References
Alirol, E., Getaz, L., Stoll, B., Chappuis, F. & Loutan, L. (2011). Urbanisation and infectious diseases in a globalised world. Lancet Infect. Dis., 11, 131–141.
Allan, B.F., Keesing, F. & Ostfeld, R.S. (2003). Effect of Forest Fragmentation on Lyme Disease Risk. Conserv. Biol., 17, 267–272.
Allen, T., Murray, K.A., Zambrana-Torrelio, C., Morse, S.S., Rondinini, C., Di Marco, M., et al. (2017). Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun., 8, 1–10.
Avgar, T., Potts, J.R., Lewis, M. & Boyce, M. (2016). Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods Ecol. Evol., 7, 619–630.
Band, L., Cadenasso, M.L., Grimmond, C.S., Grove, J.M. & Pickett, S.T. (2005). Heterogeneity in urban ecosystems: patterns and process. In: Ecosystem Function in Heterogenous Landscapes (eds. Lovett, G., Turner, M., Jones, C. & Weathers, K.). Springer, New York City, NY, pp. 257–278.
Barbour, A.G. & Fish, D. (1993). The biological and social phenomenon of Lyme disease. Science, 260, 1610–1616.
Becker, D.J., Streicker, D.G. & Altizer, S. (2015). Linking anthropogenic resources to wildlife-pathogen dynamics: A review and meta-analysis. Ecol. Lett., 18, 483–495. Berger-Tal, O. & Saltz, D. (2019).
Invisible barriers: Anthropogenic impacts on inter- and intra-specific interactions as drivers of landscape-independent fragmentation. Philos. Trans. R. Soc. B Biol. Sci., 374, 20180049.
Bolzoni, L., Rosà, R., Cagnacci, F., & Rizzoli, A. (2012). Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: Population and infection models. Int. J. Parasitol., 42, 373–381.
Burnham, K.P. & Anderson, D.R. (2002). Model selection and multimodel inference: a practical information-theoretic approach.Springer, New York City, NY.
Cagnacci, F., Bolzoni, L., Rosà, R., Carpi, G., Hauffe, H.C., Valent, M., et al. (2012). Effects of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. I: Empirical assessment. Int. J. Parasitol., 42, 365–372.
Calabrese, J.M., Fleming, C.H. & Gurarie, E. (2016). ctmm: An R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol., 7, 1124–1132.
Calenge, C. (2006). The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell., 197, 516–519.
Calenge, C., Fortmann-Roe, S., (2013). adehabitatHR: home range estimation, R package version 0.4.
Carpi, G., Cagnacci, F., Neteler, M. & Rizzoli, A. (2008). Tick infestation on roe deer in relation to geographic and remotely sensed climatic variables in a tick-borne encephalitis endemic area. Epidemiol. Infect., 136, 1416–1424.
Diuk-Wasser, M.A., Gatewood, A.G., Cortinas, M.R., Yaremych-Hamer, S., Tsao, J., Kitron, U., Hickling, G., et al. (2006). Spatiotemporal patterns of host-seeking Ixodes scapularis nymphs (Acari: Ixodidae) in the United States. J. Med. Entomol., 43, 166–176.
Diuk-Wasser, M.A., VanAcker, M.C. & Fernandez, M.P. (2021). Impact of land use changes and habitat fragmentation on the eco-epidemiology of tick-borne diseases. J. Med. Entomol., 58, 1546-1564.
Dougherty, E.R., Seidel, D.P., Carlson, C.J., Spiegel, O. & Getz, W.M. (2018). Going through the motions: incorporating movement analyses into disease research. Ecol. Lett., 21, 588–604.
Eskew, E.A. & Olival, K.J. (2018). De-urbanization and zoonotic disease risk. Ecohealth, 15, 707–712.
Estrada-Peña, A. (1998). Geostatistics and remote sensing as predictive tools of tick distribution: A cokriging system to estimate Ixodes scapularis (Acari: Ixodidae) habitat suitability in the United States and Canada from advanced very high resolution radiometer satellite imagery. J. Med. Entomol., 35, 989-995.
Etter, D.R., Hollis, K.M., Van Deelen, T.R., Ludwig, D.R., Chelsvig, J.E., Anchor, C.L., et al. (2002). Survival and movements of white-tailed deer in suburban Chicago, Illinois. J. Wildl. Manage., 66, 500–510.
