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Abstract  22 

To improve the predictive capability of ecosystem biogeochemical models (EBMs), we discuss 23 

the feasibility of formulating biogeochemical processes using physical rules that have 24 

underpinned the many successes in computational physics and chemistry. We argue that the 25 

currently popular empirically based modeling approaches, such as multiplicative empirical 26 

response functions and the law of the minimum, will not lead to EBM formulations that can be 27 

continuously refined to incorporate improved mechanistic understanding and empirical 28 

observations of biogeochemical processes. As an alternative to these empirical models, we 29 

propose to formulate EBMs using established physical rules widely used in computational 30 

physics and chemistry. Through several examples, we demonstrate how mathematical 31 

representations derived from physical rules can improve understanding of relevant 32 

biogeochemical processes and enable more effective communication between modelers, 33 

observationalists, and experimentalists regarding essential questions, such as what measurements 34 

are needed to meaningfully inform models and how can models generate new process-level 35 

hypotheses to test in empirical studies? 36 

Plain Language Summary 37 

Robust ecosystem biogeochemical models are needed to provide the humanity with predictions 38 

to understand and manage interactions between terrestrial ecosystems and the climate. However, 39 

existing models are not sufficient because of their wide use of statistical relationships derived 40 

from empirical observations. We argue that wider adoption of physical rules can help us develop 41 

better ecosystem biogeochemical models to meet with our needs. This can be achieved by deeper 42 

interdisciplinary collaboration between scientists from fields in soils, biology, chemistry, physics 43 

and mathematics.  And then we will be better positioned to adapt to climate change. 44 
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1. Introduction  45 

Biogeochemistry plays important roles in modulating greenhouse gas and energy 46 

exchanges between ecosystems and the Earth’s atmosphere; thus, it is imperative to develop 47 

ecosystem biogeochemical models (EBMs) that can deliver high quality predictions to improve 48 

understanding and management of biogeochemistry-climate feedbacks. Indeed, taking land 49 

biogeochemical models as an example, after decades of research, their representations in climate 50 

models (which are now called earth system models) have evolved from simple mathematical 51 

formulations focusing on surface energy balance to considering interactions between energy, 52 

water, carbon, and nutrient dynamics [Zhu et al., 2019], and even human management of land 53 

use and land cover [Blyth et al., 2021]. Meanwhile, to reduce prediction uncertainty, more 54 

observations are collected and model-data fusion techniques are employed to constrain the 55 

parameters and process representations in these models [Houska et al., 2017; Keenan et al., 56 

2012; Le Noe et al., 2023; Tang and Zhuang, 2008]. Despite these many efforts, analyses still 57 

find significant uncertainties when model predictions are confronted with field perturbation 58 

experiments, including the response to free air CO2 enrichment, nutrient addition, and warming 59 

[Bouskill et al., 2014; Davies-Barnard et al., 2020; De Kauwe et al., 2017; Todd-Brown et al., 60 

2013; Zaehle et al., 2014]. 61 

These large modeling uncertainties have been attributed to uncertain model parameters, 62 

missing or inaccurate process representations, inaccurate initial and boundary conditions, and 63 

poor numerical implementations [Ahlstrom et al., 2013; Bouskill et al., 2014; Huntzinger et al., 64 

2017; Tang and Riley, 2018]. We note that, in actual model applications, these four types of 65 

uncertainties often are compounded and hard to disentangle. Nonetheless, in this perspective, we 66 

infer that some fundamental fallacies in the currently popular approaches used to formulate 67 
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EBMs have made it difficult, and in some cases nearly impossible, to achieve high-quality 68 

predictions. Without a fundamental change in model formulation, this challenge will persist 69 

despite efforts to augment processes representations, refine parameter calibration, integrate 70 

empirical observations, and employ more accurate numerical schemes.  71 

The fundamental fallacies we address below may be considered a specific type of 72 

structural error, yet we argue that they possess a unique and crucial character, deserving special 73 

attention. This assertion arises from our observation that contemporary EBM formulations 74 

heavily rely on combinations of empirical response functions derived from field observations and 75 

factorial empirical experiments. However, due to the close coupling between the involved 76 

entities, it is expected that the effect of each of these targeted biogeochemical processes only 77 

