References:
Araújo, M. B., & Luoto, M. (2007). The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography, 16 (6), 743-753. Araújo, C. B., Marcondes‐Machado, L. O., & Costa, G. C. (2014). The importance of biotic interactions in species distribution models: a test of the Eltonian noise hypothesis using parrots. Journal of Biogeography, 41 (3), 513-523. Atauchi, P. J., Peterson, A. T., & Flanagan, J. (2018). Species distribution models for Peruvian plantcutter improve with consideration of biotic interactions. Journal of Avian Biology, 49 (3), jav-01617. Bateman, B. L., VanDerWal, J., Williams, S. E., & Johnson, C. N. (2012). Biotic interactions influence the projected distribution of a specialist mammal under climate change. Diversity and Distributions, 18 (9), 861-872. Biesmeijer, J. C., Roberts, S. P., Reemer, M., Ohlemuller, R., Edwards, M., Peeters, T. et al. (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands.Science, 313 (5785), 351-354. Bogusch, P., Kratochvíl, L., & Straka, J. (2006). Generalist cuckoo bees (Hymenoptera: Apoidea: Sphecodes) are species-specialist at the individual level. Behavioral ecology and sociobiology, 60 (3), 422-429. Burnham, K. P. and Anderson, D. R. 2002. Model selection and multimodal inference: a practical information-theoretic approach . 2nd ed., Springer, New York Bradie, J., & Leung, B. (2017). A quantitative synthesis of the importance of variables used in MaxEnt species distribution models.Journal of Biogeography, 44 (6), 1344-1361. Briscoe Runquist, R. D., Lake, T. A., & Moeller, D. A. (2021). Improving predictions of range expansion for invasive species using joint species distribution models and surrogate co‐occurring species. Journal of Biogeography. Byholm, P., Burgas, D., Virtanen, T., & Valkama, J. (2012). Competitive exclusion within the predator community influences the distribution of a threatened prey species. Ecology, 93 (8), 1802-1808. Cane, J. H. (2020). A brief review of monolecty in bees and benefits of a broadened definition. Apidologie , 1-6. Cardinal, S., Straka, J., & Danforth, B. N. (2010). Comprehensive phylogeny of apid bees reveals the evolutionary origins and antiquity of cleptoparasitism. Proceedings of the national Academy of Sciences, 107 (37), 16207-16211. Centraal Bureau voor de Statistiek (CBS) (2012). Bestand Bodemgebruik Productbeschrijving . Available at: https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische Last accessed 30-12-2021. Cresswell, J. E., Osborne, J. L., & Goulson, D. (2000). An economic model of the limits to foraging range in central place foragers with numerical solutions for bumblebees. Ecological Entomology, 25 (3), 249-255. Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G. et al. . (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27-46. De Barros, K. M. P. M., de Siqueira, M. F., Alexandrino, E. R., Da Luz, D. T. A., & Do Couto, H. T. Z. (2012). Environmental suitability of a highly fragmented and heterogeneous landscape for forest bird species in south-eastern Brazil. Environmental Conservation, 39 (4), 316-324. Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A. et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29 (2), 129-151. Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40 (1), 677-697. Fauchald, P., Erikstad, K. E., & Skarsfjord, H. (2000). Scale‐dependent predator–prey interactions: the hierarchical spatial distribution of seabirds and prey. Ecology, 81 (3), 773-783. Faraway, J. J. (2016). Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Chapman and Hall/CRC. Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315. Foster, S. D., & Bravington, M. V. (2013). A Poisson–Gamma model for analysis of ecological non-negative continuous data. Environmental and ecological statistics, 20 (4), 533-552. Freeman, B. G., Strimas-Mackey, M., & Miller, E. T. (2022). Interspecific competition limits bird species’ ranges in tropical mountains. Science, 377 (6604), 416-420. Gathmann, A., & Tscharntke, T. (2002). Foraging ranges of solitary bees. Journal of animal ecology, 71 (5), 757-764. Giannini, T. C., Chapman, D. S., Saraiva, A. M., Alves‐dos‐Santos, I., & Biesmeijer, J. C. (2013). Improving species distribution models using biotic interactions: a case study of parasites, pollinators and plants.Ecography, 36 (6), 649-656. Godsoe, W., Strand, E., Smith, C. I., Yoder, J. B., Esque, T. C., & Pellmyr, O. (2009). Divergence in an obligate mutualism is not explained by divergent climatic factors. New Phytologist, 183 (3), 589-599 Greenleaf, S. S., Williams, N. M., Winfree, R., & Kremen, C. (2007). Bee foraging ranges and their relationship to body size.Oecologia, 153 (3), 589-596. Grenouillet, G., Buisson, L., Casajus, N., & Lek, S. (2011). Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography, 34 (1), 9-17. Grondsoortenkaart (2006). Grondsoortenkaart. Available at: https://www.wur.nl/nl/show/Grondsoortenkaart.html Last accessed 30-12-2021. Heikkinen, R. K., Luoto, M., Virkkala, R., Pearson, R. G., & Körber, J. H. (2007). Biotic interactions improve prediction of boreal bird distributions at macro‐scales. Global Ecology and Biogeography, 16 (6), 754-763. Herrera, J. P., Borgerson, C., Tongasoa, L., Andriamahazoarivosoa, P., Rasolofoniaina, B. R., Rakotondrafarasata, E. R. et al. (2018). Estimating the population size of lemurs based on their mutualistic food trees. Journal of Biogeography, 45 (11), 2546-2563 Hijmans, R. J., Phillips, S., Leathwick, J &Jane Elith, J (2020). dismo: Species Distribution Modeling. R package version 1.3-3. https://CRAN.R-project.org/package=dismo. Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecological modelling199 (2), 142-152. Hurvich, C. M., & Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76 (2), 297-307. Inter Provinciaal Overleg (2016). Informatiemodel natuurbeheer (IMNAB): Index Natuur en Landschap. Available at: https://www.bij12.nl/onderwerpen/natuur-en-landschap Last accessed 05-08-2021. Kass, J.M., Anderson, R.P., Espinosa‐Lucas, A., Juárez‐Jaimes, V., Martínez‐Salas, E., Botello, F et al . (2020), Biotic predictors with phenological information improve range estimates for migrating monarch butterflies in Mexico. Ecography, 43 : 341-352. Kendall, L. K., Rader, R., Gagic, V., Cariveau, D. P., Albrecht, M., Baldock, K. C. et al. (2019). Pollinator size and its consequences: Robust estimates of body size in pollinating insects.Ecology and Evolution, 9 (4), 1702-1714. Kissling, W. D., Rahbek, C., & Böhning-Gaese, K. (2007). Food plant diversity as broad-scale determinant of avian frugivore richness. Proceedings. Biological sciences, 274 (1611), 799–808. Kleijn, D., Winfree, R., Bartomeus, I., Carvalheiro, L. G., Henry, M., Isaacs, R. et al. (2015). Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature communications, 6 (1), 1-9. Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American statistical Association, 47 (260), 583-621. KNMI (2016). KNMI Climate Explorer Available at: https://climexp.knmi.nl Last accessed 30-12-2021. Leach, Katie; Montgomery, W. Ian; Reid, Neil (2016). Modelling the influence of biotic factors on species distribution patterns.Ecological Modelling, 337 , 96–106 Lobo, J. M., Jiménez‐Valverde, A., & Hortal, J. (2010). The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33 (1), 103-114. Lima, V. P., Marchioro, C. A., Joner, F., Ter Steege, H., & Siddique, I. (2020). Extinction threat to neglected Plinia edulis exacerbated by climate change, yet likely mitigated by conservation through sustainable use. Austral Ecology, 45 (3), 376-383 Litman, J. R. (2019). Under the radar: detection avoidance in brood parasitic bees. Philosophical Transactions of the Royal Society B, 374 (1769), 20180196. Loyola, R. D., Lemes, P., Faleiro, F. V., Trindade-Filho, J., & Machado, R. B. (2012). Severe loss of suitable climatic conditions for marsupial species in Brazil: challenges and opportunities for conservation. PloS one, 7 (9), e46257. Marshall, L., Carvalheiro, L. G., Aguirre‐Gutiérrez, J., Bos, M., de Groot, G. A., Kleijn, D. et al. (2015). Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type. Ecology and Evolution, 5 (19), 4426-4436. Marshall, L., Biesmeijer, J. C., Rasmont, P., Vereecken, N. J., Dvorak, L., Fitzpatrick, U. et al. (2018). The interplay of climate and land use change affects the distribution of EU bumblebees. Global change biology, 24 (1), 101-116. Mathieu‐Bégné, E., Loot, G., Mazé‐Guilmo, E., Mullet, V., Genthon, C., & Blanchet, S. (2021). Combining species distribution models and population genomics underlines the determinants of range limitation in an emerging parasite. Ecography, 44 (2), 307-319. Melo-Merino, S. M., Reyes-Bonilla, H., & Lira-Noriega, A. (2020). Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence.Ecological Modelling, 415 , 108837. Ministerie van Economische Zaken (2015). Basisregistratie Gewaspercelen (BRP). Available at: https://data.overheid.nl/dataverzoeken/basisregistratie-gewaspercelen Last accessed 30-12-2021. Mpakairi, K. S., Ndaimani, H., Tagwireyi, P., Gara, T. W., Zvidzai, M., & Madhlamoto, D. (2017). Missing in action: Species competition is a neglected predictor variable in species distribution modelling.PLoS One, 12 (7), e0181088. Muscarella, R., Galante, P. J., Soley‐Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M. et al. (2014). ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in ecology and evolution, 5 (11), 1198-1205. NDFF (2021). NDFF Verspreidingsatlas Vaatplanten Available at: https://www.verspreidingsatlas.nl/planten Last accessed 10-08-2021. Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, L., Dunson, D. et al. (2017). How to make more out of community data? A conceptual framework and its implementation as models and software.Ecology letters , 20 (5), 561-576. Ruedenauer, F. A., Spaethe, J., Van der Kooi, C. J., & Leonhardt, S. D. (2019). Pollinator or pedigree: which factors determine the evolution of pollen nutrients?. Oecologia, 191 (2), 349-358. Paquette, A., & Hargreaves, A. L. (2021). Biotic interactions are more often important at species’ warm versus cool range edges. Ecology Letters, 24 (11), 2427-2438. Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Global ecology and biogeography, 12 (5), 361-371. Peeters, T. M., Nieuwenhuijsen, H., Smit, J., van deMeer, F., Raemakers, I. P., Heitmans, W. R. et al. (2012). De Nederlandse bijen.Naturalis Biodiversity Center & European Invertebrate Survey, Leiden, 544 pp. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190 (3-4), 231-259. Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O’Hara, R. B., Parris, K. M. et al. (2014). Understanding co‐occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution, 5 (5), 397-406. Potts, S., Biesmeijer, K., Bommarco, R., Breeze, T., Carvalheiro, L., Franzen, M. et al. (2015) Status and trends of European pollinators. Key findings of the STEP project. Pensoft Publishers, Sofia, 72 pp. Prinzing, A., Durka, W., Klotz, S., & Brandl, R. (2001). The niche of higher plants: evidence for phylogenetic conservatism. