References
Alirol, E., Getaz, L., Stoll, B., Chappuis, F. & Loutan, L. (2011).
Urbanisation and infectious diseases in a globalised world. Lancet
Infect. Dis., 11, 131–141.
Allan, B.F., Keesing, F. & Ostfeld, R.S. (2003). Effect of Forest
Fragmentation on Lyme Disease Risk. Conserv. Biol., 17, 267–272.
Allen, T., Murray, K.A., Zambrana-Torrelio, C., Morse, S.S., Rondinini,
C., Di Marco, M., et al. (2017). Global hotspots and correlates
of emerging zoonotic diseases. Nat. Commun., 8, 1–10.
Avgar, T., Potts, J.R., Lewis, M. & Boyce, M. (2016). Integrated step
selection analysis: bridging the gap between resource selection and
animal movement. Methods Ecol. Evol., 7, 619–630.
Band, L., Cadenasso, M.L., Grimmond, C.S., Grove, J.M. & Pickett, S.T.
(2005). Heterogeneity in urban ecosystems: patterns and process. In: Ecosystem Function in Heterogenous Landscapes (eds. Lovett, G.,
Turner, M., Jones, C. & Weathers, K.). Springer, New York City, NY, pp.
257–278.
Barbour, A.G. & Fish, D. (1993). The biological and social phenomenon
of Lyme disease. Science, 260, 1610–1616.
Becker, D.J., Streicker, D.G. & Altizer, S. (2015). Linking
anthropogenic resources to wildlife-pathogen dynamics: A review and
meta-analysis. Ecol. Lett., 18, 483–495.
Berger-Tal, O. & Saltz, D. (2019).
Invisible barriers: Anthropogenic
impacts on inter- and intra-specific interactions as drivers of
landscape-independent fragmentation. Philos. Trans. R. Soc. B
Biol. Sci., 374, 20180049.
Bolzoni, L., Rosà, R., Cagnacci, F., & Rizzoli, A. (2012). Effect of
deer density on tick infestation of rodents and the hazard of tick-borne
encephalitis. II: Population and infection models. Int. J.
Parasitol., 42, 373–381.
Burnham, K.P. & Anderson, D.R. (2002). Model selection and
multimodel inference: a practical information-theoretic approach.Springer, New York City, NY.
Cagnacci, F., Bolzoni, L., Rosà, R., Carpi, G., Hauffe, H.C., Valent,
M., et al. (2012). Effects of deer density on tick infestation of
rodents and the hazard of tick-borne encephalitis. I: Empirical
assessment. Int. J. Parasitol., 42, 365–372.
Calabrese, J.M., Fleming, C.H. & Gurarie, E. (2016). ctmm: An R package
for analyzing animal relocation data as a continuous-time stochastic
process. Methods Ecol. Evol., 7, 1124–1132.
Calenge, C. (2006). The package “adehabitat” for the R software: A
tool for the analysis of space and habitat use by animals. Ecol.
Modell., 197, 516–519.
Calenge, C., Fortmann-Roe, S., (2013). adehabitatHR: home range
estimation, R package version 0.4.
Carpi, G., Cagnacci, F., Neteler, M. & Rizzoli, A. (2008). Tick
infestation on roe deer in relation to geographic and remotely sensed
climatic variables in a tick-borne encephalitis endemic area. Epidemiol. Infect., 136, 1416–1424.
Diuk-Wasser, M.A., Gatewood, A.G., Cortinas, M.R., Yaremych-Hamer, S.,
Tsao, J., Kitron, U., Hickling, G., et al. (2006). Spatiotemporal
patterns of host-seeking Ixodes scapularis nymphs (Acari:
Ixodidae) in the United States. J. Med. Entomol., 43, 166–176.
Diuk-Wasser, M.A., VanAcker, M.C. & Fernandez, M.P. (2021). Impact of
land use changes and habitat fragmentation on the eco-epidemiology of
tick-borne diseases. J. Med. Entomol., 58, 1546-1564.
Dougherty, E.R., Seidel, D.P., Carlson, C.J., Spiegel, O. & Getz, W.M.
(2018). Going through the motions: incorporating movement analyses into
disease research. Ecol. Lett., 21, 588–604.
Eskew, E.A. & Olival, K.J. (2018). De-urbanization and zoonotic disease
risk. Ecohealth, 15, 707–712.
Estrada-Peña, A. (1998). Geostatistics and remote sensing as predictive
tools of tick distribution: A cokriging system to estimate Ixodes
scapularis (Acari: Ixodidae) habitat suitability in the United States
and Canada from advanced very high resolution radiometer satellite
imagery. J. Med. Entomol., 35, 989-995.