emerges from the interactions among several more basic processes, many of which cannot be 78 

orthogonally captured by factorial empirical experiments, nor be discerned from field 79 

measurements. For example, microbial respiration in soil is dependent both on the microbial 80 

physiological status and the substrate transport in soil, both of which are modulated by soil 81 

moisture content and temperature [Suseela et al., 2012; Zhou et al., 2014]. As the transport of 82 

heat and moisture is closely coupled [Milly, 1982; Saito et al., 2006], changes in one of these two 83 

conditions will inevitably change the other, such that the temperature and moisture dependence 84 

of microbial respiration is impossible to separate.  85 

Meanwhile, with the rapidly changing climate and recent resurgence of fossil fuel use 86 

[Tollefson, 2022], it is becoming less likely that our society will be able to curb global warming 87 

within the 2oC limit set at the Paris Agreement [Lenton et al., 2023]. Rather, we expect that 88 

climate adaptation and mitigation measures through active ecosystem management will be 89 

increasingly important [Guan et al., 2023; Obersteiner et al., 2010], and therefore society 90 
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urgently needs predictive models to provide more robust and detailed guidance on how such 91 

ecosystem-based measures can be properly executed.  92 

Robust EBMs require the underlying mathematical formulations to be either simple (with 93 

few well constrained parameters) or well balanced, where processes are described by a complete 94 

set of physical rules (see Table 1 for a list of example physical rules that we are referring to in 95 

this perspective). Unfortunately, existing EBMs often represent biogeochemical processes 96 

without considering the underlying mechanistic details, and thus can only provide limited 97 

insights into how ecosystem management can effectively address climate adaptation and 98 

mitigation. For instance, existing models usually represent soil organic matter (SOM) as a 99 

composite of abstract and unmeasurable pools with predefined turnover times modified by 100 

edaphic conditions [Koven et al., 2013; Tao et al., 2023; Viskari et al., 2022]. However, it is the 101 

diverse chemical composition of SOM and dynamic physical associations and interactions 102 

between SOM, soil particles, microbes, water, and plants that determine SOM storage and 103 

decomposition dynamics [Kleber, 2022; Lehmann et al., 2020]. Thus, effective management 104 

should modulate these interactions holistically for SOM storage to be maintained or even 105 

enhanced. Models that account for many of these mechanisms are being developed [Abramoff et 106 

al., 2022; Grant et al., 2017; Riley et al., 2022; Wang et al., 2022], yet implementing them 107 

comprehensively in coupled EBMs is still a far-off goal. 108 

Additionally, in most existing EBMs, the plant canopy is at best represented with only 109 

two big leaves, one sun-lit and the other shaded (i.e., the two-big-leaf approximation; [e.g., Dai 110 

et al., 2004]), while fine roots are only included implicitly via parameterizations [Wang et al., 111 

2010; Weng et al., 2022; Zhu et al., 2019], such that ecosystem performance associated with 112 

different canopy structures and root traits cannot be assessed with these models. Plant models 113 
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that are more explicit in their representation of plant functional traits and associated processes 114 

exist [Abichou et al., 2013; Kang et al., 2012], but these models are often hard to couple with 115 

ecosystem-level models due to their high complexity and large number of parameters, while 116 

EBMs account for soil and atmospheric processes simplistically. The imbalance between 117 

complex plant models and relatively simple EBMs then creates a coupling challenge that calls 118 

for special care. Further, even if a biogeochemical or biophysical process is represented in 119 

EBMs, its mathematical description may ignore essential physical constraints (as discussed 120 

below), resulting in poor long-term predictability and lowering stakeholders’ confidence in 121 

conducting mitigations based on guidance generated from model predictions [Luo et al., 2015]. 122 

For example, the emerging enthusiasm in lowering agricultural carbon intensity has stirred 123 

interest in applying ecosystem models for measuring, reporting, and verifying soil carbon 124 

changes and greenhouse gas emissions due to changes in management practices. However, 125 

stakeholders have shown diverging confidence in the models’ predictive capability [Guan et al., 126 

