Reference
Adams, H. D., Zeppel, M. J. B., Anderegg, W. R. L., Hartmann, H., Landhäusser, S. M., Tissue, D. T., Huxman, T. E., Hudson, P. J., Franz, T. E., Allen, C. D., Anderegg, L. D. L., Barron-Gafford, G. A., Beerling, D. J., Breshears, D. D., Brodribb, T. J., Bugmann, H., Cobb, R. C., Collins, A. D., Dickman, L. T., … McDowell, N. G. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution , 1 (9), 1285–1291. https://doi.org/10.1038/s41559-017-0248-x
Ahmed, S., Nawata, E., Hosokawa, M., Domae, Y., & Sakuratani, T. (2002). Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Science ,163 (1), 117–123. https://doi.org/10.1016/S0168-9452(02)00080-8
Allen, L. H., Valle, R. R., Mishoe, J. W., & Jones, J. W. (1994). Soybean Leaf Gas‐Exchange Responses to Carbon Dioxide and Water Stress.Agronomy Journal , 86 (4), 625–636. https://doi.org/10.2134/agronj1994.00021962008600040009x
Armstrong, W. (1980). Aeration in Higher Plants (pp. 225–332). https://doi.org/10.1016/S0065-2296(08)60089-0
Armstrong, W. (1971). Radial Oxygen Losses from Intact Rice Roots as Affected by Distance from the Apex, Respiration and Waterlogging.Physiologia Plantarum , 25 (2), 192–197. https://doi.org/10.1111/j.1399-3054.1971.tb01427.x
Armstrong, W., & Armstrong, J. (2014). Plant internal oxygen transport (Diffusion and convection) and measuring and modelling oxygen gradients. In Plant Cell Monographs (Vol. 21, pp. 267–297). https://doi.org/10.1007/978-3-7091-1254-0_14
Aroca, R., Porcel, R., & Ruiz-Lozano, J. M. (2012). Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany , 63 (1), 43–57. https://doi.org/10.1093/jxb/err266
Bailey-Serres, J., & Voesenek, L. A. C. J. (2008). Flooding stress: Acclimations and genetic diversity. Annual Review of Plant Biology , 59 , 313–339. https://doi.org/10.1146/annurev.arplant.59.032607.092752
Bailey-Serres, Julia, Fukao, T., Gibbs, D. J., Holdsworth, M. J., Lee, S. C., Licausi, F., Perata, P., Voesenek, L. A. C. J., & van Dongen, J. T. (2012). Making sense of low oxygen sensing. Trends in Plant Science , 17 (3), 129–138. https://doi.org/10.1016/j.tplants.2011.12.004
Bashar, K. K., Tareq, M. Z., Amin, M. R., Honi, U., Ul-Arif, M. T., Sadat, M. A., & Mosaddeque Hossen, Q. M. (2019). Phytohormone-mediated stomatal response, escape and quiescence strategies in plants under flooding stress. Agronomy , 9 (2), 1–13. https://doi.org/10.3390/agronomy9020043
Bates, L. M., & Hall, A. E. (1981). Stomatal closure with soil water depletion not associated with changes in Bulk leaf water status.Oecologia , 50 (1), 62–65. https://doi.org/10.1007/BF00378794
Bonan, G. (2019). Climate Change and Terrestrial Ecosystem Modeling. InClimate Change and Terrestrial Ecosystem Modeling . Cambridge University Press. https://doi.org/10.1017/9781107339217
Bonan, G. B., Williams, M., Fisher, R. A., & Oleson, K. W. (2014). Modeling stomatal conductance in the earth system: Linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum. Geoscientific Model Development , 7 (5), 2193–2222. https://doi.org/10.5194/gmd-7-2193-2014
Bradford, K. J., & Hsiao, T. C. (1982). Stomatal Behavior and Water Relations of Waterlogged Tomato Plants. Plant Physiology ,70 (5), 1508–1513. https://doi.org/10.1104/pp.70.5.1508
Brailsford, R. W., Voesenek, L. A. C. J., Blom, C. W. P. M., Smith, A. R., Hall, M. A., & Jackson, M. B. (1993). Enhanced ethylene production by primary roots of Zea mays L. in response to sub-ambient partial pressures of oxygen. Plant, Cell and Environment , 16 (9), 1071–1080. https://doi.org/10.1111/j.1365-3040.1996.tb02064.x
