References:
Araújo, M. B., & Luoto, M. (2007). The importance of biotic
interactions for modelling species distributions under climate change.
Global Ecology and Biogeography, 16 (6), 743-753.
Araújo, C. B., Marcondes‐Machado, L. O., & Costa, G. C. (2014). The
importance of biotic interactions in species distribution models: a test
of the Eltonian noise hypothesis using parrots. Journal of
Biogeography, 41 (3), 513-523.
Atauchi, P. J., Peterson, A. T., & Flanagan, J. (2018). Species
distribution models for Peruvian plantcutter improve with consideration
of biotic interactions. Journal of Avian Biology, 49 (3),
jav-01617.
Bateman, B. L., VanDerWal, J., Williams, S. E., & Johnson, C. N.
(2012). Biotic interactions influence the projected distribution of a
specialist mammal under climate change. Diversity and
Distributions, 18 (9), 861-872.
Biesmeijer, J. C., Roberts, S. P., Reemer, M., Ohlemuller, R., Edwards,
M., Peeters, T. et al. (2006). Parallel declines in pollinators
and insect-pollinated plants in Britain and the Netherlands.Science, 313 (5785), 351-354.
Bogusch, P., Kratochvíl, L., & Straka, J. (2006). Generalist cuckoo
bees (Hymenoptera: Apoidea: Sphecodes) are species-specialist at the
individual level. Behavioral ecology and sociobiology, 60 (3),
422-429.
Burnham, K. P. and Anderson, D. R. 2002. Model selection and
multimodal inference: a practical information-theoretic approach . 2nd
ed., Springer, New York
Bradie, J., & Leung, B. (2017). A quantitative synthesis of the
importance of variables used in MaxEnt species distribution models.Journal of Biogeography, 44 (6), 1344-1361.
Briscoe Runquist, R. D., Lake, T. A., & Moeller, D. A. (2021).
Improving predictions of range expansion for invasive species using
joint species distribution models and surrogate co‐occurring species.
Journal of Biogeography.
Byholm, P., Burgas, D., Virtanen, T., & Valkama, J. (2012). Competitive
exclusion within the predator community influences the distribution of a
threatened prey species. Ecology, 93 (8), 1802-1808.
Cane, J. H. (2020). A brief review of monolecty in bees and benefits of
a broadened definition. Apidologie , 1-6.
Cardinal, S., Straka, J., & Danforth, B. N. (2010). Comprehensive
phylogeny of apid bees reveals the evolutionary origins and antiquity of
cleptoparasitism. Proceedings of the national Academy of Sciences,
107 (37), 16207-16211.
Centraal Bureau voor de Statistiek (CBS) (2012). Bestand
Bodemgebruik Productbeschrijving . Available at:
https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische
Last accessed 30-12-2021.
Cresswell, J. E., Osborne, J. L., & Goulson, D. (2000). An economic
model of the limits to foraging range in central place foragers with
numerical solutions for bumblebees. Ecological Entomology, 25 (3),
249-255. Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré,
G. et al. . (2013). Collinearity: a review of methods to deal with
it and a simulation study evaluating their performance. Ecography,
36(1), 27-46.
De Barros, K. M. P. M., de Siqueira, M. F., Alexandrino, E. R., Da Luz,
D. T. A., & Do Couto, H. T. Z. (2012). Environmental suitability of a
highly fragmented and heterogeneous landscape for forest bird species in
south-eastern Brazil. Environmental Conservation, 39 (4),
316-324.
Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S.,
Guisan, A. et al. (2006). Novel methods improve prediction of
species’ distributions from occurrence data. Ecography, 29 (2),
129-151.
Elith, J., & Leathwick, J. R. (2009). Species distribution models:
ecological explanation and prediction across space and
time. Annual Review of Ecology, Evolution and Systematics, 40 (1),
677-697.
Fauchald, P., Erikstad, K. E., & Skarsfjord, H. (2000). Scale‐dependent
predator–prey interactions: the hierarchical spatial distribution of
seabirds and prey. Ecology, 81 (3), 773-783.
Faraway, J. J. (2016). Extending the linear model with R: generalized
linear, mixed effects and nonparametric regression models. Chapman and
Hall/CRC.
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial
resolution climate surfaces for global land areas. International Journal
of Climatology 37 (12): 4302-4315.
Foster, S. D., & Bravington, M. V. (2013). A Poisson–Gamma model for
analysis of ecological non-negative continuous data. Environmental
and ecological statistics, 20 (4), 533-552.
Freeman, B. G., Strimas-Mackey, M., & Miller, E. T. (2022).