2023]. This situation stands in stark contrast to the developments in industry, where computer-127 

aided design software has facilitated the production of ships measuring hundreds of meters in 128 

length and chip circuits as small as a few nanometers [e.g., Arrichiello and Gualeni, 2020; Seok 129 

et al., 2021], and in weather forecasting, where reasonable weather predictions a week in 130 

advance are common [Bauer et al., 2008].  131 

The successes of computer-aided design software in industry and numerical models in 132 

weather forecasting are founded on mathematical models formulated according to physical rules 133 

(see Table 1 for examples of these rules). The performance of these models can be continuously 134 

improved by including new essential processes [Zhou et al., 2022], adopting more robust and 135 

effective numerical solution strategies [Candel et al., 1999; Lin and Rood, 1996; Liu et al., 136 
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2019], utilizing better constrained parameters [Kotsuki et al., 2018; Wober et al., 2020], and 137 

implementing more accurate initial and boundary conditions [Saredi et al., 2021; Xiao et al., 138 

2007]. Such a trajectory allows for the realization of “the unreasonable effectiveness of 139 

mathematics” wherein simple equations can accurately describe complex real-world phenomena 140 

[Wigner, 1960].  141 

As ecosystem biogeochemistry is heavily influenced by living organisms (spanning 142 

micro- to macro-organisms; [Madigan et al., 2009; Taiz and Zeiger, 2006]), EBM modelers have 143 

avoided physical rules-based mathematical representations (thought to be unfeasible to describe 144 

complex living organisms) and have chosen instead empirical representations. Yet, the research 145 

community now has access to an unprecedented amount of increasingly detailed observations 146 

and inferences of traits [e.g., Kattge and Sandel, 2020], and micro-climate data ([e.g., Kearney et 147 

al., 2014]; Ameriflux). Researchers are also able to design new biological traits by gene editing 148 

[Lam et al., 2021; Saurabh, 2021], and predict intracellular biochemical rates using proteomic 149 

information [De Falco et al., 2022; Sweetlove and Ratcliffe, 2011]. All of these are providing us 150 

with unprecedented opportunities to do designed interactions with biological organisms. We thus 151 

contend that the time is ripe for the development of EBMs with mechanistic representations 152 

rooted in physical rules (see Plate 1 for definitions of physical rules and mechanistically based 153 

process representations). Such models will enable the assimilation of a broader range of 154 

empirical data and provide more robust numerical predictions, thus guiding ecosystem 155 

management more effectively. 156 

We organize the remainder of this perspective paper as follows. First, we delineate the 157 

part of ecosystem biogeochemistry that will be discussed in this perspective. Second, we analyze 158 

the intrinsic limitations of two popular approaches currently used to formulate EBMs: the 159 
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multiplier-based empirical response function and the law of the minimum. We highlight that 160 

these two approaches are unlikely to result in a model that can be incrementally refined as new 161 

theories and observations are developed and integrated. Third, we discuss how adopting physical 162 

rules-based approaches can lead to significant progress. In particular, we demonstrate with three 163 

examples how physical rules-based models can improve understanding of biogeochemical 164 

processes and provide opportunities for engineering biogeochemical responses. Finally, we 165 

discuss how the research community can work together to develop comprehensive and coherent 166 

EBMs based on physical rules to better realize "the unreasonable effectiveness of mathematics" 167 

in ecosystem biogeochemical modeling. We note that the mathematical symbols used in our 168 

discussion are defined in Table A. 169 

Physical rules refer to fundamental principles or laws that govern the behavior and interactions 
of physical systems in the natural world. These rules are derived from scientific observations, 
experiments, theory, and mathematical models that describe the fundamental properties of 
matter, energy, and forces. Here, we categorize them as primary (e.g., conservation) and derived 
(e.g., Newton’s Second Law) rules. We note that what we call primary rules here have also been 
termed first, fundamental, and primary principles, among others, in the literature. Derived rules 
are constructed from primary rules and consistent with abundant observational evidence. For 
example, the change of momentum of a mass particle is proportional to the force applied, and 
the rate of heat conduction between two locations in space is proportional to the temperature 
gradient between these locations.  

