References
1. Ghazawi FM, Le M, Cyr J, et al. Analysis of acute myeloid leukemia incidence and geographic distribution in Canada from 1992 to 2010 reveals disease clusters in Sarnia and other industrial US border cities in Ontario. Cancer . 2019;125(11):1886-1897.
2. Zhang C, Lam SS, Leung GM, et al. Sorafenib and omacetaxine mepesuccinate as a safe and effective treatment for acute myeloid leukemia carrying internal tandem duplication of Fms‐like tyrosine kinase 3. Cancer . 2020;126(2):344-353.
3. Kantarjian HM, Jabbour EJ, Garcia‐Manero G, et al. Phase 1/2 study of DFP‐10917 administered by continuous intravenous infusion in patients with recurrent or refractory acute myeloid leukemia. Cancer . 2019;125(10):1665-1673.
4. Jackson GH. Use of fludarabine in the treatment of acute myeloid leukemia. The Hematology Journal: the Official Journal of the European Haematology Association . 2004;5:S62-7.
5. Rasor B, Dickerson T, Zhao Q, et al. Comparison of fixed dose reduced-intensity conditioning with fludarabine and busulfan to PK-guided busulfan AUC (FluBu4K) in hematopoietic stem cell transplant for AML/MDS. Leukemia & Lymphoma . 2021;62(4):944-951.
6. Ciurea SO, Kongtim P, Soebbing D, et al. Decrease post-transplant relapse using donor-derived expanded NK-cells. Leukemia . 2022;36(1):155-164.
7. Martín-Antonio B, Suñe G, Perez-Amill L, Castella M, Urbano-Ispizua A. Natural killer cells: angels and devils for immunotherapy.International journal of molecular sciences . 2017;18(9):1868.
8. Xu J, Niu T. Natural killer cell-based immunotherapy for acute myeloid leukemia. Journal of Hematology & Oncology . 2020;13(1):1-20.
9. Castellino F, Boucher PE, Eichelberg K, et al. Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. The Journal of experimental medicine . 2000;191(11):1957-1964.
10. Udono H, Srivastava PK. Heat shock protein 70-associated peptides elicit specific cancer immunity. The Journal of experimental medicine . 1993;178(4):1391-1396.
11. Asea A, Kraeft S-K, Kurt-Jones EA, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature medicine . 2000;6(4):435-442.
12. Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R. Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. The Journal of Immunology . 1997;158(9):4341-4350.
13. Yang L, Shen M, Xu LJ, et al. Enhancing NK cell-mediated cytotoxicity to cisplatin-resistant lung cancer cells via MEK/Erk signaling inhibition. Scientific reports . 2017;7(1):1-13.
14. Niu C, Li M, Zhu S, et al. PD-1-positive Natural Killer Cells have a weaker antitumor function than that of PD-1-negative Natural Killer Cells in Lung Cancer. International Journal of Medical Sciences . 2020;17(13):1964.
15. Ewen C, Kane K, Bleackley R. A quarter century of granzymes.Cell Death & Differentiation . 2012;19(1):28-35.
16. Chung YM, Khan PP, Wang H, et al. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. Journal for immunotherapy of cancer . 2021;9(12)
17. Ambrose AR, Hazime KS, Worboys JD, Niembro-Vivanco O, Davis DM. Synaptic secretion from human natural killer cells is diverse and includes supramolecular attack particles. Proceedings of the National Academy of Sciences . 2020;117(38):23717-23720.
18. Zhu Y, Huang B, Shi J. Fas ligand and lytic granule differentially control cytotoxic dynamics of natural killer cell against cancer target.Oncotarget . 2016;7(30):47163.
19. Ali AK, Nandagopal N, Lee S-H. IL-15–PI3K–AKT–mTOR: a critical pathway in the life journey of natural killer cells. Frontiers in immunology . 2015;6:355.
20. Ruiz-Garcia R, Vargas-Hernandez A, Chinn IK, et al. Mutations in PI3K110D Cause Impaired NK Cell Function Partially Rescued by Rapamycin Treatment. SPRINGER/PLENUM PUBLISHERS 233 SPRING ST, NEW YORK, NY 10013 USA; 2017:S4-S4.
21. Curiel TJ, Wei S, Dong H, et al. Blockade of B7-H1 improves myeloid dendritic cell–mediated antitumor immunity. Nature medicine . 2003;9(5):562-567.