Brown, K. W., Jordan, W. R., & Thomas, J. C. (1976). Water Stress Induced Alterations of the Stomatal Response to Decreases in Leaf Water Potential. Physiologia Plantarum , 37 (1), 1–5. https://doi.org/10.1111/j.1399-3054.1976.tb01863.x
Colmer, T. D., Armstrong, W., Greenway, H., Ismail, A. M., Kirk, G. J. D., & Atwell, B. J. (2014). Physiological Mechanisms of Flooding Tolerance in Rice: Transient Complete Submergence and Prolonged Standing Water (pp. 255–307). https://doi.org/10.1007/978-3-642-38797-5_9
Colmer, T. D., & Pedersen, O. (2008). Oxygen dynamics in submerged rice (Oryza sativa). New Phytologist , 178 (2), 326–334. https://doi.org/10.1111/j.1469-8137.2007.02364.x
Coupel-Ledru, A., Tyerman, S. D., Masclef, D., Lebon, E., Christophe, A., Edwards, E. J., & Simonneau, T. (2017). Abscisic Acid Down-Regulates Hydraulic Conductance of Grapevine Leaves in Isohydric Genotypes Only. Plant Physiology , 175 (3), 1121–1134. https://doi.org/10.1104/pp.17.00698
Das, K. K., Sarkar, R. K., & Ismail, A. M. (2005). Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Science , 168 (1), 131–136. https://doi.org/10.1016/j.plantsci.2004.07.023
Ehrler, W. L., Idso, S. B., Jackson, R. D., & Reginato, R. J. (1978). Wheat Canopy Temperature: Relation to Plant Water Potential 1.Agronomy Journal , 70 (2), 251–256. https://doi.org/10.2134/agronj1978.00021962007000020010x
Elfing, D. C., Kaufmann, M. R., & Hall, A. E. (1972). Interpreting Leaf Water Potential Measurements with a Model of the Soil-Plant-Atmosphere Continuum. Physiologia Plantarum , 27 (2), 161–168. https://doi.org/10.1111/j.1399-3054.1972.tb03594.x
Farquhar, G. D., Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta , 149 (1), 78-90–90. http://dx.doi.org/10.1007/BF00386231
Feddes, R. A. (1982). Simulation of Field Water Use and Crop Yield. InSimulation of plant growth and crop production (pp. 194–209). Pudoc.
Finkelstein, R. (2013). Abscisic Acid Synthesis and Response. The Arabidopsis Book , 11 , e0166. https://doi.org/10.1199/tab.0166
Fisher, R. A., & Koven, C. D. (2020). Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems. Journal of Advances in Modeling Earth Systems , 12 (4). https://doi.org/10.1029/2018MS001453
Fukao, T., Xu, K., Ronald, P. C., & Bailey-Serres, J. (2006). A Variable Cluster of Ethylene Response Factor–Like Genes Regulates Metabolic and Developmental Acclimation Responses to Submergence in Rice. The Plant Cell , 18 (8), 2021–2034. https://doi.org/10.1105/tpc.106.043000
Geigenberger, P. (2003). Response of plant metabolism to too little oxygen. Current Opinion in Plant Biology , 6 (3), 247–256. https://doi.org/10.1016/S1369-5266(03)00038-4
Guan, L., Tayengwa, R., Cheng, Z. (Max), Peer, W. A., Murphy, A. S., & Zhao, M. (2019). Auxin regulates adventitious root formation in tomato cuttings. BMC Plant Biology , 19 (1), 435. https://doi.org/10.1186/s12870-019-2002-9
Harrison, S. P., Cramer, W., Franklin, O., Prentice, I. C., Wang, H., Brännström, Å., de Boer, H., Dieckmann, U., Joshi, J., Keenan, T. F., Lavergne, A., Manzoni, S., Mengoli, G., Morfopoulos, C., Peñuelas, J., Pietsch, S., Rebel, K. T., Ryu, Y., Smith, N. G., … Wright, I. J. (2021). Eco-evolutionary optimality as a means to improve vegetation and land-surface models. New Phytologist , 231 (6), 2125–2141. https://doi.org/10.1111/nph.17558
Hauser, F., Li, Z., Waadt, R., & Schroeder, J. I. (2017). SnapShot: Abscisic Acid Signaling. Cell , 171 (7), 1708-1708.e0. https://doi.org/10.1016/j.cell.2017.11.045
Havranek, W. M., & Benecke, U. (1978). The influence of soil moisture on water potential, transpiration and photosynthesis of conifer seedlings. Plant and Soil , 49 (1), 91–103. https://doi.org/10.1007/BF02149911