Mechanistically based process representations, when used for biogeochemical modeling, 
refer to the construction of a mathematical or computational representation of the target process 
based on detailed knowledge about the underlying biological and physical mechanisms. As such, 
the mathematical description of a given process explicitly considers the involved entities and 
logical understanding of their interactions within the environment. For instance, mechanistically 
based representations of microbial substrate uptake could consider sub-processes including 
substrate transport, capture, and assimilation. The environmental dependence of each of these 
sub-processes can be separately described for example by physical rules. 

Plate 1. Definition of “physical rules” and “Mechanistically based process representations”.  170 

 171 
 172 
 173 
 174 
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Table 1. Example physical rules. There could be more primary rules if subatomic interactions 175 
are considered, but the six listed here are proposed to be sufficient to develop biogeochemical 176 
models. Additionally, we assume that there is no mass-energy conversion in the biochemical 177 
reactions, so that mass and energy balance rules are independent. There are many more derived 178 
rules, e.g., Navier-Stokes equation and Darcy’s law, each of which can be derived from these 179 
primary and secondary rules with proper mathematical approximations.  180 

Name Domain of application Reference 

Primary rules   

Mass balance Mass exchange Feynman et al. [2011b] 

Energy balance Energy exchange Feynman et al. [2011b] 

Charge balance Chemical reactions  Atkins and de Paula [2006] 

Volume balance Freeze-thaw, SOM 
accumulation, transpiration-
induced transport, 
incompressible flow 

Simunek and Suarez [1993]; 
Sollins and Gregg [2017] 

Momentum balance Pressure driven mass flow  Batchelor [1967] 

Entropy balance Chemical reaction and 
transport 

Atkins and de Paula [2006] 

Derived rules   

Newton's laws of motion Mechanic processes, e.g., 
bacterial movement 

Purcell [1977] 

Maxwell’s theory of 
electromagnetism 

Radiation processes Baldocchi et al. [1985]; Ross 
[1981] 

Quantum Mechanics Chemical reactions Bao and Truhlar [2017]; 
Eyring [1935] 

Thermodynamic laws Equilibrium thermodynamic 
processes for chemical 
reactions and other processes 

Atkins and de Paula [2006] 

Gradient driven transport Diffusion of mass and energy, 
energy dissipation 

Cussler [2008]; Feynman et 
al. [2011b] 

Advective transport Convection-driven tracer 
transport 

Steefel et al. [2005] 

Law of mass action Chemical reactions Koudriavstev et al. [2001] 

 181 
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 182 
Figure 1. A general (but non-exhaustive) delineation of processes involved in terrestrial 183 
ecosystem dynamics. To highlight their importance, plant-microbe-soil interactions are separated 184 
from ecological interactions. The biogeochemical processes are the focus of this perspective. 185 

2. Biogeochemical processes in terrestrial ecosystem dynamics and mathematical rules for 186 

scaling-coherent modeling 187 

To aid our discussion of the difference between empirically based and physical rules-188 

based approaches for formulating EBMs, we first delineate the major biogeochemical processes 189 

involved in terrestrial ecosystem dynamics and identify which of them will be within the scope 190 

of this perspective (Figure 1). We define biogeochemical processes as those that lead to the 191 

production or consumption of chemical species and biomass. Animals are excluded here, even 192 

though they are also important in ecosystem nutrient dynamics [e.g., Atkinson et al., 2018]. 193 

Meanwhile, biogeophysical processes and disturbances (including ecosystem management) are 194 

those that affect environmental conditions (e.g., soil and atmospheric temperature and water 195 

contents, soil physical and chemical properties) where biogeochemical processes occur [Robinne 196 

et al., 2020; Rusu, 2013]. With this delineation, our discussion in this perspective focuses on how 197 

to mathematically represent biogeochemical rates and changes in storage under the influence of 198 

environmental and biological factors (e.g., Table 2).  199 

Biogeophysical processes 
• Land-atmosphere energy and mass 

exchange
• Belowground and surface chemical 

transport 
• Soil heat transport
• Soil moisture transport
• Surface runoff and transport
• …

Biogeochemical processes
• Soil geochemistry
• Soil microbial 

biogeochemistry
• Plant biogeochemistry
• Plant-microbe-soil 

interactions
• Ecological interactions
• …

Disturbances
• Fire
• Flood
• Pests
• Erosion
• Land cover change
• Managements
• Wind
• …

