Literature cited
Adriaensen F. 1988. An analysis of recoveries of robins (Erithacus
rubecula ) ringed or recovered in Belgium: winter distributions.Le Gerfaut 781: 25–42.
Aldhebiani AY. 2018. Species concept and speciation. Saudi Journal
of Biological Sciences 25: 437–440. doi:
10.1016/j.sjbs.2017.04.013
Andreàndzky G. 1959. Contributions à la connaissance de la flore de
l’Oligocène inférieur de la Hongrie et un essai sur la reconstruction de
la flore contemporaine. Acta Botanica Academiae Scientarum
Hungaricae 5: 1–37.
Asiedu R, Sartie A. 2010. Crops that feed the world 1. Yams. Food
Security 2: 305–315.
Bogarín D, Pérez-Escobar OA, Groenenberg D, et al., 2018.
Anchored hybrid enrichment generated nuclear, plastid and mitochondrial
markers resolve the Lepanthes horrida (Orchidaceae:
Pleurothallidinae) species complex. Molecular Phylogenetics and
Evolution 129: 27–47. doi:
10.1016/j.ympev.2018.07.014
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30: 2114–2120. doi:
10.1093/bioinformatics/btu170
Braconnot P, Otto-Bliesner B, Harrison S, et al. 2007. Results of
PMIP2 coupled simulations of the Mid-Holocene and last glacial maximum -
Part 1: experiments and large-scale features. Climate of the Past3: 261–277. doi:
10.5194/cp-3-261-2007
Brewer GE, Clarkson JJ, Maurin O, et al. 2019. Factors Affecting
Targeted Sequencing of 353 Nuclear Genes From Herbarium Specimens
Spanning the Diversity of Angiosperms. Frontiers in Plant Science10: 1102. doi:
10.3389/fpls.2019.01102
Burfield I, van Bommel F. 2004. Birds in Europe: population estimates,
trends and conservation status: 12 (BirdLife Conservation Series).
Cambridge, GB: BirdLife International.
Caddick LR, Wilkin P, Rudall PJ, Hedderson TAJ, Chase MW. 2002b. Yams
reclassified: a recircumscription of Dioscoreaceae and Dioscoreales.Taxon 51: 103–114. doi:
doi.org/10.2307/1554967
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool
for automated alignment trimming in large-scale phylogenetic analyses.Bioinformatics 25: 1972–1973. doi:
10.1093/bioinformatics/btp348
Carstens BC, Satler JD. 2013. The carnivorous plant described asSarracenia alata contains two cryptic species. Biological
Journal of the Linnean Society 109: 737–746.
10.1111/bij.12093
Catalán P, Segarra-Moragues JG, Palop-Esteban M, Moreno C,
Gonzalez-Candelas F. 2006. A Bayesian approach for discriminating among
alternative inheritance hypotheses in plant polyploids: the
allotetraploid origin of genus Borderea (Dioscoreaceae).Genetics 172: 1939-1953.
Chiscano JLP. 1983. La ornitocoria en la vegetación de Extremadura.Studia Botanica 2: 155–168.
Clement M, Snell Q, Walker P, Posada D, Crandall K. 2002. TCS:
estimating gene genealogies. 16th International Parallel and
Distributed Processing Symposium (IPDPS 2002 ), 15–19 April
2002, Fort Lauderdale, FL, USA, CD-ROM/Abstracts Proceedings.
Criscuolo NG, Angelini C. 2020. StructuRly: a novel shiny app to produce
comprehensive, detailed and interactive plots for population genetic
analysis. PLoS One 15: e0229330. doi:
10.1371/journal.pone.0229330
Davis PH. (ed.) 1984. Flora of Turkey and the East Aegean
Islands , vol. 8. Edinburgh: Edinburgh University Press, pp. 552–554.
De Luca V, Salim V, Atsumi SM, Yu F. 2012. Mining the biodiversity of
plants: a revolution in the making. Science 336: 1658–1661. doi:
10.1126/science.1217410
De Queiroz K. 2007. Species concepts and species delimitation.Systematic Biology 56: 879–886. doi:
10.1080/10635150701701083
Doyle J, Doyle JL. 1987. Genomic plant DNA preparation from fresh
tissue-CTAB method. Phytochemical Bulletin 19: 11–15.
Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by
sampling trees. BMC Evolutionary Biology 7: 1–8. doi:
10.1186/1471-2148-7-214
Earl DA, vonHoldt BM. 2011. STRUCTURE HARVESTER: a website and program
for visualizing STRUCTURE output and implementing the Evanno method.Conservation Genetic Resources 4: 359–361. doi:
10.1007/s12686-011-9548-7
Escudero M, Nieto Feliner G, Pokorny L, Spalink D, Viruel J. 2020.
Phylogenomic approaches to deal with particularly challenging plant
lineages. Frontiers in Plant Science 11: 591762. doi:
10.3389/fpls.2020.591762
Fay MF, Gargiulo R, Viruel J. 2019. The present and future for
population genetics, species boundaries, biogeography and conservation.Botanical Journal of the Linnean Society 191: 299–304. doi:
10.1093/botlinnean/boz076
Ferrer-Gallego PP, Boisset F. 2016. Typification of Dioscorea
communis and its synonym Tamus communis var. subtriloba(Dioscoreaceae). Phytotaxa 260(3): 258–266.
Florencio M, Patiño J, Nogué S, et al . 2021. Macaronesia as a
Fruitful Arena for Ecology, Evolution, and Conservation Biology.Frontiers in Ecology and Evolution 9: 718169. doi:
10.3389/fevo.2021.718169
Frajman B, Záveská E, Gamisch A, Moser T, The STEPPE Consortium,
Schönswetter P. 2019. Integrating phylogenomics, phylogenetics,
morphometrics, relative genome size and ecological niche modelling
disentangles the diversification of Eurasian Euphorbiaseguieriana s.l. (Euphorbiaceae). Molecular Phylogenetics
and Evolution 134: 238–252. doi:
10.1016/j.ympev.2018.10.046
García MB, Espadaler X, Olesen JM. 2012. Extreme reproduction and
survival of a true cliffhanger: the endangered plant Borderea
chouardii (Dioscoreaceae). PLoS One 7: e44657. doi:
10.1371/journal.pone.0044657
Gent PR, Danabasoglu G, Donner LJ, et al. 2011. The community
climate system model version 4. Journal of Climate 24:
4973–4991. doi:
10.1175/2011JCLI4083.1
Goñi Martínez D, Guzmán Otano D. 2011. Borderea chouardii .The IUCN Red List of Threatened Specie s 2011: e.T162110A5540643.
Haider N. 2018. A Brief Review on Plant Taxonomy and its Components.Journal of Plant Science Research 34: 275–290. doi:
10.32381/JPSR.2018.34.02.17
Hampe A, Arroyo J, Jordano P, Petit RJ. 2003. Rangewide phylogeography
of a bird-dispersed Eurasian shrub: contrasting Mediterranean and
temperate glacial refugia. Molecular Ecology 12: 3415–3426. doi:
10.1046/j.1365-294X.2003.02006.x
Hassemer G, Bruun-Lund S, Shipunov AB, et al . 2019. The
application of high-throughput sequencing for taxonomy: the case ofPlantago subg. Plantago (Plantaginaceae). Molecular
Phylogenetics and Evolution 138: 156–173. doi:
10.1016/j.ympev.2019.05.013
Hasumi H, Emori S. 2004. K-1 coupled model (MIROC) description
(K-1 Technical Report 1) . Tokyo: Center for Climate System Research,
University of Tokyo.
Herrera CM. 1984. A study of avian frugivores, bird-dispersed plants,
and their interaction in Mediterranean scrublands. Ecological
Monographs 54: 2–23. doi:
10.2307/1942454
Hsu KM, Tsai JL, Chen MY, Ku HM, Liu SC. 2013. Molecular phylogeny ofDioscorea (Dioscoreaceae) in East and Southeast Asia.Blumea: Journal of Plant Taxonomy and Plant Geography 58: 21–27.
doi:
10.3767/000651913X669022
Hua W, Kong W, Cao X, et al. 2017. Transcriptome analysis ofDioscorea zingiberensis identifies genes involved in diosgenin
biosynthesis. Genes & Genomics 39: 509–520. doi:
10.1007/s13258-017-0516-9
Jarvis CE. 2007. Order out of chaos . Linnaean plant names
and their types . London: Linnean Society of London with the Natural
History Museum, 1016 pp.