22. McDermott DF, Atkins MB. PD‐1 as a potential target in cancer therapy. Cancer medicine . 2013;2(5):662-673.
23. Clara JA, Childs RW. Harnessing natural killer cells for the treatment of multiple myeloma. Elsevier; 2022:
24. Costa F, Marchica V, Storti P, Malavasi F, Giuliani N. PD-L1/PD-1 axis in multiple myeloma microenvironment and a possible link with CD38-mediated immune-suppression. Cancers . 2021;13(2):164.
25. Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI, Sapozhnikov AM. HSP70 multi-functionality in cancer. Cells . 2020;9(3):587.
26. Murphy ME. The HSP70 family and cancer. Carcinogenesis . 2013;34(6):1181-1188.
27. Reikvam H, Hatfield KJ, Ersvær E, et al. Expression profile of heat shock proteins in acute myeloid leukaemia patients reveals a distinct signature strongly associated with FLT3 mutation status–consequences and potentials for pharmacological intervention. British journal of haematology . 2012;156(4):468-480.
28. Ryningen A, Ersvær E, Øyan AM, et al. Stress-induced in vitro apoptosis of native human acute myelogenous leukemia (AML) cells shows a wide variation between patients and is associated with low BCL-2: Bax ratio and low levels of heat shock protein 70 and 90. Leukemia research . 2006;30(12):1531-1540.
29. Chant ID, Rose PE, Morris AG. Susceptibility of AML cells to in vitro apoptosis correlates with heat shock protein 70 (hsp70) expression. British journal of haematology . 1996;93(4):898-902.
30. Lobinger D, Gempt J, Sievert W, et al. Potential role of Hsp70 and activated NK cells for prediction of prognosis in glioblastoma patients.Frontiers in Molecular Biosciences . 2021;8:669366.
31. Elsner L, Flügge PF, Lozano J, et al. The endogenous danger signals HSP70 and MICA cooperate in the activation of cytotoxic effector functions of NK cells. Journal of cellular and molecular medicine . 2010;14(4):992-1002.
32. Rakova J, Truxova I, Holicek P, et al. TIM-3 levels correlate with enhanced NK cell cytotoxicity and improved clinical outcome in AML patients. Oncoimmunology . 2021;10(1):1889822.
33. Liu Y, Cheng Y, Xu Y, et al. Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers.Oncogene . 2017;36(44):6143-6153.
34. Backström E, Kristensson K, Ljunggren HG. Activation of natural killer cells: underlying molecular mechanisms revealed.Scandinavian Journal of Immunology . 2004;60(1‐2):14-22.
35. Moynagh PN. IL-15 in autoimmunity and cancer: O-tu-b or not O-tu-b?Nature Immunology . 2019;20(7):780-782.
36. Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood, The Journal of the American Society of Hematology . 2001;97(1):14-32.
37. Hurkmans DP, Basak EA, Schepers N, et al. Granzyme B is correlated with clinical outcome after PD-1 blockade in patients with stage IV non-small-cell lung cancer. Journal for immunotherapy of cancer . 2020;8(1)
38. Bai R, Cui J. Burgeoning Exploration of the Role of Natural Killer Cells in Anti-PD-1/PD-L1 Therapy. Frontiers in Immunology . 2022:2253.
39. Calvo T, Reina-Ortiz C, Giraldos D, et al. Expanded and activated allogeneic NK cells are cytotoxic against B-chronic lymphocytic leukemia (B-CLL) cells with sporadic cases of resistance. Scientific reports . 2020;10(1):1-14.
40. Davis Z, Felices M, Lenvik T, et al. Low-density PD-1 expression on resting human natural killer cells is functional and upregulated after transplantation. Blood advances . 2021;5(4):1069-1080.
41. Shevtsov M, Pitkin E, Ischenko A, et al. Ex vivo Hsp70-activated NK cells in combination with PD-1 inhibition significantly increase overall survival in preclinical models of glioblastoma and lung cancer.Frontiers in Immunology . 2019;10:454.
42. Zeng Y, Lv X, Du J. Natural killer cell‑based immunotherapy for lung cancer: Challenges and perspectives. Oncology Reports . 2021;46(5):1-14.
43. Thomas X, Campos L, Le Q-H, Guyotat D. Heat shock proteins and acute leukemias. Hematology . 2005;10(3):225-235.
44. Reikvam H, Nepstad I, Sulen A, Gjertsen BT, Hatfield KJ, Bruserud Ø. Increased antileukemic effects in human acute myeloid leukemia by combining HSP70 and HSP90 inhibitors. Expert opinion on investigational drugs . 2013;22(5):551-563.