Etter, D.R., Hollis, K.M., Van Deelen, T.R., Ludwig, D.R., Chelsvig,
J.E., Anchor, C.L., et al. (2002). Survival and movements of
white-tailed deer in suburban Chicago, Illinois. J. Wildl.
Manage., 66, 500–510.
Ezenwa, V.O., Archie, E.A, Craft, M.E., Hawley, D.M., Martin, L.B.,
Moore, J., et al. (2016). Host behaviour – parasite feedback: an
essential link between animal behaviour and disease ecology. Proc.
R. Soc. B, 283, 20153078.
Fofana, A.M. & Hurford, A. (2017). Mechanistic movement models to
understand epidemic spread. Philos. Trans. R. Soc. B Biol. Sci.,
372, 20160086.
Gaynor, K.M., Hojnowski, C.E., Carter, N.H. & Brashares, J.S. (2018).
The influence of human disturbance on wildlife nocturnality.Science, 360, 1232–1235.
Gibb, R., Redding, D.W., Chin, K.Q., Donnelly, C.A., Blackburn, T.M.,
Newbold, T., et al. (2020). Zoonotic host diversity increases in
human-dominated ecosystems. Nature, 584, 398–402.
Gregory, N., Fernandez, M.P. & Diuk-Wasser, M. (2022). Risk of
tick-borne pathogen spillover into urban yards in New York City. Parasit. Vectors, 15, 1–14.
Grund, M.D., McAninch, J.B. & Wiggers, E.P. (2002). Seasonal movements
and habitat use of female white-tailed deer associated with an urban
park. J. Wildl. Manage., 66, 123-130.
Halsey, S.J., VanAcker, M.C., Harris, N.C., Lewis, K.R., Perez, L. &
Smith, G.S. (2022). Public health implications of gentrification:
tick-borne disease risks for communities of color. Front. Ecol.
Environmen, 20, 1–8.
Hamer, S.A., Goldberg, T.L., Kitron, U.D., Brawn, J.D., Anderson, T.K.,
Loss, S.R., et al. (2012). Wild birds and urban ecology of ticks
and tick-borne pathogens, Chicago, Illinois, USA, 2005-2010.Emerg. Infect. Dis., 18, 1589–1595.
Hansford, K.M., Fonville, M., Gillingham, E.L., Coipan, E.C., Pietzsch,
M.E., Krawczyk, A.I., et al. (2017). Ticks and Borrelia in
urban and peri-urban green space habitats in a city in southern England.Ticks Tick. Borne. Dis., 8, 353–361.
Hansford, K.M., McGinley, L., Wilkinson, S., Gillingham, E.L., Cull, B.,
Gandy, S., et al. (2021). Ixodes ricinus and Borrelia burgdorferi sensu lato in the Royal Parks of London, UK.Exp. Appl. Acarol., 84, 593–606.
Hartemink, N., Vanwambeke, S.O., Purse, B. V., Gilbert, M. & Van Dyck,
H. (2015). Towards a resource-based habitat approach for spatial
modelling of vector-borne disease risks. Biol. Rev., 90,
1151–1162.
Hartfield, M., Jane White, K.A. & Kurtenbach, K. (2011). The role of
deer in facilitating the spatial spread of the pathogen Borrelia
burgdorferi. Theor. Ecol., 4, 27–36.
Hassell, J.M., Begon, M., Ward, M.J. & Fèvre, E.M. (2017). Urbanization
and disease emergence: dynamics at the wildlife–livestock–human
interface. Trends Ecol. Evol., 32, 55–67.
Heylen, D., Lasters, R., Adriaensen, F., Fonville, M., Sprong, H. &
Matthysen, E. (2019). Ticks and tick-borne diseases in the city: Role of
landscape connectivity and green space characteristics in a metropolitan
area. Sci. Total Environ., 670, 941–949.
Johnson, D.H. (1980). The comparison of usage and availability
measurements for evaluating resource preference, Ecology. 61,
65–71.
Kilpatrick, H.J. & Spohr, S.M. (2000). Movements of female white-tailed
deer in a suburban landscape: a management perspective. Wildl.
Soc. Bull., 28, 1038–1045.
Kugeler, K.J., Schwartz, A.M., Delorey, M.J., Mead, P.S. & Hinckley,
A.F. (2021). Estimating the frequency of Lyme disease diagnoses, United
States, 2010-2018. Emerg. Infect. Dis., 27, 616–619.