Henson, I., Jensen, C., & Turner, N. (1989). Leaf Gas Exchange and Water Relations of Lupins and Wheat. III. Abscisic Acid and Drought-Induced Stomatal Closure. Functional Plant Biology ,16 (5), 429. https://doi.org/10.1071/PP9890429
Ismail, A. M. (2018). Submergence tolerance in rice: resolving a pervasive quandary. New Phytologist , 218 (4), 1298–1300. https://doi.org/10.1111/nph.15188
Jackson, M. B. (1985). Ethylene and Responses of Plants to Soil Waterlogging and Submergence. Annual Review of Plant Physiology ,36 (1), 145–174. https://doi.org/10.1146/annurev.pp.36.060185.001045
Jackson, M. B., & Drew, M. C. (1984). Effects of Flooding on Growth and Metabolism of Herbaceous Plants. In Flooding and Plant Growth(pp. 47–128). Elsevier. https://doi.org/10.1016/B978-0-12-424120-6.50008-0
Kaldenhoff, R., Ribas-Carbo, M., Sans, J. F., Lovisolo, C., Heckwolf, M., & Uehlein, N. (2008). Aquaporins and plant water balance.Plant, Cell and Environment , 31 (5), 658–666. https://doi.org/10.1111/j.1365-3040.2008.01792.x
Kosmacz, M., & Weits, D. A. (2014). Oxygen Perception in Plants(pp. 3–17). https://doi.org/10.1007/978-3-7091-1254-0_1
Kozlowski, T. T. (1984). Flooding and Plant Growth . Elsevier. https://doi.org/10.1016/C2009-0-02985-7
Kuroha, T., & Ashikari, M. (2020). Molecular mechanisms and future improvement of submergence tolerance in rice. Molecular Breeding ,40 (4). https://doi.org/10.1007/s11032-020-01122-y
Li, H., Lu, X., Wei, Z., Zhu, S., We, N., Zhang, S., Yuan, H., Shangguan, W., Liu, S., Zhang, S., Huang, J., & Dai, Y. (2021). New representation of plant hydraulics improves the estimates of transpiration in land surface model. Forests , 12 (6). https://doi.org/10.3390/f12060722
Liu, Z., Cheng, R., Xiao, W., Guo, Q., & Wang, N. (2014). Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PLoS ONE , 9 (9). https://doi.org/10.1371/journal.pone.0107636
Manzoni, S., Vico, G., Katul, G., Palmroth, S., & Porporato, A. (2014). Optimal plant water-use strategies under stochastic rainfall.Water Resources Research , 50 (7), 5379–5394. https://doi.org/10.1002/2014WR015375
Martínez-Vilalta, J., & Garcia-Forner, N. (2017). Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell and Environment , 40 (6), 962–976. https://doi.org/10.1111/pce.12846
Mommer, L., Pons, T. L., Wolters-Arts, M., Venema, J. H., & Visser, E. J. W. (2005). Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiology ,139 (1), 497–508. https://doi.org/10.1104/pp.105.064725
Muhammad Arslan Ashraf. (2012). Waterlogging stress in plants: A review.African Journal of Agricultural Research , 7 (13). https://doi.org/10.5897/AJARX11.084
Nguyen, T. H., Langensiepen, M., Vanderborght, J., Hüging, H., Miltin Mboh, C., & Ewert, F. (2020). Comparison of root water uptake models in simulating CO2and H2O fluxes and growth of wheat. Hydrology and Earth System Sciences , 24 (10), 4943–4969. https://doi.org/10.5194/hess-24-4943-2020
Nicolás, E., Torrecillas, A., Dell’Amico, J., & Alarcón, J. J. (2005). The effect of short-term flooding on the sap flow, gas exchange and hydraulic conductivity of young apricot trees. Trees - Structure and Function , 19 (1), 51–57. https://doi.org/10.1007/s00468-004-0362-7
Pan, J., Sharif, R., Xu, X., & Chen, X. (2021). Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects.Frontiers in Plant Science , 11 . https://doi.org/10.3389/fpls.2020.627331
Parent, C., Capelli, N., Berger, A., Crèvecoeur, M., & Dat, J. F. (2008). An overview of plant responses to soil waterlogging. Plant Stress , 2 , 20–27.