Ezenwa, V.O., Archie, E.A, Craft, M.E., Hawley, D.M., Martin, L.B., Moore, J., et al. (2016). Host behaviour – parasite feedback: an essential link between animal behaviour and disease ecology. Proc. R. Soc. B, 283, 20153078.
Fofana, A.M. & Hurford, A. (2017). Mechanistic movement models to understand epidemic spread. Philos. Trans. R. Soc. B Biol. Sci., 372, 20160086.
Gaynor, K.M., Hojnowski, C.E., Carter, N.H. & Brashares, J.S. (2018). The influence of human disturbance on wildlife nocturnality.Science, 360, 1232–1235.
Gibb, R., Redding, D.W., Chin, K.Q., Donnelly, C.A., Blackburn, T.M., Newbold, T., et al. (2020). Zoonotic host diversity increases in human-dominated ecosystems. Nature, 584, 398–402.
Gregory, N., Fernandez, M.P. & Diuk-Wasser, M. (2022). Risk of tick-borne pathogen spillover into urban yards in New York City. Parasit. Vectors, 15, 1–14.
Grund, M.D., McAninch, J.B. & Wiggers, E.P. (2002). Seasonal movements and habitat use of female white-tailed deer associated with an urban park. J. Wildl. Manage., 66, 123-130.
Halsey, S.J., VanAcker, M.C., Harris, N.C., Lewis, K.R., Perez, L. & Smith, G.S. (2022). Public health implications of gentrification: tick-borne disease risks for communities of color. Front. Ecol. Environmen, 20, 1–8.
Hamer, S.A., Goldberg, T.L., Kitron, U.D., Brawn, J.D., Anderson, T.K., Loss, S.R., et al. (2012). Wild birds and urban ecology of ticks and tick-borne pathogens, Chicago, Illinois, USA, 2005-2010.Emerg. Infect. Dis., 18, 1589–1595.
Hansford, K.M., Fonville, M., Gillingham, E.L., Coipan, E.C., Pietzsch, M.E., Krawczyk, A.I., et al. (2017). Ticks and Borrelia in urban and peri-urban green space habitats in a city in southern England.Ticks Tick. Borne. Dis., 8, 353–361.
Hansford, K.M., McGinley, L., Wilkinson, S., Gillingham, E.L., Cull, B., Gandy, S., et al. (2021). Ixodes ricinus and Borrelia burgdorferi sensu lato in the Royal Parks of London, UK.Exp. Appl. Acarol., 84, 593–606. 
Hartemink, N., Vanwambeke, S.O., Purse, B. V., Gilbert, M. & Van Dyck, H. (2015). Towards a resource-based habitat approach for spatial modelling of vector-borne disease risks. Biol. Rev., 90, 1151–1162.
Hartfield, M., Jane White, K.A. & Kurtenbach, K. (2011). The role of deer in facilitating the spatial spread of the pathogen Borrelia burgdorferiTheor. Ecol., 4, 27–36.
Hassell, J.M., Begon, M., Ward, M.J. & Fèvre, E.M. (2017). Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol., 32, 55–67.
Heylen, D., Lasters, R., Adriaensen, F., Fonville, M., Sprong, H. & Matthysen, E. (2019). Ticks and tick-borne diseases in the city: Role of landscape connectivity and green space characteristics in a metropolitan area. Sci. Total Environ., 670, 941–949.
Johnson, D.H. (1980). The comparison of usage and availability measurements for evaluating resource preference, Ecology. 61, 65–71.
Kilpatrick, H.J. & Spohr, S.M. (2000). Movements of female white-tailed deer in a suburban landscape: a management perspective. Wildl. Soc. Bull., 28, 1038–1045.
Kugeler, K.J., Schwartz, A.M., Delorey, M.J., Mead, P.S. & Hinckley, A.F. (2021). Estimating the frequency of Lyme disease diagnoses, United States, 2010-2018. Emerg. Infect. Dis., 27, 616–619.
Langley, L.P., Bearhop, S., Burton, N.H.K., Banks, A.N., Frayling, T., Thaxter, C.B., et al. (2021). GPS tracking reveals landfill closures induce higher foraging effort and habitat switching in gulls.Mov. Ecol., 9, 1–13.
