REFERENCES
[1] Lopatkin, A and Collins J. “Predictive Biology: Modelling, Understanding and Harnessing Microbial Complexity”. Nature Reviews Microbiology, 18, 9, 507-520 (2020).
[2] Des Marais, D., Hernandez K., and Juenger T. “Genotype-by-Environment Interaction and Plasticity: Exploring Genomic Responses of Plants to the Abiotic Environment” Annu. Rev. Ecol. Evol. Syst. (2013).
[3] Buckner, E., Madison, I., Chou, H., Matthiadis, A., Melvin C. Sozzani, R., Williams, C., Long, T. “Automated Imaging, Tracking, and Analytics Pipeline for Differentiating Environmental Effects on Root Meristematic Cell Division” Frontiers in Plant Science, 10, 1487 (2019).
[4] Lundberg, D., Lebeis, S., Paredes, S., Yourstone, S., Gehring, J., Malfatti S., Tremblay, J., Engelbrekston, A., Kunin, V., Del Rio, T., Edgar, R., Eickhorst, T., Ley, R., Hugenholtz, P., Tringe S., Dangle, J. “Defining the core Arabidopsis thaliana root microbiome” Nature, 488, 7409, 86-90 (2012).
[5] Legris, M., Klose, C., Burgie, E., Rojas C., Neme, M., Hiltbrunner A., Wigge P., Schafer, E., Vierstra, R., Casal, J. “Phytochrome B integrates light and temperature signals in Arabidopsis” Science, 6314, 897 (2016).
[6] Moore, C., Johnson, L., Livny , M., Broman, K., Spalding, E., “High-Throughput Computer Vision Introduces the Time Axis to a Quantitative Trait Map of a Plant Growth Response” Genetics (2013).
[7] Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J., Batchelor W., Xiong, L., Yan, J. “Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives” Molecular Plant, 13, 2, 187-214 (2020)
[8] Shendure J. and Ji H., “Next-generation DNA sequencing” Nature Biotechnology (2008).
[9] Jackson, S., Iwata, A., Lee, S., Schmutz, J., Shoemaker, R. “Sequencing crop genomes: approaches and applications.”, The New Phytologist, 191, 4, 915-925. (2011).
[10] Reynolds, D., Baret, F., Welcker, C., Bostrom, A., Ball, J., Cillini, F., Lorence, A., Chawade, A., Khafif, M., Noshita, K., Mueller-Linow, M., Zhou, J., Tardieu, F. “What is cost-efficient phenotyping? Optimizing costs for different scenarios”, The 4th International Plant Phenotyping Symposium, 282, 14-22 (2019).
[11] Le Marié, C., Kirchgessner, N., Marschall, D., Walter, A., Hund, A. “Rhizoslides: paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis”, Plant Methods, 10, 1, 13 (2014).
[12] Mathieu, L., Lobet, G., Tocquin, P., Périlleux, C., “’Rhizoponics’: a novel hydroponic rhizotron for root system analyses on mature Arabidopsis thaliana plants”, Plant Methods, 11, 1, 3 (2015).
[13] Flood, P., Kruijer, W., Schnabel, S., Jalink, H., Snel, J., Harbinson, J., Aarts, M., “Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability” Plant Methods, 12, 14 (2016).
[14] Awlia, M., Nigro, A., Fajkus, J., Schmoeckel, S., Negrão, S., Santelia, D., Trtílek, M., Tester, M., Julkowska, M., Panzarova, K., “High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana”, Frontiers in Plant Science, 7, 1414. (2016).
[15] van der Heijden, G., Song, Y., Horgan, G., Polder, G., Dieleman A., Bink, M., Palloix, A., van Eeuwijkm F., Glasbey, C. “SPICY: towards automated phenotyping of large pepper plants in the greenhouse”, Functional Plant Biology, 39, 11 (2012).
[16] Yang, W., Guo, Z., Duan, L., Chen, G., Jiang, N., Fang, W., Feng H., Xie, W., Lian, X., Wang, G., Luo, Q., Zhang, Q., Liu, Q., Xiong, L. “Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice” Nature Communications, 5, 1, 5087 (2014).
[17] Sadeghi-Tehran, P., and Sabermanesh K. “Automated Method to Determine Two Critical Growth Stages of Wheat: Heading and Flowering” Frontiers in Plant Science, 8, 252 (2017).
[18] Maes W., and Steppe K. “Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture”, Trends in Plant Science, 24, 2, 152-164 (2019).
[19] Billiau K., Sprenger, H., Schudoma, C., Walther, D., Kohl, K., “Data management pipeline for plant phenotyping in a multisite project”, Functional Plant Biology, 39, 11, 948-957 (2012).
[20] Tsaftaris, S., and Scharr H. “Sharing the Right Data Right: A Symbiosis with Machine Learning”, Trends in Plant Science, 24, 2, 99-102 (2019)
[21] Zhang, X., Zhang, D., Sun, W., and Wang, T. “The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis.” Int. J. Mol. Sci., 20, 2424 (2019).