on days 124, 173, 221 and 276.  173 

 174 

2.3 Integral projection model of the king salmon experiment 175 

 176 

An IPM describes the probability density distribution of the body mass 𝑤𝑖 = 𝑤(𝑡𝑖) of 177 

a population at a sequence of discrete times 𝑡1, 𝑡2, … , 𝑡𝑛 (Coulson, 2012). An IPM assumes 178 

that the body mass 𝑤𝑖+1 of an individual at time 𝑡𝑖+1, conditional on its body mass 𝑤𝑖  at time 179 

𝑡𝑖, is given by the growth kernel 𝐺(𝑤𝑖+1|𝑤𝑖 , 𝑡𝑖). If the probability density distribution of 180 

body masses at time 𝑡𝑖 is 𝑛(𝑤𝑖 , 𝑡𝑖), it follows that (Rees et al., 2014) the probability density 181 

distribution of body masses at time 𝑡𝑖+1 is 182 

 183 

 
𝑛(𝑤𝑖+1, 𝑡𝑖+1) =  ∫ 𝐺(𝑤𝑖+1|𝑤𝑖 , 𝑡𝑖)𝑛(𝑤𝑖 , 𝑡𝑖)𝑑𝑤𝑖

𝑤𝑖+1𝑚𝑎𝑥

0

 
eqn 1. 

 184 

The growth kernel can relate the body mass at each time to the body mass at the previous 185 

time through a linear model. If conditional on 𝑤𝑖 , the body mass 𝑤𝑖+1 is normally distributed 186 

with mean 𝛽0𝑖 + 𝛽1𝑖𝑤𝑖  and variance 𝜍𝑖
2, 187 

 188 

 𝑤𝑖+1 ~ 𝑁(𝛽0𝑖 + 𝛽1𝑖𝑤𝑖 , 𝜍𝑖
2) 

 

eqn 2, 

 189 

and the body masses at time 𝑖 are also normal with mean 𝜇𝑖 and variance 𝜎𝑖
2 190 

 191 
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 𝑤𝑖~ 𝑁(𝜇𝑖 , 𝜎𝑖
2) 

 

eqn 3, 

 192 

then 𝑤𝑖+1is also normally distributed, with mean 193 

 194 

 𝜇𝑖+1 =  𝛽0𝑖 + 𝛽1𝑖𝜇𝑖  

 

eqn 4 

 195 

and variance  196 

 197 

 𝜎𝑖+1
2 = 𝛽1𝑖

2  𝜎𝑖
2 +   𝜍𝑖

2  

 

eqn 5. 

 198 

The model parameters 𝛽0𝑖, 𝛽0𝑖, and 𝜍𝑖
2 can be estimated by regressing the body mass 𝑤𝑖+1 of 199 

each individual against their body mass 𝑤𝑖  at the previous time 𝑡𝑖. Fitting data across all time 200 

increments at once led to the violation of at least two of the underlying assumptions of linear 201 

regression models, namely normality, and homoscedasticity, making the linear regression 202 

model invalid (Zuur et al., 2009). Linear regressions fitted to the data time increment by time 203 

increment, however, presented with normally distributed and homogenous residuals. To 204 

create one growth kernel for each of the ration treatment groups that covers the entire 205 

experimental period, individual growth kernels were calculated for the relevant body mass 206 

ranges of each of the time increments and then added together. 207 

 208 

To demonstrate the legitimacy of this approach for logistic growth, we also fitted a 209 

logistic non-linear-mixed effects model (Pinheiro & Bates, 2000) to model body mass over 210 
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time (see Supplementary material for a more detailed description of the logistic model). The 211 

logistic model can be expressed in terms of the weight 𝑤𝑖 = 𝑤(𝑡𝑖)  at time 𝑡𝑖 212 

 213 

 w(𝑡) =
𝑤𝑚𝑎𝑥

1 + (wmax − wi)/wi  exp(−𝐾(𝑡 − 𝑡𝑖))
 

 

eqn 6. 