LoGiudice, K., Duerr, S.T.K., Newhouse, M.J., Schmidt, K.A., Killilea, M.E. & Ostfeld, R.S. (2008). Impact of host community composition on Lyme disease risk. Ecology, 89, 2841–2849.
Magle, S.B., Simoni, L.S., Lehrer, E.W. & Brown, J.S. (2014). Urban predator–prey association: coyote and deer distributions in the Chicago metropolitan area. Urban Ecosyst., 17, 875–891.
Manlove, K.R., Wilber, M.Q., White, L., Bastille-Rousseau, G., Yang, A., Gilbertson, M.L.J., et al. (2022). Defining an epidemiological landscape that connects movement ecology to pathogen transmission and pace-of-life. Ecol. Lett., 25, 1760–1782.
McGarigal, K., Wan, H.Y., Zeller, K.A., Timm, B.C. & Cushman, S.A. (2016). Multi-scale habitat selection modeling: a review and outlook. Landsc. Ecol., 31, 1161–1175.
Nagy-Reis, M.B., Lewis, M.A., Jensen, W.F. & Boyce, M.S. (2019). Conservation Reserve Program is a key element for managing white-tailed deer populations at multiple spatial scales. J. Environ. Manage., 248, 109299.
New York City Department of Health and Mental Hygiene (NYC DOHMH). (2020). Epiquery: NYC Interactive Health Data System - Communicable Disease Surveillance Data. Available at: https://a816-health.nyc.gov/hdi/epiquery/visualizations?PageType=ps&PopulationSource=CDSD. Last accessed 5 August 2022.
Nowak, D.J., Bodine, A.R., Hoehn, R.E., Ellis, A., Hirabayashi, S., Coville, R., et al. (2018). The urban forest of New York City. Resource Bulletin NRS-117. Newtown Square, PA: US Department of Agriculture, Forest Service, Northern Research Station, 1-82. NYC Parks Wildlife Unit. (2021). 
Managing Deer Impacts on Staten IslandWildl. NYC. Available at: https://storymaps.arcgis.com/stories/bffd49bd10b24b379a6c4d701c586230. Last accessed 1 June 2021.
Ogden, N.H., Ben Beard, C., Ginsberg, H.S. & Tsao, J.I. (2021). Possible Effects of Climate Change on Ixodid Ticks and the Pathogens They Transmit: Predictions and Observations. J. Med. Entomol., 58, 1536-1545.
Ogden, N.H., Bigras-Poulin, M., O’Callaghan, C.J., Barker, I.K., Kurtenbach, K., Lindsay, L.R., et al. (2007). Vector seasonality, host infection dynamics and fitness of pathogens transmitted by the tickIxodes scapularisParasitology, 134, 209–227.
Ossi, F., Ranc, N., Moorcroft, P., Bonanni, P. & Cagnacci, F. (2020). Ecological and behavioral drivers of supplemental feeding use by roe deer Capreolus capreolus in a peri-urban context. Animals, 10, 1–14.
Ostfeld, R.S., Levi, T., Keesing, F., Oggenfuss, K. & Canham, C.D. (2018). Tick-borne disease risk in a forest food web. Ecology, 99, 1562–1573.
Ranc, N., Moorcroft, P.R., Hansen, K.W., Ossi, F., Sforna, T., Ferraro, E., et al. (2020). Preference and familiarity mediate spatial responses of a large herbivore to experimental manipulation of resource availability. Sci. Rep., 10, 1–11.
Rand, P.W., Lubelczyk, C., Holman, M.S., Lacombe, E.H. & Smith, R.P. (2004). Abundance of Ixodes scapularis (Acari: Ixodidae) after the complete removal of deer from an isolated offshore island, endemic for Lyme disease. J. Med. Entomol., 41, 779–784.
Review, W.P. (2022). Staten Island Population 2022World Popul. Rev. Available at: https://worldpopulationreview.com. Last accessed 3 August 2022.
Richards, D.R. & Belcher, R.N. (2019). Global changes in urban vegetation cover. Remote Sens., 12, 23.
Rizzoli, A., Silaghi, C., Obiegala, A., Rudolf, I., Hubalek, Z., Foldvari, G., et al. (2014). Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front. Public Heal., 2, 1–26.
Schauber, E.M., Nielsen, C.K., Kjær, L.J., Anderson, C.W. & Storm, D.J. (2015). Social affiliation and contact patterns among white-tailed deer in disparate landscapes: Implications for disease transmission. J. Mammal., 96, 16–28.