Pedersen, O., & Colmer, T. D. (2014). Underwater photosynthesis and internal aeration of submerged terrestrial wetland plants. Plant Cell Monographs , 21 , 315–327. https://doi.org/10.1007/978-3-7091-1254-0_16
Peng, J., Li, Z., Wen, X., Li, W., Shi, H., Yang, L., Zhu, H., & Guo, H. (2014). Salt-Induced Stabilization of EIN3/EIL1 Confers Salinity Tolerance by Deterring ROS Accumulation in Arabidopsis. PLoS Genetics , 10 (10), e1004664. https://doi.org/10.1371/journal.pgen.1004664
Perata, P., & Voesenek, L. A. C. J. (2007). Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends in Plant Science , 12 (2), 43–46. https://doi.org/10.1016/j.tplants.2006.12.005
Pradhan, C., & Mohanty, M. (2013). Submergence stress: Responses and adaptations in crop plants. In Molecular Stress Physiology of Plants (pp. 331–357). Springer India. https://doi.org/10.1007/978-81-322-0807-5_14
Rock, C. D., & Sun, X. (2005). Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh.Planta , 222 (1), 98–106. https://doi.org/10.1007/s00425-005-1521-9
Rodrigues, M. A., Bianchetti, R. E., & Freschi, L. (2014). Shedding light on ethylene metabolism in higher plants. Frontiers in Plant Science , 5 (DEC), 1–16. https://doi.org/10.3389/fpls.2014.00665
Sairam, R. K., Kumutha, D., Ezhilmathi, K., Deshmukh, P. S., & Srivastava, G. C. (2008). Physiology and biochemistry of waterlogging tolerance in plants. Biologia Plantarum , 52 (3), 401–412. https://doi.org/10.1007/s10535-008-0084-6
Sasidharan, R., Hartman, S., Liu, Z., Martopawiro, S., Sajeev, N., Van Veen, H., Yeung, E., & Voesenek, L. A. C. J. (2018). Signal dynamics and interactions during flooding stress. Plant Physiology ,176 (2), 1106–1117. https://doi.org/10.1104/pp.17.01232
Sasidharan, R., & Voesenek, L. A. C. J. (2015). Ethylene-mediated acclimations to flooding stress. Plant Physiology , 169 (1), 3–12. https://doi.org/10.1104/pp.15.00387
Shiono, K., Takahashi, H., Colmer, T. D., & Nakazono, M. (2008). Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Science , 175 (1–2), 52–58. https://doi.org/10.1016/j.plantsci.2008.03.002
Steffens, B. (2014). The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Frontiers in Plant Science , 5 . https://doi.org/10.3389/fpls.2014.00685
Steffens, B., Geske, T., & Sauter, M. (2011). Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytologist ,190 (2), 369–378. https://doi.org/10.1111/j.1469-8137.2010.03496.x
Stünzi, J. T., & Kende, H. (1989). Gas Composition in the Internal Air Spaces of Deepwater Rice in Relation to Growth Induced by Submergence.Plant and Cell Physiology , 30 (1), 49–56. https://doi.org/10.1093/oxfordjournals.pcp.a077716
Tardieu, F. (1993). Will increases in our understanding of soil-root relations and root signalling substantially alter water flux models?Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences , 341 (1295), 57–66. https://doi.org/10.1098/rstb.1993.0091
Toral-Juárez, M. A., Avila, R. T., Cardoso, A. A., Brito, F. A. L., Machado, K. L. G., Almeida, W. L., Souza, R. P. B., Martins, S. C. V., & DaMatta, F. M. (2021). Drought-tolerant coffee plants display increased tolerance to waterlogging and post-waterlogging reoxygenation.Environmental and Experimental Botany , 182 , 104311. https://doi.org/10.1016/j.envexpbot.2020.104311
Törnroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U., Karlsson, M., Tajkhorshid, E., Neutze, R., & Kjellbom, P. (2006). Structural mechanism of plant aquaporin gating. Nature , 439 (7077), 688–694. https://doi.org/10.1038/nature04316
Trenberth, K. E. (2011). Changes in precipitation with climate change.Climate Research , 47 (1–2), 123–138. https://doi.org/10.3354/cr00953