 214 

Expanding this expression in a Taylor Series in 𝑤𝑖  yields 215 

 216 

 𝑤(𝑡) = 𝑒−𝑘 (𝑡−𝑡𝑖)𝑤𝑖 + 𝑂(𝑤𝑖
2) 

 

eqn 7. 

 217 

This relation approximates the growth kernel of the IPM, and suggests the coefficients of the 218 

linear regressions for the IPM should be approximately 𝛽0𝑖 = 0 and 𝛽1𝑖 = 𝑒−𝑘(𝑡𝑖+1−𝑡𝑖). 219 

All calculations were performed using the open-source software R (R Core Team, 2020). 220 

 221 

3. Results 222 

 223 

The linear regressions fitted to the time increment subsets of each ration agreed 224 

closely with the predicted body size means from the logistic model as well as the data (Figs 225 

1–2). The main difference between the model predictions of the two approaches was that the 226 

linear regressions did not include predictions for low-performance individuals that had been 227 

removed during a previous sampling interval while the logistic model did.  228 

 229 



 11 

[Figure 1] 230 

  231 

The goodness of fit of the linear regressions and the logistic model was assessed by 232 

calculating the percentage error (PE) between the predicted mean body size and the observed 233 

mean body size for each ration treatment group at each time point or time interval. 234 

Interestingly, the highest deviation between observed mean body size and predicted mean 235 

body size for the logistic model was found at the initial time point (i.e. 𝑤0) for the 80S (18% 236 

PE) and 100S (36% PE). Similarly, the linear regression predictions deviated most from the 237 

observations during the first time increment (60S: 1.42%; 80S: 1.49%, 100S: 1.50%). 238 

Predicted mean final body size, 𝑤𝑚𝑎𝑥, in the logistic model deviated less from the observed 239 

values for all ration sizes, and the PE decreased with increasing ration size (60S: 5.37%; 80S: 240 

3.04%; 100S: 2.97%). This trend for the last time interval was partially mirrored by the linear 241 

regressions (60S: 0.31%; 80S: 0.24%; 100S: 0.46%). Mean percentage error (MPE) was 242 

calculated as the mean of all PEs for each ration treatment over the entire experimental 243 

period. For the logistic model, MPE was lowest for the 60S treatment at 3.97%, followed by 244 

the 80S treatment at 5.7% and 9.12% for the 100S treatment. The higher MPEs of the 80S 245 

and 100S treatments were significantly influenced by the deviation between observed and 246 

predicted mean initial sizes (𝑤0, cf. Table 1 Supplementary Material). For the linear 247 

regressions, the MPEs for all treatments were significantly lower than those of the logistic 248 

model and the differences in MPE between the treatments was negligible at 0.57% for the 249 

60S treatment, followed by the 80S treatment at 0.54% and the 100S treatment at 0.53%.  250 

 251 

[Figure 2] 252 

  253 
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 In addition to the growth trajectories, we visually compared the probability density 254 

distributions of observed vs. predicted body mass (Fig. 3). Again, we found the predictions to 255 

mirror the observations, capturing details such as a slight right-skew in the distributions of 256 

the final time increments for the 60S and 80S treatments as well as the right-skew in the 257 

penultimate time increment and the bimodality that is indicated in the last time increment of 258 

the 100S treatment group (see Fig. 3, column five for the 60S and 80S treatment groups, and 259 

columns four and five for the 100S treatment group).  260 

 261 

[Figure 3] 262 

 263 

 Overall, ration size significantly influenced several aspects of growth, both at the 264 

individual and at the cohort level. Mean final size as well as mean growth rate were 265 

considerably augmented by increased ration size (see Fig. 1). Variance also significantly 266 

increased with ration size through time (cf. Figs 1, 3). The initial coefficients of variation 267 

(CVs) were found to be similar for all treatment groups, 19.9% in the 60S treatment group, 268 