Langley, L.P., Bearhop, S., Burton, N.H.K., Banks, A.N., Frayling, T.,
Thaxter, C.B., et al. (2021). GPS tracking reveals landfill
closures induce higher foraging effort and habitat switching in gulls.Mov. Ecol., 9, 1–13.
LoGiudice, K., Duerr, S.T.K., Newhouse, M.J., Schmidt, K.A., Killilea,
M.E. & Ostfeld, R.S. (2008). Impact of host community composition on
Lyme disease risk. Ecology, 89, 2841–2849.
Magle, S.B., Simoni, L.S., Lehrer, E.W. & Brown, J.S. (2014). Urban
predator–prey association: coyote and deer distributions in the Chicago
metropolitan area. Urban Ecosyst., 17, 875–891.
Manlove, K.R., Wilber, M.Q., White, L., Bastille-Rousseau, G., Yang, A.,
Gilbertson, M.L.J., et al. (2022). Defining an epidemiological
landscape that connects movement ecology to pathogen transmission and
pace-of-life. Ecol. Lett., 25, 1760–1782.
McGarigal, K., Wan, H.Y., Zeller, K.A., Timm, B.C. & Cushman, S.A.
(2016). Multi-scale habitat selection modeling: a review and outlook. Landsc. Ecol., 31, 1161–1175.
Nagy-Reis, M.B., Lewis, M.A., Jensen, W.F. & Boyce, M.S. (2019).
Conservation Reserve Program is a key element for managing white-tailed
deer populations at multiple spatial scales. J. Environ. Manage.,
248, 109299.
Nowak, D.J., Bodine, A.R., Hoehn, R.E., Ellis, A., Hirabayashi, S.,
Coville, R., et al. (2018). The urban forest of New York
City. Resource Bulletin NRS-117. Newtown Square, PA: US
Department of Agriculture, Forest Service, Northern Research Station,
1-82.
NYC Parks Wildlife Unit. (2021).
Ogden, N.H., Ben Beard, C., Ginsberg, H.S. & Tsao, J.I. (2021).
Possible Effects of Climate Change on Ixodid Ticks and the Pathogens
They Transmit: Predictions and Observations. J. Med. Entomol.,
58, 1536-1545.
Ogden, N.H., Bigras-Poulin, M., O’Callaghan, C.J., Barker, I.K.,
Kurtenbach, K., Lindsay, L.R., et al. (2007). Vector seasonality,
host infection dynamics and fitness of pathogens transmitted by the tickIxodes scapularis. Parasitology, 134, 209–227.
Ossi, F., Ranc, N., Moorcroft, P., Bonanni, P. & Cagnacci, F. (2020).
Ecological and behavioral drivers of supplemental feeding use by roe
deer Capreolus capreolus in a peri-urban context. Animals, 10,
1–14.
Ostfeld, R.S., Levi, T., Keesing, F., Oggenfuss, K. & Canham, C.D.
(2018). Tick-borne disease risk in a forest food web. Ecology,
99, 1562–1573.
Ranc, N., Moorcroft, P.R., Hansen, K.W., Ossi, F., Sforna, T., Ferraro,
E., et al. (2020). Preference and familiarity mediate spatial
responses of a large herbivore to experimental manipulation of resource
availability. Sci. Rep., 10, 1–11.
Rand, P.W., Lubelczyk, C., Holman, M.S., Lacombe, E.H. & Smith, R.P.
(2004). Abundance of Ixodes scapularis (Acari: Ixodidae) after
the complete removal of deer from an isolated offshore island, endemic
for Lyme disease. J. Med. Entomol., 41, 779–784.
Richards, D.R. & Belcher, R.N. (2019). Global changes in urban
vegetation cover. Remote Sens., 12, 23.
Rizzoli, A., Silaghi, C., Obiegala, A., Rudolf, I., Hubalek, Z.,
Foldvari, G., et al. (2014). Ixodes ricinus and its
transmitted pathogens in urban and peri-urban areas in Europe: new
hazards and relevance for public health. Front. Public Heal., 2,
1–26.
Schauber, E.M., Nielsen, C.K., Kjær, L.J., Anderson, C.W. & Storm, D.J.
(2015). Social affiliation and contact patterns among white-tailed deer
in disparate landscapes: Implications for disease transmission. J.
Mammal., 96, 16–28.