Interspecific competition limits bird species’ ranges in tropical
mountains. Science, 377 (6604), 416-420.
Gathmann, A., & Tscharntke, T. (2002). Foraging ranges of solitary
bees. Journal of animal ecology, 71 (5), 757-764.
Giannini, T. C., Chapman, D. S., Saraiva, A. M., Alves‐dos‐Santos, I.,
& Biesmeijer, J. C. (2013). Improving species distribution models using
biotic interactions: a case study of parasites, pollinators and plants.Ecography, 36 (6), 649-656.
Godsoe, W., Strand, E., Smith, C. I., Yoder, J. B., Esque, T. C., &
Pellmyr, O. (2009). Divergence in an obligate mutualism is not explained
by divergent climatic factors. New Phytologist, 183 (3), 589-599
Greenleaf, S. S., Williams, N. M., Winfree, R., & Kremen, C. (2007).
Bee foraging ranges and their relationship to body size.Oecologia, 153 (3), 589-596.
Grenouillet, G., Buisson, L., Casajus, N., & Lek, S. (2011). Ensemble
modelling of species distribution: the effects of geographical and
environmental ranges. Ecography, 34 (1), 9-17.
Grondsoortenkaart (2006). Grondsoortenkaart. Available at:
https://www.wur.nl/nl/show/Grondsoortenkaart.html Last accessed
30-12-2021.
Heikkinen, R. K., Luoto, M., Virkkala, R., Pearson, R. G., & Körber, J.
H. (2007). Biotic interactions improve prediction of boreal bird
distributions at macro‐scales. Global Ecology and Biogeography,
16 (6), 754-763.
Herrera, J. P., Borgerson, C., Tongasoa, L., Andriamahazoarivosoa, P.,
Rasolofoniaina, B. R., Rakotondrafarasata, E. R. et al. (2018).
Estimating the population size of lemurs based on their mutualistic food
trees. Journal of Biogeography, 45 (11), 2546-2563
Hijmans, R. J., Phillips, S., Leathwick, J &Jane Elith, J (2020).
dismo: Species Distribution Modeling. R package version 1.3-3.
https://CRAN.R-project.org/package=dismo.
Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006).
Evaluating the ability of habitat suitability models to predict species
presences. Ecological modelling , 199 (2), 142-152.
Hurvich, C. M., & Tsai, C. L. (1989). Regression and time series model
selection in small samples. Biometrika, 76 (2), 297-307.
Inter Provinciaal Overleg (2016). Informatiemodel natuurbeheer
(IMNAB): Index Natuur en Landschap. Available at:
https://www.bij12.nl/onderwerpen/natuur-en-landschap Last accessed
05-08-2021.
Kass, J.M., Anderson, R.P., Espinosa‐Lucas, A., Juárez‐Jaimes, V.,
Martínez‐Salas, E., Botello, F et al . (2020), Biotic predictors
with phenological information improve range estimates for migrating
monarch butterflies in Mexico. Ecography, 43 : 341-352.
Kendall, L. K., Rader, R., Gagic, V., Cariveau, D. P., Albrecht, M.,
Baldock, K. C. et al. (2019). Pollinator size and its
consequences: Robust estimates of body size in pollinating insects.Ecology and Evolution, 9 (4), 1702-1714.
Kissling, W. D., Rahbek, C., & Böhning-Gaese, K. (2007). Food plant
diversity as broad-scale determinant of avian frugivore richness.
Proceedings. Biological sciences, 274 (1611), 799–808.
Kleijn, D., Winfree, R., Bartomeus, I., Carvalheiro, L. G., Henry, M.,
Isaacs, R. et al. (2015). Delivery of crop pollination services
is an insufficient argument for wild pollinator
conservation. Nature communications, 6 (1), 1-9.
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion
variance analysis. Journal of the American statistical
Association, 47 (260), 583-621.
KNMI (2016). KNMI Climate Explorer Available at:
https://climexp.knmi.nl Last accessed 30-12-2021.
Leach, Katie; Montgomery, W. Ian; Reid, Neil (2016). Modelling the
influence of biotic factors on species distribution patterns.Ecological Modelling, 337 , 96–106
Lobo, J. M., Jiménez‐Valverde, A., & Hortal, J. (2010). The uncertain
nature of absences and their importance in species distribution
modelling. Ecography, 33 (1), 103-114.
Lima, V. P., Marchioro, C. A., Joner, F., Ter Steege, H., & Siddique,
I. (2020). Extinction threat to neglected Plinia edulis exacerbated by
climate change, yet likely mitigated by conservation through sustainable
use. Austral Ecology, 45 (3), 376-383
Litman, J. R. (2019). Under the radar: detection avoidance in brood
parasitic bees. Philosophical Transactions of the Royal Society B,
374 (1769), 20180196.