Johnson MG, Gardner EM, Liu Y, et al. 2016. HybPiper: Extracting
Coding Sequence and Introns for Phylogenetics from High-Throughput
Sequencing Reads Using Target Enrichment. Applications in Plant
Sciences 4: 1600016. doi:
10.3732/apps.1600016
Johnson MG, Pokorny L, Dodsworth S, et al. 2019. A Universal
Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any
Flowering Plant Designed Using k-Medoids Clustering. Systematic
Biology 68: 594–606. doi:
10.1093/sysbio/syy086
Kadereit G, Yaprak AE. 2008. Microcnemum coralloides(Chenopodiaceae-Salicornioideae): An example of intraspecific East-West
disjunctions in the Mediterranean region. Anales del Jardín Botánico de
Madrid 65: 415–426. doi:
10.3989/ajbm.2008.v65.i2.303
Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for
rapid multiple sequence alignment based on fast Fourier transform.
Nucleic Acids Research 30: 3059–3066. doi:
10.1093/nar/gkf436
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. 2019. RAxML-NG: a
fast, scalable and user-friendly tool for maximum likelihood
phylogenetic inference. Bioinformatics 35: 4453–4455. doi:
10.1093/bioinformatics/btz305
Leigh JW, Bryant D. 2015. POPART: full-feature software for haplotype
network construction. Methods in Ecology and Evolution 6:
1110–1116. doi:
10.1111/2041-210X.12410
Linnaeus C. 1753. Species plantarum vol. 1 . Stockholm: L.
Salvius.
Lumaret R, Mir C, Michaud H, Raynal V. 2002. Phylogeographical variation
of chloroplast DNA in holm oak (Quercus ilex L.). Molecular
Ecology 11: 2327–2336. doi:
10.1046/j.1365-294X.2002.01611.x
Maguilla E, Escudero M. 2016. Cryptic Species Due to Hybridization: A
Combined Approach to Describe a New Species (Carex : Cyperaceae).PLoS One 11: e0166949. doi:
10.1371/journal.pone.0166949
Martin FW, Degras L. 1978. Tropical yams and their potential. Part
6. Minor cultivated Dioscorea species. Washington, DC.: USDA,
Science and Education Administration.
Martínez GD, Otano GD. 2011. Borderea chouardii . The IUCN Red
List of Threatened Species 2011: e.T162110A5540643.
Maurin O, Muasya, AM, Catalán P, et al. 2016. Diversification
into novel habitats in the Africa clade of Dioscorea(Dioscoreaceae): erect habit and elephant’s foot tubers. BMC
Evolutionary Biology 16: 1–17. doi:
10.1186/s12862-016-0812-z
Mayr E. 1942. Systematic and the origin of species . New York:
Columbia University Press.
Médail F, Quézel P. 1997. Hot-Spots Analysis for Conservation of Plant
Biodiversity in the Mediterranean. Annals of the Missouri
Botanical Garden 84: 112–127. doi:
10.2307/2399957
Médail F, Diadema K. 2009. Glacial refugia influence plant diversity
patterns in the Mediterranean Basin. Journal of Biogeography 36:
1333–1345.
Mitchell N, Campbell LG, Ahern JR, et al . 2019. Correlates of
hybridization in plants. Evolution Letters 3: 570–585. doi:
https://doi.org/10.1002/evl3.146
Moreno-Aguilar MF, Arnelas I, Sánchez-Rodríguez A, Viruel J, Catalán P.
2020. Museomics Unveil the Phylogeny and Biogeography of the Neglected
Juan Fernandez Archipelago Megalachne and PodophorusEndemic Grasses and Their Connection With Relict Pampean-Ventanian
fescues. Frontiers in Plant Science 11: 819. doi:
10.3389/fpls.2020.00819
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast
and effective stochastic algorithm for estimating maximum likelihood
phylogenies. Molecular Biology and Evolution 32: 268–274. doi:
10.1093/molbev/msu300
Nieto Feliner G. 2014. Patterns and processes in plant phylogeography in
the Mediterranean Basin, a review. Perspectives in Plant Ecology,
Evolution and Systematics 16: 265–278. doi:
10.1016/j.ppees.2014.07.002
Otto-Bliesner ABL, Marshall SJ, Overpeck JT, et al. 2006.