Terrestrial ecosystem dynamics
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We acknowledge that biogeochemical processes are always dependent on the spatial and 200 

temporal scales at which they are observed or modeled, but our discussion in this perspective 201 

leaves out the challenge of scaling across spatial heterogeneity at the landscape scale. Instead, we 202 

discuss scaling issues at a fine scale relevant for process understanding (e.g., from soil pore to 203 

core scale; from leaf to canopy scale). Further, we expect that improved physical rules-based 204 

modeling will facilitate spatial heterogeneity upscaling through the use of, e.g., remote sensing 205 

and machine learning approaches.     206 

Moreover, evolutionary processes [de Vries and Archibald, 2018; Greenway, 1980; 207 

Koonin and Wolf, 2012; Tan, 2022], and processes regulating community and ecosystem 208 

assembly [Higgins, 2017; Leibold et al., 2017] are also not discussed in this perspective. These 209 

processes are linked to the biogeochemical processes discussed here, and, in a first order 210 

approximation, can be represented with similar physical rules that describe the movement and 211 

transformation of energy and chemical molecules in biogeochemical processes, except that now 212 

the functional traits of individual organisms (and their effect on biogeochemical processes) can 213 

change through time due to evolution or community-level traits change through time due to 214 

variations in community assembly [Levin, 1992; Martiny et al., 2023].     215 

 216 
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 217 
Figure 2. A schematic depicting the space-time relationships between basic biogeochemical 218 
building blocks and the emergent biogeochemical processes constituting ecosystem dynamics. 219 
Biogeochemical processes are represented in existing empirically based models without 220 
accounting for underlying mechanisms, while in the proposed physical rules-based models, 221 
biogeochemical processes are represented through logical combinations of basic biogeochemical 222 
building blocks that are formulated with physical rules. We note that heterogeneity increases at 223 
greater scales of time and space.  224 

2.1 Modeling biogeochemical processes across scales 225 

One unique feature of natural processes is that their governing equations often change 226 

across different spatiotemporal scales (Figure 2). That is, there are qualitative differences 227 

between observations of emergent phenomena at fine and coarse scales, a concept termed “more 228 

is different” by Anderson [1972]. For instance, the electron and charge exchange that give rise to 229 

chemical reactions at (the fine) angstrom (10-10 m) and femtosecond (10-15 s) scale are well-230 

described by quantum mechanics [Feynman et al., 2011a; Thakkar, 2021], while collisions 231 

between molecules at (the coarse) nanometer (10-9 m) and millisecond (10-3 s) scales are well-232 

described by Newton’s laws [Boltzmann, 1964; Pauli, 1973]. At the micrometer (10-3 m) and 233 

second (100 s) scale, particle transport laws and the law of mass action are appropriate governing 234 

equations (which can be derived from Newton's law and quantum mechanics [Berg and Purcell, 235 

Basic biogeochemical build blocks
Rate processes: diffusion, advection, basic chemical reactions, etc.
Entities: enzymes, molecules, mineral surfaces, etc.
Contextual structure: porous media, aqueous solution, microbial 
cells, plant organs, etc. 

Emergent biochemical processes
Rate processes: Decomposition, nitrification, 
denitrification, menthane production and oxidation, etc. 
Entities: mineral soil, organic and inorganic matter pools, 
plant organs, etc.
Contextual structure: vegetation types, soil classes, etc.
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1977; Feynman et al., 2011a; Koudriavstev et al., 2001]). As we further coarsen spatial and 236 

temporal scales, the higher levels of organization, nonlinearities, and variability in environmental 237 

conditions in space and time become important to biogeochemical rates (due to averaging of 238 

nonlinear processes; e.g., Chakrawal et al. [2022]; Wilson and Gerber [2021]). Thus, to model 239 

biogeochemical processes robustly at scales relevant for ecosystem-based climate adaptation and 240 

mitigation, model formulations that properly account for these emergent dynamics are needed. 241 

We next discuss how development of such formulations could be accomplished and are 242 

beneficial. 243 

By recognizing that the processes at a particular modeling scale emerge from the 244 

processes that occur at finer scales, we expect that there are fundamental relationships between 245 

the fine and coarse scales that need to be coherently maintained when model equations are 246 

formulated for the coarse scales. Suppose we are to build a model at a coarse spatiotemporal 247 

scale designated by index 𝑙 (Figure 3). The state variables (𝑌!!) and their contributing processes 248 