Schwartz, A.M., Kugeler, K.J., Nelson, C.A., Marx, G.E. & Hinckley, A.F. (2021). Use of Commercial Claims Data for Evaluating Trends in Lyme Disease Diagnoses, United States, 2010-2018. Emerg. Infect. Dis., 27, 499–507.
Senft, R.L., Coughenour, M.B., Bailey, D.W., Rittenhouse, L.R., Sala, O.E. & Swift, D.M. (1987). Large Herbivore Foraging and Ecological Hierarchies. Bioscience, 37, 789–799.
Signer, J., Fieberg, J. & Avgar, T. (2017). Estimating utilization distributions from fitted step-selection functions. Ecosphere, 8, e01771.
Signer, J., Fieberg, J. & Avgar, T. (2019). Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol., 9, 880–890.
Simmons, A.E., Manges, A.B., Bharathan, T., Tepe, S.L., McBride, S.E., Dileonardo, M.Q., et al. (2020). Lyme disease risk of exposure to blacklegged ticks (Acari: Ixodidae) infected with Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) in Pittsburgh regional parks. J. Med. Entomol., 57, 273–280.
Sonenshine, D.E. (2018). Range expansion of tick disease vectors in North America: Implications for spread of tick-borne disease. Int. J. Environ. Res. Public Health, 15, 1–9.
Sormunen, J.J., Kulha, N., Klemola, T., Mäkelä, S., Vesilahti, E.M. & Vesterinen, E.J. (2020). Enhanced threat of tick-borne infections within cities? Assessing public health risks due to ticks in urban green spaces in Helsinki, Finland. Zoonoses Public Health, 67, 823–839.
Soucy, J.P.R., Slatculescu, A.M., Nyiraneza, C., Ogden, N.H., Leighton, P.A., Kerr, J.T., et al. (2018). High-resolution ecological niche modeling of Ixodes scapularis ticks based on passive surveillance data at the northern frontier of Lyme disease emergence in North America. Vector-Borne Zoonotic Dis., 18, 235–242.
Sumner, T., Orton, R.J., Green, D.M., Kao, R.R. & Gubbins, S. (2017). Quantifying the roles of host movement and vector dispersal in the transmission of vector-borne diseases of livestock. PLOS Comput. Biol., 13, 1–22.
Swihart, R.K., Picone, P.M., DeNicola, A.J. & Cornicelli, L. (1995). Ecology of urban and suburban white-tailed deer. In: Proceedings from the 55th Midwest Fish and Wildlife Conference. pp. 35–44.
Tardy, O., Bouchard, C., Chamberland, E., Fortin, A., Lamirande, P., Ogden, N.H., et al. (2021). Mechanistic movement models reveal ecological drivers of tick-borne pathogen spread. J. R. Soc. Interface, 18, 20210134.
Team, R.C. (2020). R: A language and environment for statistical computing.
Telford III, S.R., Mather, T.N., Moore, S.I., Wilson, M.L. & Spielman, A. (1988). Incompetence of Deer as Reservoirs of the Lyme Disease Spirochete. Am. J. Trop. Med. Hyg., 39, 105–109.
U.S. Geological Survey. (2019). National Land Cover Database (NLCD) 2016 Products (ver. 2.0, July 2020)U.S. Geol. Surv. data release, Available at: https://www.usgs.gov/products. Last accessed 1 September 2020.
United Nations, Department of Economic and Social Affairs, Population Division (2018). World Urbanization Prospects: The 2018 Revision.
Urbanek, R.E. & Nielsen, C.K. (2013). Influence of landscape factors on density of suburban white-tailed deer. Landsc. Urban Plan., 114, 28–36.
VanAcker, M.C., Little, E.A.H., Molaei, G., Bajwa, W.I. & Diuk-Wasser, M.A. (2019). Enhancement of risk for Lyme disease by landscape connectivity, New York, New York, USA. Emerg. Infect. Dis., 25, 1136–1143.
Wilkinson, D.A., Marshall, J.C., French, N.P. & Hayman, D.T.S. (2018). Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. J. R. Soc. Interface, 15, 20180403.
Yang, J., Huang, C., Zhang, Z. & Wang, L. (2014). The temporal trend of urban green coverage in major Chinese cities between 1990 and 2010.Urban For. Urban Green., 13, 19–27.