18.9% and 21.05% in the 80S and 100S treatments, respectively. While the variance 269 

remained relatively constant in the 60S treatment group (final CV = 20.65%), the CVs of the 270 

80S and 100S treatments were substantially elevated at 23% and 30.6%, respectively, by the 271 

end of the experiment. This became especially evident when comparing the widths of the 272 

growth kernels for each ration treatment (Supplementary Material, Fig. 2). While the 60S 273 

treatment resulted in a relatively narrow, almost linear band of transition probabilities across 274 

all sizes 𝑤𝑡 , we observed an increased fanning effect at the higher rations which indicated a 275 

higher variability of achieved sizes 𝑤𝑡+1 from the same value 𝑤𝑡 . The trends in the individual 276 

daily feed intake (DFI) data mirror the trends in growth in response to ration size and 277 
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individual body size: both mean and variance of individual DFI increased with increasing 278 

ration and body size (Fig. 4).  279 

 280 

[Figure 4] 281 

  282 

Additionally, we examined the proportion of the experimental cohorts that grew to the 283 

respective mean size or larger by the last time point to illustrate potential management 284 

implications of the respective ration treatments. In the 60S treatment, the largest proportion, 285 

63.4% or 196 of 309 individuals, grew to the cohort’s mean size or larger (642 – 989g), 286 

followed by the 80S cohort where 58.09% or 176 of 303 individuals reached the mean size or 287 

larger (791 – 1343g). In the 100S treatment, less than half of the cohort, namely 48.44% or 288 

124 of 256 individuals, grew to the cohort mean size or larger (873 – 1497g).  289 

 290 

4. Discussion 291 

 292 

Overall, our study demonstrates that feeding to satiation achieved the highest mean 293 

and maximum growth rates but resulted in highly variable final body masses. Our results thus 294 

question whether the common aquaculture practice of feeding to satiation produces the 295 

desired effects of efficient, fast, and uniform growth in king salmon. They also highlight the 296 

potential shortcomings of approaches that report growth in terms of mean and standard 297 

deviation and demonstrate the importance of exploring the size structure of a fish cohort and 298 

the processes that yield certain body mass distributions. One of the strengths of the IPM 299 

framework that makes it very suitable to this kind of investigation is the mechanistic 300 

projections of deterministic vital rate functions, such as growth rate, which allows insights 301 

into cohort-level processes.  302 
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 303 

Improving fish growth performance while reducing the environmental footprint and 304 

maintaining economic viability has been the main goal of empirical aquaculture research for 305 

decades. Because aquaculture feed formulations rely on limiting resources and are the single 306 

largest expense in fed aquaculture enterprises, with a share in production costs of over 50% 307 

(Iversen et al., 2020), the sustainability of the sector depends on the continuous improvement 308 

of feed formulations and feeding practices (e.g. Carter & Houlihan, 2001; Hasan & Soto, 309 

2017).  310 

 311 

Ration size is one of the most influential feeding regime factors and is readily 312 

manipulated to enhance the likelihood of optimum growth as well as lower costs and 313 

environmental impact from uneaten pellets or waste outputs (Davidson et al., 2016). Our 314 

study on the growth performance of a cohort of all-female, juvenile king salmon fed three 315 

rations of 60% (60S), 80% (80S) and 100% satiation (100S) for 276 days demonstrates that 316 

there are large differences in mean and individual-level growth performance under different 317 

feeding regimes. In accordance with earlier studies in salmonids, the data of the present study 318 

showed that mean growth in the high ration group (100S) significantly exceeded mean 319 

growth of the intermediate (80S) and the low ration groups (60S) (e.g. Kiessling et al., 2005; 320 

Mazur et al., 1993; Shearer et al., 1997). The proportion of fish, however, that reached a body 321 

size equal to the treatment group mean or larger decreased with increasing ration size, raising 322 

questions about the efficiency of feeding to satiation. In contrast to previous findings, the 323 

variance in growth performance as approximated by variance in body mass increased 324 

significantly with ration size and over time. Davis and Olla (1987) as well as McCarthy et al. 325 

