REFERENCES
1. Warren CM, Jiang J, Gupta RS. Epidemiology and burden of food
allergy. Curr Allergy Asthma Rep . 2020;20(2):6.
doi:10.1007/s11882-020-0898-7
2. Gupta RS, Warren CM, Smith BM, et al. The public health impact of
parent-reported childhood food allergies in the United States.Pediatrics . 2018;142(6):e20181235. doi:10.1542/peds.2018-1235
3. Gupta RS, Warren CM, Smith BM, et al. Prevalence and severity of food
allergies among US adults. JAMA Netw Open . 2019;2(1):e185630.
doi:10.1001/jamanetworkopen.2018.5630
4. Turner PJ, Arasi S, Ballmer-Weber B, et al. Risk factors for severe
reactions in food allergy: Rapid evidence review with meta-analysis.Allergy . 2022;00:1-19. doi:10.1111/all.15318
5. Ramsay DB, Stephen S, Borum M, et al. Mast cells in gastrointestinal
disease. Gastroenterol Hepatol (N Y) . 2010;6(12):772-777.
6. Valenta R, Hochwallner H, Linhart B, Pahr S. Food allergies: the
basics. Gastroenterology . 2015;148(6):1120-1131.e4.
doi:10.1053/j.gastro.2015.02.006
7. Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential
release and the secretory pathways involved. Front Immunol .
2014;5:569. doi:10.3389/fimmu.2014.00569
8. Barbara G, Stanghellini V, De Giorgio R, et al. Activated mast cells
in proximity to colonic nerves correlate with abdominal pain in
irritable bowel syndrome. Gastroenterology . 2004;126(3):693-702.
doi:10.1053/j.gastro.2003.11.055
9. Sander LE, Lorentz A, Sellge G, et al. Selective expression of
histamine receptors H1R, H2R, and H4R, but not H3R, in the human
intestinal tract. Gut . 2006;55(4):498-504.
doi:10.1136/gut.2004.061762
10. Thangam EB, Jemima EA, Singh H, et al. The role of histamine and
histamine receptors in mast cell-mediated allergy and inflammation: the
hunt for new therapeutic targets. Front Immunol . 2018;9:1873.
doi:10.3389/fimmu.2018.01873
11. White M. The role of histamine in allergic diseases. J Allergy
Clin Immunol . 1990;86(4 Pt 2):599-605.
doi:10.1016/s0091-6749(05)80223-4
12. Sampson HA. Anaphylaxis and emergency treatment. Pediatrics .
2003;111(6 Pt 3):1601-1608.
13. Hung L, Obernolte H, Sewald K, Eiwegger T. Human ex vivo and in
vitro disease models to study food allergy. Asia Pac Allergy .
2019;9(1):e4. doi:10.5415/apallergy.2019.9.e4
14. Groothuis GMM, de Graaf IAM. Precision-cut intestinal slices as in
vitro tool for studies on drug metabolism. Curr Drug Metab .
2012;14(1):112-119. doi:10.2174/1389200211309010112
15. Li M, de Graaf IAM, Groothuis GMM. Precision-cut intestinal slices:
alternative model for drug transport, metabolism, and toxicology
research. Expert Opin Drug Metab Toxicol . 2016;12(2):175-190.
doi:10.1517/17425255.2016.1125882
16. Martinec O, Huliciak M, Staud F, Cecka F, Vokral I, Cerveny L.
Anti-HIV and anti-hepatitis C virus drugs inhibit P-glycoprotein efflux
activity in Caco-2 cells and precision-cut rat and human intestinal
slices. Antimicrob Agents Chemother . 2019;63(11):e00910-19.
doi:10.1128/AAC.00910-19
17. Li M, Vokral I, Evers B, de Graaf IAM, de Jager MH, Groothuis GMM.
Human and rat precision-cut intestinal slices as ex vivo models to study
bile acid uptake by the apical sodium-dependent bile acid transporter.Eur J Pharm Sci . 2018;121:65-73. doi:10.1016/j.ejps.2018.05.005
18. Krimmling T, Beineke A, Schwegmann-Weßels C. Infection of porcine
precision cut intestinal slices by transmissible gastroenteritis
coronavirus demonstrates the importance of the spike protein for
enterotropism of different virus strains. Vet Microbiol .
2017;205:1-5. doi:10.1016/j.vetmic.2017.04.029
19. Pham BT, van Haaften WT, Oosterhuis D, Nieken J, de Graaf IAM,
Olinga P. Precision-cut rat, mouse, and human intestinal slices as novel
models for the early-onset of intestinal fibrosis. Physiol Rep .