Loyola, R. D., Lemes, P., Faleiro, F. V., Trindade-Filho, J., &
Machado, R. B. (2012). Severe loss of suitable climatic conditions for
marsupial species in Brazil: challenges and opportunities for
conservation. PloS one, 7 (9), e46257.
Marshall, L., Carvalheiro, L. G., Aguirre‐Gutiérrez, J., Bos, M., de
Groot, G. A., Kleijn, D. et al. (2015). Testing projected wild
bee distributions in agricultural habitats: predictive power depends on
species traits and habitat type. Ecology and Evolution, 5 (19),
4426-4436.
Marshall, L., Biesmeijer, J. C., Rasmont, P., Vereecken, N. J., Dvorak,
L., Fitzpatrick, U. et al. (2018). The interplay of climate and
land use change affects the distribution of EU bumblebees. Global
change biology, 24 (1), 101-116.
Mathieu‐Bégné, E., Loot, G., Mazé‐Guilmo, E., Mullet, V., Genthon, C.,
& Blanchet, S. (2021). Combining species distribution models and
population genomics underlines the determinants of range limitation in
an emerging parasite. Ecography, 44 (2), 307-319.
Melo-Merino, S. M., Reyes-Bonilla, H., & Lira-Noriega, A. (2020).
Ecological niche models and species distribution models in marine
environments: A literature review and spatial analysis of evidence.Ecological Modelling, 415 , 108837.
Ministerie van Economische Zaken (2015). Basisregistratie
Gewaspercelen (BRP). Available at:
https://data.overheid.nl/dataverzoeken/basisregistratie-gewaspercelen
Last accessed 30-12-2021.
Mpakairi, K. S., Ndaimani, H., Tagwireyi, P., Gara, T. W., Zvidzai, M.,
& Madhlamoto, D. (2017). Missing in action: Species competition is a
neglected predictor variable in species distribution modelling.PLoS One, 12 (7), e0181088.
Muscarella, R., Galante, P. J., Soley‐Guardia, M., Boria, R. A., Kass,
J. M., Uriarte, M. et al. (2014). ENM eval: An R package for
conducting spatially independent evaluations and estimating optimal
model complexity for Maxent ecological niche models. Methods in
ecology and evolution, 5 (11), 1198-1205.
NDFF (2021). NDFF Verspreidingsatlas Vaatplanten Available at:
https://www.verspreidingsatlas.nl/planten Last accessed
10-08-2021.
Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan,
L., Dunson, D. et al. (2017). How to make more out of community data? A
conceptual framework and its implementation as models and software.Ecology letters , 20 (5), 561-576.
Ruedenauer, F. A., Spaethe, J., Van der Kooi, C. J., & Leonhardt, S. D.
(2019). Pollinator or pedigree: which factors determine the evolution of
pollen nutrients?. Oecologia, 191 (2), 349-358.
Paquette, A., & Hargreaves, A. L. (2021). Biotic interactions are more
often important at species’ warm versus cool range edges. Ecology
Letters, 24 (11), 2427-2438.
Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of
climate change on the distribution of species: are bioclimate envelope
models useful?. Global ecology and biogeography, 12 (5),
361-371.
Peeters, T. M., Nieuwenhuijsen, H., Smit, J., van deMeer, F., Raemakers,
I. P., Heitmans, W. R. et al. (2012). De Nederlandse
bijen.Naturalis Biodiversity Center & European Invertebrate Survey, Leiden,
544 pp.
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum
entropy modeling of species geographic distributions. Ecological
modelling, 190 (3-4), 231-259.
Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O’Hara, R. B.,
Parris, K. M. et al. (2014). Understanding co‐occurrence by
modelling species simultaneously with a Joint Species Distribution Model
(JSDM). Methods in Ecology and Evolution, 5 (5), 397-406.
Potts, S., Biesmeijer, K., Bommarco, R., Breeze, T., Carvalheiro, L.,
Franzen, M. et al. (2015) Status and trends of European
pollinators. Key findings of the STEP project. Pensoft Publishers,
Sofia, 72 pp.
Prinzing, A., Durka, W., Klotz, S., & Brandl, R. (2001). The niche of
higher plants: evidence for phylogenetic conservatism. Proceedings of
the Royal Society of London. Series B: Biological Sciences,
268 (1483), 2383-2389.