(1992) had reported that reduced rations resulted in higher variability in growth rate than 326 

medium or high ration sizes due to presumably higher competition under resource limitation. 327 
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 328 

Disproportionate growth and an increase in the variance in body mass or feed intake 329 

have previously been attributed to the preferential acquisition of feed by dominant 330 

individuals and interpreted as indicators of interference competition for resources, also called 331 

a feeding hierarchy (Jobling, 1995). Within a strong feeding hierarchy, a small number of 332 

dominant fish monopolise feed which may result in faster growth and larger body sizes. 333 

Meanwhile, the feeding activity of subordinate fish is supressed, as they consume smaller 334 

meals (Metcalfe, 1986; Ryer & Olla, 1996). The trends in individual daily feed intake and the 335 

right-skewed or bimodal probability density distributions of body mass might indicate the 336 

establishment of such feeding hierarchies as a source of the increased growth variability in 337 

the treatment groups 80S and 100S towards the end of the experiment. During hand feeding, 338 

the 60S and 80S fish exhibited a strong feeding response and completed their meals quickly, 339 

whereas the feeding response was more variable in the 100S fish, with slower feeding. This 340 

could have allowed more dominant fish to eat larger meals (Ryer & Olla, 1991; Thorpe et al., 341 

1990). Although the directionality of the relationship between individual body mass and 342 

dominance status is contested, generally larger fish have been found to be more dominant in 343 

husbandry conditions (Huntingford et al., 1990; Metcalfe et al., 1992).  344 

 345 

Individual variation is increasingly recognised by ecologists and fisheries scientists as 346 

important parameter for understanding and predicting the dynamics of wild populations and 347 

their interactions with the surrounding ecosystem (e.g. Fritschie & Olden, 2016). Because 348 

morphological and physiological functions scale allometrically with body mass, focussing 349 

solely on the mean body mass will potentially bias predictions at the population level, when 350 

there is high variance (Fritschie & Olden, 2016). Environmental variables, such as 351 

temperature, affect physiological rates and how they scale with body mass, and hence have 352 
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varying effects on individuals of different sizes (Leblanc et al., 2019). One of the advantages 353 

of the IPM is that it allows the modeller to mathematically model mean and variance of vital 354 

rates, and hence allow a more detailed picture of the variability in vital rates and 355 

consequently the body size composition of fish cohorts. In aquaculture research, however, 356 

mean trait values continue to be the primary currency by which studies measure and compare 357 

growth performance and treatment effects. Even mechanistic frameworks simulating 358 

aquaculture operations appear to preferentially report parameter and variable means only (e.g. 359 

Føre et al., 2016; Zhou et al., 2018). 360 

  361 

 Commonly used growth functions in aquaculture research, such as the absolute 362 

(AGR) or specific growth rates (SGR), are also often calculated based on the stocking and 363 

harvest data only, leaving intermediate data unconsidered (Hopkins, 1992). Both growth 364 

models used here, however, allow for trends in the data over the entire experimental period. 365 

This is reflected in the mean percentage error (MPE). Lugert et al. (2016) reported MPE 366 

values of 11.27% and 13.37% for AGR and SGR, respectively, for an aquaculture experiment 367 

of comparable duration with RAS-raised salmonids of similar initial and final sizes. At MPE 368 

values of 0.57% and 3.9% (60S), 0.54% and 5.7% (80S), and 0.53% and 9.1% (100S), both 369 

the linear regressions and the logistic model, respectively, perform better. The logistic model 370 

overestimated the body mass range at the low end of the growth performance scale. This is 371 

likely due to observations for under-performing individuals being included at earlier 372 

sampling points, but then removed from the dataset.  Additional processes may have also 373 

contributed to the extent of divergence between models and data. King salmon have highly 374 

variable life cycles, and the underlying processes are not well understood. Considerable 375 

plasticity in metabolic efficiency, resource use, associated foraging behaviour, and the timing 376 