2015;3(4):e12323. doi:10.14814/phy2.12323
20. Martinec O, Biel C, de Graaf IAM, et al. Rifampicin induces gene,
protein, and activity of p-glycoprotein (ABCB1) in human precision-cut
intestinal slices. Front Pharmacol . 2021;12:684156.
doi:10.3389/fphar.2021.684156
21. Huličiak M, Vokřál I, Holas O, Martinec O, Štaud F, Červený L.
Evaluation of the potency of anti-HIV and anti-HCV drugs to inhibit
p-glycoprotein mediated efflux of digoxin in caco-2 cell line and human
precision-cut intestinal slices. Pharm . 2022;15(2):242.
doi:10.3390/ph15020242
22. de Graaf IAM, Olinga P, de Jager MH, et al. Preparation and
incubation of precision-cut liver and intestinal slices for application
in drug metabolism and toxicity studies. Nat Protoc .
2010;5(9):1540-1551. doi:10.1038/nprot.2010.111
23. R Core Team. R: A Language and Environment for Statistical
Computing. 2022. https://www.r-project.org/.
24. Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of
multimodal single-cell data. Cell . 2021;184(13):3573-3587.e29.
doi:10.1016/j.cell.2021.04.048
25. Franzén O, Gan L-M, Björkegren JLM. PanglaoDB: a web server for
exploration of mouse and human single-cell RNA sequencing data.Database . 2019;2019:baz046. doi:10.1093/database/baz046
26. Karlsson M, Zhang C, Méar L, et al. A single–cell type
transcriptomics map of human tissues. Sci Adv .
2022;7(31):eabh2169. doi:10.1126/sciadv.abh2169
27. Duan L, Celik A, Hoang JA, et al. Basophil activation test shows
high accuracy in the diagnosis of peanut and tree nut allergy: the
markers of nut allergy study. Allergy . 2021;76(6):1800-1812.
doi:10.1111/all.14695
28. Bradski G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools.
https://www.drdobbs.com/open-source/the-opencv-library/184404319.
Published 2000.
29. van der Walt S, Schönberger JL, Nunez-Iglesias J, et al.
scikit-image: image processing in Python. PeerJ . 2014;2:e453.
doi:10.7717/peerj.453
30. Zivkovic Z, Van Der Heijden F. Efficient adaptive density estimation
per image pixel for the task of background subtraction. Pattern
Recognit Lett . 2006;27(7):773-780. doi:10.1016/j.patrec.2005.11.005
31. Zivkovic Z. Improved adaptive gaussian mixture model for background
subtraction. In: Proceedings of the Pattern Recognition, 17th
International Conference on (ICPR’04) Volume 2 - Volume 02 . IEEE
Computer Society; 2004:28-31.
32. Orzechowski RF, Currie DS, Valancius CA. Comparative anticholinergic
activities of 10 histamine H1 receptor antagonists in two functional
models. Eur J Pharmacol . 2005;506(3):257-264.
doi:10.1016/j.ejphar.2004.11.006
33. Bilčiková Ĺ, Mátyás Š, Bauer V. Effect of stobadine and histamine H1
and H2 blockers on histamine–induced contraction of guinea pig airways
in vitro. Respiration . 1990;57(2):104-108. doi:10.1159/000195829
34. Jinquan T, Michael Reimert C, Deleuran B, Zachariae C, Simonsen C,
Thestrup-Pedersen K. Cetirizine inhibits the in vitro and ex vivo
chemotactic response of T lymphocytes and monocytes. J Allergy
Clin Immunol . 1995;95(5 Pt 1):979-986.
doi:10.1016/s0091-6749(95)70098-6
35. Queralt M, Brazís P, Merlos M, de Mora F, Puigdemont A. In vitro
inhibitory effect of rupatadine on histamine and TNF-α release from
dispersed canine skin mast cells and the human mast cell line HMC-1.Inflamm Res . 2000;49(7):355-360. doi:10.1007/PL00000216
36. James KR, Gomes T, Elmentaite R, et al. Distinct microbial and
immune niches of the human colon. Nat Immunol .
2020;21(3):343-353. doi:10.1038/s41590-020-0602-z
37. Wang Y, Song W, Wang J, et al. Single-cell transcriptome analysis
reveals differential nutrient absorption functions in human intestine.J Exp Med . 2019;217(2):e20191130. doi:10.1084/jem.20191130
38. Majorova D, Atkins E, Martineau H, et al. Use of precision-cut
tissue slices as a translational model to study host-pathogen
interaction. Front Vet Sci . 2021;8:686088.
doi:10.3389/fvets.2021.686088
39. Biel C, Martinec O, Sibering B, et al. Extending the viability of
human precision-cut intestinal slice model for drug metabolism studies.Arch Toxicol . 2022;96(6):1815-1827.
doi:10.1007/s00204-022-03295-1
40. Vighi G, Marcucci F, Sensi L, Di Cara G, Frati F. Allergy and the
gastrointestinal system. Clin Exp Immunol . 2008;153(SUPPL.