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268 (1483), 2383-2389. R Core Team (2020). R: A language and environment forstatistical computing. R Foundation for Statistical Computing, Vienna, Austria. Rasmussen, C., Engel, M. S., & Vereecken, N. J. (2020). A primer of host-plant specialization in bees. Emerging Topics in Life Sciences, 4 (1), 7-17. Reemer, M. (2018). Basisrapport voor de Rode Lijst bijen. EIS Kenniscentrum Insecten en andere ongewervelden. Roslin, T., Hardwick, B., Novotny, V., Petry, W. K., Andrew, N. R., Asmus, A. et al. (2017). Higher predation risk for insect prey at low latitudes and elevations. Science, 356 (6339), 742-744. Sachs L (1997). Angewandte Statistik. 8 edition. Springer, Berlin. Senapathi, D., Biesmeijer, J. C., Breeze, T. D., Kleijn, D., Potts, S. G., & Carvalheiro, L. G. (2015). Pollinator conservation—the difference between managing for pollination services and preserving pollinator diversity. Current Opinion in Insect Science, 12 , 93-101. Silva, D. P., Gonzalez, V. H., Melo, G. A., Lucia, M., Alvarez, L. J., & De Marco Jr, P. (2014). Seeking the flowers for the bees: integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America. Ecological Modelling, 273 , 200-209. Scheper, J., Reemer, M., van Kats, R., Ozinga, W. A., van der Linden, G. T., Schaminée, J. H. et al. (2014). Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. Proceedings of the National Academy of Sciences, 111 (49), 17552-17557. Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27 (3), 379-423. Srivastava, V., Lafond, V., & Griess, V. C. (2019). Species distribution models (SDM): applications, benefits and challenges in invasive species management. CAB Rev, 14 (020), 1-13. Soberón, J. & Peterson, A. (2005). Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas.Biodiversity Informatics. 2. 10.17161/bi.v2i0.4. Suzuki-Ohno, Y., Yokoyama, J., Nakashizuka, T., & Kawata, M. (2017). Utilization of photographs taken by citizens for estimating bumblebee distributions. Scientific reports, 7 (1), 1-11. Syphard, A. D., & Franklin, J. (2010). Species traits affect the performance of species distribution models for plants in southern California. Journal of Vegetation Science, 21 (1), 177-189. Tierney, L.,, A. J. Rossini, Na Li and H. Sevcikova (2018). snow: Simple Network of Workstations. R package version 0.4-3 Accessed at https://CRAN.R-project.org/package=snow Tsoar, A., Allouche, O., Steinitz, O., Rotem, D., & Kadmon, R. (2007). A comparative evaluation of presence‐only methods for modelling species distribution. Diversity and distributions, 13 (4), 397-405. Vamosi, J. C., Moray, C. M., Garcha, N. K., Chamberlain, S. A., & Mooers, A. Ø. (2014). Pollinators visit related plant species across 29 plant–pollinator networks. Ecology and Evolution, 4 (12), 2303-2315. Weekers, T., Marshall, L., Leclercq, N., Wood, T. J., Cejas, D., Drepper, B. et al. (2022). Ecological, environmental, and management data indicate apple production is driven by wild bee diversity and management practices. Ecological Indicators, 139 , 108880. Widhiono, I., Sudiana, E., & Sucianto, E. T. (2016). Insect pollinator diversity along a habitat quality gradient on Mount Slamet, Central Java, Indonesia. Biodiversitas Journal of Biological Diversity, 17 (2). Wilcoxon, F. (1945). Individual comparisons by ranking methods,Biometrics 1, 80–83 Willmer, P. (2011). Pollination and floral ecology. In Pollination and floral ecology . Princeton University Press. Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F. et al. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological reviews, 88 (1), 15-30. Zurbuchen, A., Landert, L., Klaiber, J., Müller, A., Hein, S., & Dorn, S. (2010). Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances.Biological Conservation, 143 (3), 669-676. Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J. et al. (2020). A standard protocol for reporting species distribution models. Ecography, 43 (9), 1261-1277. (pp. 196-202). Springer, New York, NY.