References
1. Ghazawi FM, Le M, Cyr J, et al. Analysis of acute myeloid leukemia
incidence and geographic distribution in Canada from 1992 to 2010
reveals disease clusters in Sarnia and other industrial US border cities
in Ontario. Cancer . 2019;125(11):1886-1897.
2. Zhang C, Lam SS, Leung GM, et al. Sorafenib and omacetaxine
mepesuccinate as a safe and effective treatment for acute myeloid
leukemia carrying internal tandem duplication of Fms‐like tyrosine
kinase 3. Cancer . 2020;126(2):344-353.
3. Kantarjian HM, Jabbour EJ, Garcia‐Manero G, et al. Phase 1/2 study of
DFP‐10917 administered by continuous intravenous infusion in patients
with recurrent or refractory acute myeloid leukemia. Cancer .
2019;125(10):1665-1673.
4. Jackson GH. Use of fludarabine in the treatment of acute myeloid
leukemia. The Hematology Journal: the Official Journal of the
European Haematology Association . 2004;5:S62-7.
5. Rasor B, Dickerson T, Zhao Q, et al. Comparison of fixed dose
reduced-intensity conditioning with fludarabine and busulfan to
PK-guided busulfan AUC (FluBu4K) in hematopoietic stem cell transplant
for AML/MDS. Leukemia & Lymphoma . 2021;62(4):944-951.
6. Ciurea SO, Kongtim P, Soebbing D, et al. Decrease post-transplant
relapse using donor-derived expanded NK-cells. Leukemia .
2022;36(1):155-164.
7. Martín-Antonio B, Suñe G, Perez-Amill L, Castella M, Urbano-Ispizua
A. Natural killer cells: angels and devils for immunotherapy.International journal of molecular sciences . 2017;18(9):1868.
8. Xu J, Niu T. Natural killer cell-based immunotherapy for acute
myeloid leukemia. Journal of Hematology & Oncology .
2020;13(1):1-20.
9. Castellino F, Boucher PE, Eichelberg K, et al. Receptor-mediated
uptake of antigen/heat shock protein complexes results in major
histocompatibility complex class I antigen presentation via two distinct
processing pathways. The Journal of experimental medicine .
2000;191(11):1957-1964.
10. Udono H, Srivastava PK. Heat shock protein 70-associated peptides
elicit specific cancer immunity. The Journal of experimental
medicine . 1993;178(4):1391-1396.
11. Asea A, Kraeft S-K, Kurt-Jones EA, et al. HSP70 stimulates cytokine
production through a CD14-dependant pathway, demonstrating its dual role
as a chaperone and cytokine. Nature medicine . 2000;6(4):435-442.
12. Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R.
Heat shock protein 72 on tumor cells: a recognition structure for
natural killer cells. The Journal of Immunology .
1997;158(9):4341-4350.
13. Yang L, Shen M, Xu LJ, et al. Enhancing NK cell-mediated
cytotoxicity to cisplatin-resistant lung cancer cells via MEK/Erk
signaling inhibition. Scientific reports . 2017;7(1):1-13.
14. Niu C, Li M, Zhu S, et al. PD-1-positive Natural Killer Cells have a
weaker antitumor function than that of PD-1-negative Natural Killer
Cells in Lung Cancer. International Journal of Medical Sciences .
2020;17(13):1964.
15. Ewen C, Kane K, Bleackley R. A quarter century of granzymes.Cell Death & Differentiation . 2012;19(1):28-35.
16. Chung YM, Khan PP, Wang H, et al. Sensitizing tumors to anti-PD-1
therapy by promoting NK and CD8+ T cells via pharmacological activation
of FOXO3. Journal for immunotherapy of cancer . 2021;9(12)
17. Ambrose AR, Hazime KS, Worboys JD, Niembro-Vivanco O, Davis DM.
Synaptic secretion from human natural killer cells is diverse and
includes supramolecular attack particles. Proceedings of the
National Academy of Sciences . 2020;117(38):23717-23720.
18. Zhu Y, Huang B, Shi J. Fas ligand and lytic granule differentially
control cytotoxic dynamics of natural killer cell against cancer target.Oncotarget . 2016;7(30):47163.
19. Ali AK, Nandagopal N, Lee S-H. IL-15–PI3K–AKT–mTOR: a critical
pathway in the life journey of natural killer cells. Frontiers in
immunology . 2015;6:355.
20. Ruiz-Garcia R, Vargas-Hernandez A, Chinn IK, et al. Mutations in
PI3K110D Cause Impaired NK Cell Function Partially Rescued by Rapamycin
Treatment. SPRINGER/PLENUM PUBLISHERS 233 SPRING ST, NEW YORK, NY 10013
USA; 2017:S4-S4.
21. Curiel TJ, Wei S, Dong H, et al. Blockade of B7-H1 improves myeloid
dendritic cell–mediated antitumor immunity. Nature medicine .