Simulating Arctic Climate Warmth and Icefield Retreat in the Last
Interglaciation. Science 311: 1751–1753. doi:
10.1126/science.1120808
POWO. 2022. Plants of the world online . Richmond, UK: Royal
Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/
Price EJ, Wilkin P, Sarasan V, Frase PD. 2016. Metabolite profiling ofDioscorea (yam) species reveals underutilised biodiversity and
renewable sources for high-value compounds. Scientific Reports 6:
29136. doi: 10.1038/srep29136
Pritchard JK, Stephens M, Donnelly P. 2000. Inference of Population
Structure Using Multilocus Genotype Data. Genetics 155: 945–959.
doi:
10.1093/genetics/155.2.945
R Core Team. 2022. R: a language and environment for statistical
computing . Vienna: R Foundation for Statistical Computing.
https://www.R-project.org/
Sanmartín I, Van der Mark P, Ronquist F. 2008. Inferring dispersal: a
Bayesian approach to phylogeny-based island biogeography, with special
reference to the Canary Islands. Journal of Biogeography 35:
428–449. doi:
10.1111/j.1365-2699.2008.01885.x
Schneider C, Rasband W, Eliceiri K. 2012. ImageJ. Fundamentals of
Digital Imaging in Medicine 9: 185–188. doi:
10.1007/978-1-84882-087-6_9
Segarra JG, Catalán P. 2005. Borderea Miègeville in Aedo C. and A.
Herrero (eds.). Flora Iberica 21: 11–14. Real Jardín Botánico de
Madrid, CSIC.
Segarra-Moragues JG, Catalán P. 2008. Glacial survival, phylogeography,
and a comparison of microsatellite evolution models for explaining
population structure in two species of dwarf yams (Borderea ,
Dioscoreaceae) endemic to the central Pyrenees. Plant Ecology and
Diversity 1: 229–243.
Šmarda P. 2008. DNA ploidy level variability of some fescues
(Festuca subg. Festuca , Poaceae) from Central and Southern
Europe measured in fresh plants and herbarium specimens. Biologia63: 349–367. doi:
10.2478/s11756-008-0052-9
Smith SA, O’Meara BC. 2012. TreePL: Divergence time estimation using
penalized likelihood for large phylogenies. Bioinformatics 28:
2689–2690. doi:
10.1093/bioinformatics/bts492
Soltis DE, Albert VA, Leebens-Mack J, et al. 2009. Polyploidy and
angiosperm diversification. American Journal of Botany 96:
336–348. doi:
10.3732/ajb.0800079
Soto Gomez M, Pokorny L, Kantar, MB, et al. 2019. A customized
nuclear target enrichment approach for developing a phylogenomic
baseline for Dioscorea yams (Dioscoreaceae). Applications
in Plant Sciences 7: 1–13. doi:
10.1002/aps3.11254
Suc J‐P, Popescu S‐M, Fauquette S, et al . 2018. Reconstruction of
Mediterranean flora, vegetation and climate for the last 23 million
years based on an extensive pollen dataset. Ecologia Mediterranea44: 53–85. doi: 10.3406/ecmed.2018.2044
Swofford DL. 2002. PAUP*. Phylogenetic analysis using parsimony
(*and other methods). Version 4.0b10. Sunderland; Sinauer Associates.
Thompson JD. 2021. Plant evolution in the Mediterranean: insights
for conservation (2nd edn). Oxford: Oxford University Press. doi:
10.1093/oso/9780198835141.001.0001
Urtubey E, Baeza CM, López-Sepúlveda P, et al. 2018. Systematics
of Hypochaeris section Phanoderis (Asteraceae,
Cichorieae). Systematic Botany Monographs 106: 1–204.
Villaverde T, Pokorny L, Olsson S, et al. 2018. Bridging the
micro‐ and macroevolutionary levels in phylogenomics: Hyb‐Seq solves
relationships from populations to species and above. New
Phytologist 220: 36–650. doi:
10.1111/nph.15312
Viruel J, Segarra‐Moragues JG, Pérez‐Collazos E, et al . 2008. The
diploid nature of the Chilean Epipetrum and a new base number in
the Dioscoreaceae, New Zealand Journal of Botany 46: 327–339.