1):3-6. doi:10.1111/j.1365-2249.2008.03713.x
41. Scott RB, Gall DG, Maric M. Mediation of food protein-induced
jejunal smooth muscle contraction in sensitized rats. Am J
Physiol . 1990;259(1 Pt 1):G6-G14. doi:10.1152/ajpgi.1990.259.1.G6
42. Valeur J, Lappalainen J, Rita H, et al. Food allergy alters jejunal
circular muscle contractility and induces local inflammatory cytokine
expression in a mouse model. BMC Gastroenterol . 2009;9:33.
doi:10.1186/1471-230X-9-33
43. Tollackson KA, Frick OL. Response of human smooth muscle in
Schultz-Dale experiments. J Allergy . 1966;37(4):195-203.
doi:10.1016/0021-8707(66)90114-6
44. Kendig DM, Grider JR. Serotonin and colonic motility.Neurogastroenterol Motil . 2015;27(7):899-905.
doi:10.1111/nmo.12617
45. Payne V, Kam PCA. Mast cell tryptase: a review of its physiology and
clinical significance. Anaesthesia . 2004;59(7):695-703.
doi:10.1111/j.1365-2044.2004.03757.x
46. Liu G, Betts C, Cunoosamy DM, et al. Use of precision cut lung
slices as a translational model for the study of lung biology.Respir Res . 2019;20(1):162. doi:10.1186/s12931-019-1131-x
47. Wohlsen A, Martin C, Vollmer E, et al. The early allergic response
in small airways of human precision-cut lung slices. Eur Respir
J . 2003;21(6):1024-1032. doi:10.1183/09031936.03.00027502
48. Delgado SJ, Dehmel S, Twisterling E, et al. Disruptive anti-IgE
inhibitors prevent mast cell-dependent early airway response in viable
atopic lung tissue. J Allergy Clin Immunol .
2020;145(2):719-722.e1. doi:10.1016/j.jaci.2019.11.002
49. Nolte H, Kruse A, Skov PS, Schiøtz PO. Passive sensitization of
human intestinal mast cells. Agents Actions . 1989;27(1-2):93-96.
doi:10.1007/BF02222208
50. Tunon de Lara JM, Okayama Y, Savineau JP, Marthan R. IgE-induced
passive sensitization of human isolated bronchi and lung mast cells.Eur Respir J . 1995;8(11):1861-1865.
doi:10.1183/09031936.95.08111861
51. Conroy MC, Adkinson N F Jr., Lichtenstein LM. Passive sensitization
of human basophils: evidence for heterogeneity in the IgE molecule.Int Arch Allergy Immunol . 1979;60(1):106-109.
doi:10.1159/000232329
52. McHale N, Hollywood M, Sergeant G, Thornbury K. Origin of
spontaneous rhythmicity in smooth muscle. J Physiol .
2006;570(1):23-28. doi:10.1113/jphysiol.2005.098376
53. He S-H, Xie H, He Y-S. Induction of tryptase and histamine release
from human colon mast cells by IgE dependent or independent mechanisms.World J Gastroenterol . 2004;10(3):319-322.
doi:10.3748/wjg.v10.i3.319
54. Merlos M, Giral M, Ferrando R, et al. Rupatadine, a new potent,
orally active dual antagonist of histamine and platelet-activating
factor (PAF). J Pharmacol Exp Ther . 1997;280(1):114-121.
55. Liu SC, Chu YH, Kao CH, Wu CC, Wang HW. Steroids and antihistamines
synergize to inhibit rat’s airway smooth muscle contractility. Eur
Arch Otorhinolaryngol . 2015;272(6):1443-1449.
doi:10.1007/s00405-014-3240-y
56. Barshow SM, Kulis MD, Burks AW, Kim EH. Mechanisms of oral
immunotherapy. Clin Exp Allergy . 2021;51(4):527-535.
doi:10.1111/cea.13824
57. Kulis MD, Patil SU, Wambre E, Vickery BP. Immune mechanisms of oral
immunotherapy. J Allergy Clin Immunol . 2018;141(2):491-498.
doi:10.1016/j.jaci.2017.12.979