Tyree, M. T. (2003). Plant hydraulics: The ascent of water.Nature , 423 (6943), 923–923. https://doi.org/10.1038/423923a
Van Der Weele, C. M., Canny, M. J., & McCully, M. E. (1996). Water in aerenchyma spaces in roots. A fast diffusion path for solutes.Plant and Soil , 184 (1), 131–141. https://doi.org/10.1007/BF00029283
Van Dongen, J. T., & Licausi, F. (2015). Oxygen sensing and signaling.Annual Review of Plant Biology , 66 , 345–367. https://doi.org/10.1146/annurev-arplant-043014-114813
Vanderstraeten, L., & van Der Straeten, D. (2017). Accumulation and transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: Current status, considerations for future research and agronomic applications. Frontiers in Plant Science , 8 (January), 1–18. https://doi.org/10.3389/fpls.2017.00038
Venturas, M. D., Sperry, J. S., & Hacke, U. G. (2017). Plant xylem hydraulics: What we understand, current research, and future challenges.Journal of Integrative Plant Biology , 59 (6), 356–389. https://doi.org/10.1111/jipb.12534
Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology , 16 (1), 1–10. https://doi.org/10.1186/s12870-016-0771-y
Visser, E. J. W., Voesenek, L. A. C. J., Vartapetian, B. B., & Jackson, M. B. (2003). Flooding and plant growth. Annals of Botany ,91 (SPEC. ISS. JAN.), 107–109. https://doi.org/10.1093/aob/mcg014
Voesenek, L. A.C.J., Colmer, T. D., Pierik, R., Millenaar, F. F., & Peeters, A. J. M. (2006). How plants cope with complete submergence.New Phytologist , 170 (2), 213–226. https://doi.org/10.1111/j.1469-8137.2006.01692.x
Voesenek, L. A.C.J., & Sasidharan, R. (2013). Ethylene - and oxygen signalling - drive plant survival during flooding. Plant Biology ,15 (3), 426–435. https://doi.org/10.1111/plb.12014
Voesenek, Laurentius A.C.J., & Bailey-Serres, J. (2015). Flood adaptive traits and processes: An overview. New Phytologist ,206 (1), 57–73. https://doi.org/10.1111/nph.13209
Voesenek, Laurentius A.C.J., Banga, M., Thier, R. H., Mudde, C. M., Harren, F. J. M., Barendse, G. W. M., & Blom, C. W. P. M. (1993). Submergence-induced ethylene synthesis, entrapment, and growth in two plant species with contrasting flooding resistances. Plant Physiology , 103 (3), 783–791. https://doi.org/10.1104/pp.103.3.783
Von Caemmerer, S. (2013). Steady-state models of photosynthesis.Plant, Cell and Environment , 36 (9), 1617–1630. https://doi.org/10.1111/pce.12098
Winkel, A., Colmer, T. D., Ismail, A. M., & Pedersen, O. (2013). Internal aeration of paddy field rice ( O ryza sativa ) during complete submergence – importance of light and floodwater O 2. New Phytologist , 197 (4), 1193–1203. https://doi.org/10.1111/nph.12048
Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A. M., Bailey-Serres, J., Ronald, P. C., & Mackill, D. J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature , 442 (7103), 705–708. https://doi.org/10.1038/nature04920
Yang, X., Li, Y., Ren, B., Ding, L., Gao, C., Shen, Q., & Guo, S. (2012). Drought-Induced Root Aerenchyma Formation Restricts Water Uptake in Rice Seedlings Supplied with Nitrate. Plant and Cell Physiology , 53 (3), 495–504. https://doi.org/10.1093/pcp/pcs003
Zhang, Y., Kilambi, H. V., Liu, J., Bar, H., Lazary, S., Egbaria, A., Ripper, D., Charrier, L., Belew, Z. M., Wulff, N., Damodaran, S., Nour-Eldin, H. H., Aharoni, A., Ragni, L., Strader, L., Sade, N., Weinstain, R., Geisler, M., & Shani, E. (2021). ABA homeostasis and long-distance translocation are redundantly regulated by ABCG ABA importers. Science Advances , 7 (43), 1–18. https://doi.org/10.1126/sciadv.abf6069