Viruel J, Segarra-Moragues JG, Pérez-Collazos E, et al. 2010.
Systematic revision of the Epipetrum group of Dioscorea(Dioscoreaceae) endemic to Chile. Systematic Botany 35: 40–63.
doi:
10.1600/036364410790862579
Viruel J, Segarra-Moragues JG, Raz L, et al. 2016. Late
Cretaceous-Early Eocene origin of yams (Dioscorea , Dioscoreaceae)
in the Laurasian Palaearctic and their subsequent Oligocene-Miocene
diversification. Journal of Biogeography 43: 750–762. doi:
10.1111/jbi.12678
Viruel, J., Conejero, M., Hidalgo, O., et al. 2019. A target
capture-based method to estimate ploidy from herbarium specimens.Frontiers in Plant Science 10: 937. doi:
10.3389/fpls.2019.00937
Viruel J, Forest F, Paun O, et al. 2018. A nuclear Xdh
phylogenetic analysis of yams (Dioscorea : Dioscoreaceae)
congruent with plastid trees reveals a new Neotropical lineage.Botanical Journal of the Linnean Society 187: 232–246.
https://doi.org/10.1093/botlinnean/boy013
Viruel J, Le Galliot N, Pironon S, et al. 2020. A strong
east–west Mediterranean divergence supports a new phylogeographic
history of the carob tree (Ceratonia siliqua , Leguminosae) and
multiple domestications from native populations. Journal of
Biogeography 47: 460–471. doi:
10.1111/jbi.13726
Viruel J, Kantar MB, Gargiulo R, et al. 2021. Crop wild
phylorelatives (CWPs): phylogenetic distance, cytogenetic compatibility
and breeding system data enable estimation of crop wild relative gene
pool classification. Botanical Journal of the Linnean Society195: 1–33. doi:
10.1093/botlinnean/boaa064
Volis S, Fogel K, Tu T, Sun H, Zaretsky M. 2018. Evolutionary history
and biogeography of Mandragora L. (Solanaceae). Molecular
Phylogenetics and Evolution 129: 85–95. doi:
10.1016/j.ympev.2018.08.015
Waltari E, Hijmans RJ, Peterson AT, et al . 2007. Locating
Pleistocene refugia: comparing phylogeographic and ecological niche
model predictions. PLoS One 2: e563. doi:
10.1371/journal.pone.0000563
Warren DL, Glor RE, Turelli M. 2008. Environmental niche equivalency
versus conservatism: quantitative approaches to niche evolution.Evolution 62: 2868–2883. doi:
10.1111/j.1558-5646.2008.00482.x
Warren DL, Glor RE, Turelli M. 2010. ENMTools: a toolbox for comparative
studies of environmental niche models. Ecography 33: 607–611.
doi:
10.1111/j.1600-0587.2009.06142.x
Weiß CL, Pais M, Cano LM, Kamoun S, Burbano HA. 2018. nQuire: a
statistical framework for ploidy estimation using next generation
sequencing. BMC Bioinformatics 19: 122. doi:
10.1186/s12859-018-2128-z
Wendel JF, Lisch D, Hu G, Mason AS. 2018. The long and short of doubling
down: polyploidy, epigenetics, and the temporal dynamics of genome
fractionation. Current Opinion in Genetics & Development 49:
1–7. doi:
10.1016/j.gde.2018.01.004
Wilkin P, Schols P, Chase MW, et al. 2005. A plastid gene
phylogeny of the yam genus, Dioscorea : Roots, Fruits and
Madagascar. Systematic Botany 30: 736–749. doi:
10.1600/036364405775097879
Wood TE, Takebayashi N, Barker MS, et al . 2009. The frequency of
polyploid speciation in vascular plants. Proceedings of the
National Academy of Sciences of the U.S.A. 106: 13875–13879. doi:
10.1073/pnas.0811575106
Yang L, Kong H, Huang JP, Kang M. 2019. Different species or genetically
divergent populations? Integrative species delimitation of thePrimulina hochiensis complex from isolated karst habitats.Molecular Phylogenetics and Evolution 132: 219–231.