2003;9(5):562-567.
22. McDermott DF, Atkins MB. PD‐1 as a potential target in cancer
therapy. Cancer medicine . 2013;2(5):662-673.
23. Clara JA, Childs RW. Harnessing natural killer cells for the
treatment of multiple myeloma. Elsevier; 2022:
24. Costa F, Marchica V, Storti P, Malavasi F, Giuliani N. PD-L1/PD-1
axis in multiple myeloma microenvironment and a possible link with
CD38-mediated immune-suppression. Cancers . 2021;13(2):164.
25. Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI, Sapozhnikov AM.
HSP70 multi-functionality in cancer. Cells . 2020;9(3):587.
26. Murphy ME. The HSP70 family and cancer. Carcinogenesis .
2013;34(6):1181-1188.
27. Reikvam H, Hatfield KJ, Ersvær E, et al. Expression profile of heat
shock proteins in acute myeloid leukaemia patients reveals a distinct
signature strongly associated with FLT3 mutation status–consequences
and potentials for pharmacological intervention. British journal
of haematology . 2012;156(4):468-480.
28. Ryningen A, Ersvær E, Øyan AM, et al. Stress-induced in vitro
apoptosis of native human acute myelogenous leukemia (AML) cells shows a
wide variation between patients and is associated with low BCL-2: Bax
ratio and low levels of heat shock protein 70 and 90. Leukemia
research . 2006;30(12):1531-1540.
29. Chant ID, Rose PE, Morris AG. Susceptibility of AML cells to in
vitro apoptosis correlates with heat shock protein 70 (hsp70)
expression. British journal of haematology . 1996;93(4):898-902.
30. Lobinger D, Gempt J, Sievert W, et al. Potential role of Hsp70 and
activated NK cells for prediction of prognosis in glioblastoma patients.Frontiers in Molecular Biosciences . 2021;8:669366.
31. Elsner L, Flügge PF, Lozano J, et al. The endogenous danger signals
HSP70 and MICA cooperate in the activation of cytotoxic effector
functions of NK cells. Journal of cellular and molecular
medicine . 2010;14(4):992-1002.
32. Rakova J, Truxova I, Holicek P, et al. TIM-3 levels correlate with
enhanced NK cell cytotoxicity and improved clinical outcome in AML
patients. Oncoimmunology . 2021;10(1):1889822.
33. Liu Y, Cheng Y, Xu Y, et al. Increased expression of programmed cell
death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor
function and indicates poor prognosis in digestive cancers.Oncogene . 2017;36(44):6143-6153.
34. Backström E, Kristensson K, Ljunggren HG. Activation of natural
killer cells: underlying molecular mechanisms revealed.Scandinavian Journal of Immunology . 2004;60(1‐2):14-22.
35. Moynagh PN. IL-15 in autoimmunity and cancer: O-tu-b or not O-tu-b?Nature Immunology . 2019;20(7):780-782.
36. Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to
human disease. Blood, The Journal of the American Society of
Hematology . 2001;97(1):14-32.
37. Hurkmans DP, Basak EA, Schepers N, et al. Granzyme B is correlated
with clinical outcome after PD-1 blockade in patients with stage IV
non-small-cell lung cancer. Journal for immunotherapy of cancer .
2020;8(1)
38. Bai R, Cui J. Burgeoning Exploration of the Role of Natural Killer
Cells in Anti-PD-1/PD-L1 Therapy. Frontiers in Immunology .
2022:2253.
39. Calvo T, Reina-Ortiz C, Giraldos D, et al. Expanded and activated
allogeneic NK cells are cytotoxic against B-chronic lymphocytic leukemia
(B-CLL) cells with sporadic cases of resistance. Scientific
reports . 2020;10(1):1-14.
40. Davis Z, Felices M, Lenvik T, et al. Low-density PD-1 expression on
resting human natural killer cells is functional and upregulated after
transplantation. Blood advances . 2021;5(4):1069-1080.
41. Shevtsov M, Pitkin E, Ischenko A, et al. Ex vivo Hsp70-activated NK
cells in combination with PD-1 inhibition significantly increase overall
survival in preclinical models of glioblastoma and lung cancer.Frontiers in Immunology . 2019;10:454.
42. Zeng Y, Lv X, Du J. Natural killer cell‑based immunotherapy for lung
cancer: Challenges and perspectives. Oncology Reports .
2021;46(5):1-14.
43. Thomas X, Campos L, Le Q-H, Guyotat D. Heat shock proteins and acute
leukemias. Hematology . 2005;10(3):225-235.
44. Reikvam H, Nepstad I, Sulen A, Gjertsen BT, Hatfield KJ, Bruserud Ø.
Increased antileukemic effects in human acute myeloid leukemia by
combining HSP70 and HSP90 inhibitors. Expert opinion on
investigational drugs . 2013;22(5):551-563.