of life cycle events has been documented between different strains and regions of occurrence 377 
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(Higgs et al., 1995; Leblanc et al., 2019; Salin et al., 2019). Despite king salmon being a 378 

commonly farmed species in New Zealand, not all the farmed stocks are selectively bred and 379 

commercially important traits such as feed consumption, feed efficiency and growth remains 380 

highly variable (Araujo et al., 2021; Esmaeili et al., 2021; Semeniuk et al., 2019; Walker et 381 

al., 2012). The absence of systematic control of intraspecific genotypic variation and the 382 

resulting phenotypic differences are likely to lead to divergent individual growth trajectories 383 

in a controlled environment and under different resource availability treatments (Leblanc et 384 

al., 2019; Semeniuk et al., 2019). Future applications of IPMs in aquaculture might consider 385 

the inclusion of terms that allow the representation of phenotypic variability in factors that 386 

contribute to growth variability and have been shown to affect dominance status, such as 387 

standard metabolic rate (Cutts et al., 1998; Metcalfe et al., 1995).  388 

 389 

 Our study shows that deterministic IPMs are powerful tools to investigate processes 390 

that shape a population’s demography from the individual level. The employment of 391 

phenomenological methods such as regression models makes this approach flexible and 392 

accessible to practitioners. The deterministic core of the approach, however, means that 393 

results can only be interpreted for the exact conditions of the underlying experiment. For the 394 

prediction of aquaculture cohort responses to a changing environment, the incorporation of 395 

fully mechanistic model formulations such as the dynamic energy budget into an IPM could 396 

be instructive (e.g. Smallegange et al., 2017). Additionally, extending the IPM using Markov 397 

chain theory (Tuljapurkar, 1990) might allow the model to represent stochastic processes, 398 

such as variation in environmental factors or interactions between individual fish, which may 399 

increase the approach’s explanatory power and aid with capturing the observed variance. To 400 

explore feeding hierarchies and their effects on growth (and survival) in more detail, 401 

quantification of the strength of competitive interactions among individuals could be captured 402 



 18 

within the IPM framework (Griffiths et al., 2020). Future work on the use of IPMs in 403 

aquaculture research that focuses on both the incorporation of size-based mechanisms for 404 

growth depensation as well as mortality would be promising extensions. 405 

 406 
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 639 
Figure 1. The predictions of the non-linear mixed-effects (logistic) model (orange) and the 640 

linear regression models fitted to the time increment subsets (red – offset by -10 days on the 641 

x-axis) of the observed individual growth trajectories (grey lines).  642 

  643 
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 644 

Figure 2. Linear model predictions over data for body mass (g) at time t against body mass at 645 

t+1. Each column represents one of five time increments (time t to time t+1), named after the 646 

number of days representing time t (i.e. day 0, day 91, day 124, etc.), and each row represents 647 

one of the three ration treatments 60S, 80S and 100S. Each panel shows the experimental 648 

observations (coloured points) as well as the fitted mean of the growth regressions 𝐸(𝑤𝑡+1) 649 

(black points).    650 

  651 
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 652 

Figure 3. The black histograms depict the probability density distributions of observed body 653 

mass wt+1 while the overlaid red (linear regressions) and orange (logistic model) lines 654 

represent the probability densities of predicted body mass wt+1 from the growth models. Each 655 

column represents one of five time increments (time t to time t+1), named after the number of 656 

days representing time t (i.e. day 0, day 91, day 124, etc.), and each row represents one of the 657 

three ration treatments 60S, 80S and 100S. 658 

 659 

  660 
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 661 

Figure 4. Individual daily feed intake (g) measured using the x-ray “ballotini” bead method at 662 

four different timepoints (days 124, 173, 221, 276) and plotted against individual wet weight 663 

(g). Mean and standard deviation of individual feed intake increase with body size and ration 664 

level. It appears that the 60S and 80S rations result in less variable daily feed intake 665 

compared to the 100S ration. 666 
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