R Core Team (2020). R: A language and environment forstatistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
Rasmussen, C., Engel, M. S., & Vereecken, N. J. (2020). A primer of
host-plant specialization in bees. Emerging Topics in Life
Sciences, 4 (1), 7-17.
Reemer, M. (2018). Basisrapport voor de Rode Lijst bijen. EIS
Kenniscentrum Insecten en andere ongewervelden.
Roslin, T., Hardwick, B., Novotny, V., Petry, W. K., Andrew, N. R.,
Asmus, A. et al. (2017). Higher predation risk for insect prey at
low latitudes and elevations. Science, 356 (6339), 742-744.
Sachs L (1997). Angewandte Statistik. 8 edition. Springer,
Berlin.
Senapathi, D., Biesmeijer, J. C., Breeze, T. D., Kleijn, D., Potts, S.
G., & Carvalheiro, L. G. (2015). Pollinator conservation—the
difference between managing for pollination services and preserving
pollinator diversity. Current Opinion in Insect Science, 12 ,
93-101.
Silva, D. P., Gonzalez, V. H., Melo, G. A., Lucia, M., Alvarez, L. J.,
& De Marco Jr, P. (2014). Seeking the flowers for the bees: integrating
biotic interactions into niche models to assess the distribution of the
exotic bee species Lithurgus huberi in South America. Ecological
Modelling, 273 , 200-209.
Scheper, J., Reemer, M., van Kats, R., Ozinga, W. A., van der Linden, G.
T., Schaminée, J. H. et al. (2014). Museum specimens reveal loss
of pollen host plants as key factor driving wild bee decline in The
Netherlands. Proceedings of the National Academy of Sciences,
111 (49), 17552-17557.
Shannon, C. E. (1948). A mathematical theory of communication. The
Bell system technical journal, 27 (3), 379-423.
Srivastava, V., Lafond, V., & Griess, V. C. (2019). Species
distribution models (SDM): applications, benefits and challenges in
invasive species management. CAB Rev, 14 (020), 1-13.
Soberón, J. & Peterson, A. (2005). Interpretation of Models of
Fundamental Ecological Niches and Species’ Distributional Areas.Biodiversity Informatics. 2. 10.17161/bi.v2i0.4.
Suzuki-Ohno, Y., Yokoyama, J., Nakashizuka, T., & Kawata, M. (2017).
Utilization of photographs taken by citizens for estimating bumblebee
distributions. Scientific reports, 7 (1), 1-11.
Syphard, A. D., & Franklin, J. (2010). Species traits affect the
performance of species distribution models for plants in southern
California. Journal of Vegetation Science, 21 (1), 177-189.
Tierney, L.,, A. J. Rossini, Na Li and H. Sevcikova (2018). snow: Simple
Network of Workstations. R package version 0.4-3 Accessed at
https://CRAN.R-project.org/package=snow
Tsoar, A., Allouche, O., Steinitz, O., Rotem, D., & Kadmon, R. (2007).
A comparative evaluation of presence‐only methods for modelling species
distribution. Diversity and distributions, 13 (4), 397-405.
Vamosi, J. C., Moray, C. M., Garcha, N. K., Chamberlain, S. A., &
Mooers, A. Ø. (2014). Pollinators visit related plant species across 29
plant–pollinator networks. Ecology and Evolution, 4 (12),
2303-2315.
Weekers, T., Marshall, L., Leclercq, N., Wood, T. J., Cejas, D.,
Drepper, B. et al. (2022). Ecological, environmental, and
management data indicate apple production is driven by wild bee
diversity and management practices. Ecological Indicators, 139 ,
108880.
Widhiono, I., Sudiana, E., & Sucianto, E. T. (2016). Insect pollinator
diversity along a habitat quality gradient on Mount Slamet, Central
Java, Indonesia. Biodiversitas Journal of Biological Diversity,
17 (2).
Wilcoxon, F. (1945). Individual comparisons by ranking methods,Biometrics 1, 80–83
Willmer, P. (2011). Pollination and floral ecology. In Pollination
and floral ecology . Princeton University Press.
Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J.,
Damgaard, C. F. et al. (2013). The role of biotic interactions in
shaping distributions and realised assemblages of species: implications
for species distribution modelling. Biological reviews, 88 (1),
15-30.
Zurbuchen, A., Landert, L., Klaiber, J., Müller, A., Hein, S., & Dorn,
S. (2010). Maximum foraging ranges in solitary bees: only few
individuals have the capability to cover long foraging distances.Biological Conservation, 143 (3), 669-676.
Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F.,
Elith, J. et al. (2020). A standard protocol for reporting
species distribution models. Ecography, 43 (9), 1261-1277. (pp.
196-202). Springer, New York, NY.