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Key Takeaways
• Observations show that wind-driven snow redistribution preferentially 

accumulates 0.025 – 0.08 m of snow on young Arctic sea ice—a process not 
represented in climate models.

• Snow limits conductive heat flux (i.e. wintertime ice growth).
• Offline analysis of CESM2 output suggests that neglecting this snow redistribution 

could lead to current climate models overestimating wintertime heat flux by 3-8% 
on average in the Arctic in the winter.
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Outline

• Mechanisms of preferential snow accumulation on young ice

• Observations of preferential snow accumulation on young ice

• Offline snow redistribution scheme for CESM2

• Zero-layer thermodynamics model heat flux

• Modeled impacts on heat flux

• Impacts due to changing model setup and future climate states

• Conclusion and next steps
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Mechanisms of Preferential Accumulation
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Mechanisms of Preferential Accumulation

1. Brine skim creates a sticky surface that 
traps wind-blown snow10

2. Frost flowers create aerodynamic 
obstacles a few cm high, trapping wind 
blown snow in microdrifts10

3. Thinner snow and ice create a warmer 
surface than on mature ice. Leads to 
an enhanced sintering rate2 and 
reduced remobilization

4. Sharp lead edges and deformed ice are 
aerodynamic obstacles, creating snow 
drift traps
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Thanks to Linda Thielke for TIR image13. Other photos D. Clemens-Sewall
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Observations of Preferential Accumulation
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Observations of Preferential Accumulation
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Observations of Preferential Accumulation
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Observations of Preferential Accumulation

Mean Accumulation: 
0.06 m
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CESM24/CICE7 Representation of Ice Cover1,8,14

0.40 m Waterline

Ice Thickness Category 54321

Ice (width represents 
area fraction of grid cell) 

Snow is added uniformly in each precipitation event. 
The youngest ice has experienced few or no precipitation events, thus has very thin snow.

Snow

12Category Thickness Limits (m) [0.00-0.64] [0.64-1.39] [1.39-2.47] [2.47-4.57] [4.57-]



Offline Snow Redistribution Scheme

54321

Given a minimum snow 
thickness (hs,min), 
redistribute snow from 
thicker ice to young ice until 
snow thickness on young 
ice is hs,min or we have 
exhausted available snow.

The volume of available 
snow is determined by 
assuming that some fraction 
(mfrac) of the snow thicker 
than hs,min is available to be 
redistributed.
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Ice Thickness Category

Category Thickness Limits (m) [0.00-0.64] [0.64-1.39] [1.39-2.47] [2.47-4.57] [4.57-]
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Zero-Layer Thermodynamics Heat Flux

Where subscript indices j and i specify a particular model grid cell and c is the ice 
thickness category within that grid cell. Ta is the air-snow interface temperature. To
is the ice-ocean interface temperature. hs and hi are snow and ice thicknesses. ks = 
0.3 Wm-1K-1 and ki = 2.0 Wm-1K-1 are snow and ice thermal conductivities. a is the 
fractional area of the thickness category within the grid cell.

The zero-layer thermodynamic model of snow and sea ice12 computes the vertical 
heat flux (Fcond) through the snow and sea ice assuming that the system is at steady-
state:
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Modeled Impacts on Heat Flux
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• Analyzed CESM2 output for the 
historical period from a four 
member ensemble in which 
albedo has been tuned to 
improve the mean sea ice state 
(Kay et al in review).

• Averaged across four ensemble 
members and five years to 
reduce internal variability.

• Arctic-averaged overestimation 
ratio ranges from 1.015 in 
December to 1.18 in May, with a 
mean of 1.06.



Modeled Impacts on Heat Flux
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• Impacts are greatest in coastal 
regions where ice deformation 
creates lots of young ice.

• Early in the season, much of the 
ice is in the thinnest thickness 
category, and precipitation is 
sufficient to keep the snow 
thickness above hs,min

• Later in the season, 
overestimation occurs throughout 
the Arctic basin.



Sensitivity Tests
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Minimum Snow Thickness (hs,min) Mobile Fraction of Snow (mfrac)
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Does This Need to be Explicitly Represented?

• For computation reasons, climate models cannot explicitly represent every sub 
grid-scale process. Instead, models often aggregate multiple processes into a 
single representation and tune parameter values. For example, models represent 
heat flux through snow on sea ice as purely vertical conduction with a single 
thermal conductivity (instead of explicitly representing heat transport due to air 
movement, lateral heat flow, etc).

• However, if the impacts of a process change in a different model setup or 
different climate state, then the process may need to be represented.
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Impacts with More Ice Thickness Categories

• Repeated the analysis examining 
CESM2 output from simulations 
with 15 ice thickness categories

• With more categories, the snow 
thickness on the youngest ice is 
even thinner, because it’s 
averaged over a small range of 
ice thicknesses.

• Thus snow redistribution onto 
young ice is even more 
important.
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Impacts in Future Climate State

• Examined CESM2 21st century 
projections under the SSP370 
scenario.

• Impacts of snow redistribution 
onto young ice decrease as the 
Arctic warms and snow and sea 
ice decline.

• Thus if we were to tune the 
model for this process under 
current conditions, that may not 
be accurate in the future climate 
state.
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Conclusion and Next Steps

• Field observations indicate that young Arctic sea ice preferentially accumulates 
between 0.025 and 0.08 m of snow from wind-driven snow redistribution.

• Offline analysis of CESM2 output suggests that neglecting this snow redistribution 
could lead to current climate models overestimating wintertime heat flux by 3-8% 
on average in the Arctic in the winter, with larger impacts in certain regions and 
later in the season.

• Next steps: This analysis was conducted offline on climate model outputs. Snow 
and heat flux impact several feedbacks in the Arctic system (that were not 
represented in this offline approach). Our next step is to study the sensitivity of 
the sea ice state to this snow redistribution onto young ice process in a fully-
coupled climate model.

26Contact: David.W.Clemens-Sewall.Th@dartmouth.edu
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