10.1016/j.ympev.2018.12.011
Zhan SH, Drori M, Goldberg EE, et al . 2016. Phylogenetic evidence
for cladogenetic polyploidization in land plants. American Journal
of Botany 103: 1252–1258. doi:
10.3732/ajb.1600108
Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: Polynomial
time species tree reconstruction from partially resolved gene trees.BMC Bioinformatics 19: 15–30. doi:
10.1186/s12859-018-2129-y
Figure 1. Phylogenomic trees reconstructed using the
concatenated nuclear (left) and plastid data (right) obtained using
Hyb-Seq for 76 samples of the Tamus clade of Dioscorea . Samples
included are representative of its distribution range across the
Mediterranean region. Filled circles represent branches with support
values over 90%, while lower values are shown on branches. Colours
represent the main clades found in the nuclear tree, see Results
(D. orientalis violet, DC1 blue, DC2 green, DC3 red), and roman
numbers identifying the subclades in D. communis in the plastid
tree (I, II, III; subclades within each clade were indicated with
lowercase letters a and b). Dashed lines connect the same samples in the
nuclear and plastid trees.
Figure 2. Admixture proportions for K = 3 genetic groups
obtained from genetic structure analysis of nuclear data of
Mediterranean Dioscorea communis samples through ten replicates
in STRUCTURE (see text for details). Each sample is shown by a vertical
bar partitioned according to its membership to one of the Kclusters, represented in red, green and blue. The samples follow the
same order as in the nuclear phylogenetic tree (Figure 1) and organized
by clades (DC2 and DC3). The plastid clades (I, II and III, Figure 1)
were labelled next to the sample codes. An asterisk (*) was used to
represent the only sample of D. communis (R32) that was resolved
as part of clade DC1 based on nuclear data, and in a different clade
with plastid data (see Figure 1).
Figure 3. Environmental niche models (ENM) constructed using a
current climate envelop and occurrence data for the samples of the Tamus
clade of Dioscorea analysed in this study. ENMs were estimated
for each of the four lineages identified in the Tamus clade with
background maps adjusted to reflect their estimated potential
distributions: DC3 clade of D. communis ; DC2 clade of D.
communis ; the Macaronesian DC1 lineage of D. communis ; andD. orientalis . A 10% threshold cropping was applied for each
distribution range model (see Results). The legend represents the
prediction of probability of occurrence.
Figure 4. Principal Component Analysis (PCA) conducted with 19
bioclimatic variables for samples of the Tamus clade of Dioscoreaacross the Mediterranean region separated into the four main lineages
(see Results): Macaronesian DC1 clade of D. communis in light
blue; D. communis clade DC2 in green; D. communis DC3
clade in red; and D. orientalis in purple.
Figure 5. Phylogenetic tree reconstructed using the
concatenated nuclear data obtained using Hyb-Seq for 76 samples of the
Tamus clade of Dioscorea . Morphological, ploidy and geographic
distribution trait variation is represented with circles for each
sample. Leaf: filled circle, trilobed; empty circle, cordate; ploidy
level: filled circle, allelic ratio >2 (estimated as
polyploid); empty circle, allelic ratio <2 (estimated as
diploid; see Results); geographic distribution: filled circle, W and C
Mediterranean; empty circle, E Mediterranean; inflorescence: filled
circle, sessile solitary; empty circle, pedunculated fascicule.
Figure 6. Geographic distribution of the 76 samples of the
Tamus clade of Dioscorea coded according to their respective
lineage in the phylogenetic tree based on concatenated nuclear data
(Figure 1), D. cretica (DC2) in green, and subclade; and pink,
orange, and red for western European, central Mediterranean and eastern
Mediterranean clades in D. communis s.s. (DC3), respectively. ForD. orientalis , in purple, codes in the map indicate their
phylogenetic position named “Leb” (Lebanon) and “S23”. For D.
edulis (DC1), in light blue, codes in the map indicate their
phylogenetic position named “Mad” (Madeira), “Ten” (Tenerife) and
“GC” (Gran Canaria). Roman numbers in the mapped dot samples represent
their respective plastid tree lineage (Figure 1). Asterisks indicate
cultivated samples in Botanic Gardens of unknown geographic origin.