REFERENCES
[1] Lopatkin, A and Collins J. “Predictive Biology: Modelling,
Understanding and Harnessing Microbial Complexity”. Nature Reviews
Microbiology, 18, 9, 507-520 (2020).
[2] Des Marais, D., Hernandez K., and Juenger T.
“Genotype-by-Environment Interaction and Plasticity: Exploring Genomic
Responses of Plants to the Abiotic Environment” Annu. Rev. Ecol. Evol.
Syst. (2013).
[3] Buckner, E., Madison, I., Chou, H., Matthiadis, A., Melvin C.
Sozzani, R., Williams, C., Long, T. “Automated Imaging, Tracking, and
Analytics Pipeline for Differentiating Environmental Effects on Root
Meristematic Cell Division” Frontiers in Plant Science, 10, 1487
(2019).
[4] Lundberg, D., Lebeis, S., Paredes, S., Yourstone, S., Gehring,
J., Malfatti S., Tremblay, J., Engelbrekston, A., Kunin, V., Del Rio,
T., Edgar, R., Eickhorst, T., Ley, R., Hugenholtz, P., Tringe S.,
Dangle, J. “Defining the core Arabidopsis thaliana root microbiome”
Nature, 488, 7409, 86-90 (2012).
[5] Legris, M., Klose, C., Burgie, E., Rojas C., Neme, M.,
Hiltbrunner A., Wigge P., Schafer, E., Vierstra, R., Casal, J.
“Phytochrome B integrates light and temperature signals in
Arabidopsis” Science, 6314, 897 (2016).
[6] Moore, C., Johnson, L., Livny , M., Broman, K., Spalding, E.,
“High-Throughput Computer Vision Introduces the Time Axis to a
Quantitative Trait Map of a Plant Growth Response” Genetics (2013).
[7] Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J., Batchelor
W., Xiong, L., Yan, J. “Crop Phenomics and High-Throughput Phenotyping:
Past Decades, Current Challenges, and Future Perspectives” Molecular
Plant, 13, 2, 187-214 (2020)
[8] Shendure J. and Ji H., “Next-generation DNA sequencing” Nature
Biotechnology (2008).
[9] Jackson, S., Iwata, A., Lee, S., Schmutz, J., Shoemaker, R.
“Sequencing crop genomes: approaches and applications.”, The New
Phytologist, 191, 4, 915-925. (2011).
[10] Reynolds, D., Baret, F., Welcker, C., Bostrom, A., Ball, J.,
Cillini, F., Lorence, A., Chawade, A., Khafif, M., Noshita, K.,
Mueller-Linow, M., Zhou, J., Tardieu, F. “What is cost-efficient
phenotyping? Optimizing costs for different scenarios”, The 4th
International Plant Phenotyping Symposium, 282, 14-22 (2019).
[11] Le Marié, C., Kirchgessner, N., Marschall, D., Walter, A.,
Hund, A. “Rhizoslides: paper-based growth system for non-destructive,
high throughput phenotyping of root development by means of image
analysis”, Plant Methods, 10, 1, 13 (2014).
[12] Mathieu, L., Lobet, G., Tocquin, P., Périlleux, C.,
“’Rhizoponics’: a novel hydroponic rhizotron for root system analyses
on mature Arabidopsis thaliana plants”, Plant Methods, 11, 1, 3 (2015).
[13] Flood, P., Kruijer, W., Schnabel, S., Jalink, H., Snel, J.,
Harbinson, J., Aarts, M., “Phenomics for photosynthesis, growth and
reflectance in Arabidopsis thaliana reveals circadian and long-term
fluctuations in heritability” Plant Methods, 12, 14 (2016).
[14] Awlia, M., Nigro, A., Fajkus, J., Schmoeckel, S., Negrão, S.,
Santelia, D., Trtílek, M., Tester, M., Julkowska, M., Panzarova, K.,
“High-Throughput Non-destructive Phenotyping of Traits that Contribute
to Salinity Tolerance in Arabidopsis thaliana”, Frontiers in Plant
Science, 7, 1414. (2016).
[15] van der Heijden, G., Song, Y., Horgan, G., Polder, G., Dieleman
A., Bink, M., Palloix, A., van Eeuwijkm F., Glasbey, C. “SPICY: towards
automated phenotyping of large pepper plants in the greenhouse”,
Functional Plant Biology, 39, 11 (2012).
[16] Yang, W., Guo, Z., Duan, L., Chen, G., Jiang, N., Fang, W.,
Feng H., Xie, W., Lian, X., Wang, G., Luo, Q., Zhang, Q., Liu, Q.,
Xiong, L. “Combining high-throughput phenotyping and genome-wide
association studies to reveal natural genetic variation in rice” Nature
Communications, 5, 1, 5087 (2014).
[17] Sadeghi-Tehran, P., and Sabermanesh K. “Automated Method to
Determine Two Critical Growth Stages of Wheat: Heading and Flowering”
Frontiers in Plant Science, 8, 252 (2017).
[18] Maes W., and Steppe K. “Perspectives for Remote Sensing with
Unmanned Aerial Vehicles in Precision Agriculture”, Trends in Plant
Science, 24, 2, 152-164 (2019).
[19] Billiau K., Sprenger, H., Schudoma, C., Walther, D., Kohl, K.,
“Data management pipeline for plant phenotyping in a multisite
project”, Functional Plant Biology, 39, 11, 948-957 (2012).
[20] Tsaftaris, S., and Scharr H. “Sharing the Right Data Right: A
Symbiosis with Machine Learning”, Trends in Plant Science, 24, 2,
99-102 (2019)
[21] Zhang, X., Zhang, D., Sun, W., and Wang, T. “The Adaptive
Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and
Homeostasis.” Int. J. Mol. Sci., 20, 2424 (2019).