Schwartz, A.M., Kugeler, K.J., Nelson, C.A., Marx, G.E. & Hinckley,
A.F. (2021). Use of Commercial Claims Data for Evaluating Trends in Lyme
Disease Diagnoses, United States, 2010-2018. Emerg. Infect. Dis.,
27, 499–507.
Senft, R.L., Coughenour, M.B., Bailey, D.W., Rittenhouse, L.R., Sala,
O.E. & Swift, D.M. (1987). Large Herbivore Foraging and Ecological
Hierarchies. Bioscience, 37, 789–799.
Signer, J., Fieberg, J. & Avgar, T. (2017). Estimating utilization
distributions from fitted step-selection functions. Ecosphere, 8,
e01771.
Signer, J., Fieberg, J. & Avgar, T. (2019). Animal movement tools
(amt): R package for managing tracking data and conducting habitat
selection analyses. Ecol. Evol., 9, 880–890.
Simmons, A.E., Manges, A.B., Bharathan, T., Tepe, S.L., McBride, S.E.,
Dileonardo, M.Q., et al. (2020). Lyme disease risk of exposure to
blacklegged ticks (Acari: Ixodidae) infected with Borrelia
burgdorferi (Spirochaetales: Spirochaetaceae) in Pittsburgh regional
parks. J. Med. Entomol., 57, 273–280.
Sonenshine, D.E. (2018). Range expansion of tick disease vectors in
North America: Implications for spread of tick-borne disease. Int.
J. Environ. Res. Public Health, 15, 1–9.
Sormunen, J.J., Kulha, N., Klemola, T., Mäkelä, S., Vesilahti, E.M. &
Vesterinen, E.J. (2020). Enhanced threat of tick-borne infections within
cities? Assessing public health risks due to ticks in urban green spaces
in Helsinki, Finland. Zoonoses Public Health, 67, 823–839.
Soucy, J.P.R., Slatculescu, A.M., Nyiraneza, C., Ogden, N.H., Leighton,
P.A., Kerr, J.T., et al. (2018). High-resolution ecological niche
modeling of Ixodes scapularis ticks based on passive surveillance
data at the northern frontier of Lyme disease emergence in North
America. Vector-Borne Zoonotic Dis., 18, 235–242.
Sumner, T., Orton, R.J., Green, D.M., Kao, R.R. & Gubbins, S. (2017).
Quantifying the roles of host movement and vector dispersal in the
transmission of vector-borne diseases of livestock. PLOS Comput.
Biol., 13, 1–22.
Swihart, R.K., Picone, P.M., DeNicola, A.J. & Cornicelli, L. (1995).
Ecology of urban and suburban white-tailed deer. In: Proceedings
from the 55th Midwest Fish and Wildlife Conference. pp. 35–44.
Tardy, O., Bouchard, C., Chamberland, E., Fortin, A., Lamirande, P.,
Ogden, N.H., et al. (2021). Mechanistic movement models reveal
ecological drivers of tick-borne pathogen spread. J. R. Soc.
Interface, 18, 20210134.
Team, R.C. (2020). R: A language and environment for statistical
computing.
Telford III, S.R., Mather, T.N., Moore, S.I., Wilson, M.L. & Spielman,
A. (1988). Incompetence of Deer as Reservoirs of the Lyme Disease
Spirochete. Am. J. Trop. Med. Hyg., 39, 105–109.
U.S. Geological Survey. (2019).
National Land Cover Database
(NLCD) 2016 Products (ver. 2.0, July 2020).
U.S. Geol. Surv. data
release, Available at:
https://www.usgs.gov/products. Last accessed 1
September 2020.
United Nations, Department of Economic and Social Affairs, Population
Division (2018). World Urbanization Prospects: The 2018 Revision.
Urbanek, R.E. & Nielsen, C.K. (2013). Influence of landscape factors on
density of suburban white-tailed deer. Landsc. Urban Plan., 114,
28–36.
VanAcker, M.C., Little, E.A.H., Molaei, G., Bajwa, W.I. & Diuk-Wasser,
M.A. (2019). Enhancement of risk for Lyme disease by landscape
connectivity, New York, New York, USA. Emerg. Infect. Dis., 25,
1136–1143.
Wilkinson, D.A., Marshall, J.C., French, N.P. & Hayman, D.T.S. (2018).
Habitat fragmentation, biodiversity loss and the risk of novel
infectious disease emergence. J. R. Soc. Interface, 15, 20180403.
Yang, J., Huang, C., Zhang, Z. & Wang, L. (2014). The temporal trend of
urban green coverage in major Chinese cities between 1990 and 2010.Urban For. Urban Green., 13, 19–27.