(𝑅"!)  (where 𝑛# and 𝑘# are indices for variables and processes, respectively) are constrained by 249 

physical rules 𝛷#'𝑌!! , 𝑅"!) = 0, where 𝛷# is a vector function. Each process 𝑅"! emerges from 250 

the interactions between state variables 𝑌$!"# that occur at the fine scale designated by index l-1 251 

and state variables 𝑌!! that occur at the coarse scale 𝑙. That is 𝑅"! = 𝐻"!'𝑌!! , 𝑌$!"#). Meanwhile, 252 

the fine scale variables (𝑌$!"#) are subject to physical constraints 𝛷#%& -𝑌$!"# , 𝑄'#%&/ = 0 that 253 

involve fine-scale processes 𝑄'!"#. Therefore, for a coherent formulation of the parameterization 254 

of 𝑅"! at the coarse scale 𝑙, one needs to properly maintain the physical constraints 255 

𝛷#%& -𝑌$!"# , 𝑄'#%&/ = 0 at the fine scale 𝑙 − 1. Consequently, the extent to which those fine-256 

scale physical constraints are maintained during upscaling determines the quality of the model 257 
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parameterization at the chosen scale of interest (aka coarse scale 𝑙 here). Such a coherent scaling 258 

approach has been adopted in the transitions between quantum mechanics, Newton’s law 259 

[Feynman et al., 2011a], Boltzmann’s equation [Boltzmann, 1964], Chapman-Enskog kinetic gas 260 

theory [Chapman, 1990], Lattice Boltzmann equation [Chen and Doolen, 1998], Navier-stokes 261 

equation [Chen and Doolen, 1998], Boussinesq equation of surface flow [Kim et al., 2009], and 262 

Richards’ equation of unsaturated flow [Bear, 1972], all of which have contributed to many 263 

scientific and engineering successes.     264 

 265 
Figure 3. The relationship between biogeochemical dynamics for an upscaled model (designated 266 
by 𝑙) and subscale model (designated by 𝑙 − 1). Here the subscale model represents processes in 267 
a spatial subset of the upscaled model. To indicate that models at scales 𝑙 and 𝑙 − 1 may have 268 
different number of state variables and processes, subscripts 𝑛# and 𝑘# are used for scale 𝑙, and 269 
subscripts 𝑚#%& and 𝑗#%& are used for scale 𝑙 − 1. The parameterization scheme 𝐻"! represents 270 
the net effect of process 𝑅"! in the upscaled model, which strives to represent the emergent 271 
biochemical effects from the dynamic interactions between state variables 𝑌!! and 𝑌$!"# at the 272 
finer scale. Process 𝑄'!"# is determined by interactions between 𝑌$!"#. The potential problem 273 
with many existing parameterizations at scale 𝑙 is that the subscale physical constraints (𝛷#%&) 274 
are ignored, so that 𝑅"! does not include interactions with 𝑌$!"#. 275 

Conceptually, deriving governing equations for the coarse scale from those of the fine 276 

scale can be seen as a lossy data compression problem, where fine-scale details are averaged out 277 

while key features are maintained at the coarse scale. Algorithms for such problems have been 278 

developed for processing image, video, and audio data [Hussain et al., 2018; Pan, 1995; Poyser, 279 

2021]. Lossy information compression is closely related to machine learning and can be 280 

Subscale process (mechanisms)

Modeled processes

Upscaled model: 
!"!"
!# = "$" #%"

Subscale model: 
!"#"$%
!# = $&"$% %'"$% &&"$%

Process representation: #%" = '%" &$" , &&"$%

Physical constraints: Φ( &$" , #%" = 0

Physical constraints: Φ()* &&"$% , %'"$% = 0

+,-./	1

+,-./	1 − 1
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formulated using Bayesian inference [Cheng, 2018; Theodoridis, 2015]. Additionally, machine 281 

learning has also been proposed for efficient upscaling [Santos et al., 2022], while Bayesian 282 

inference is frequently used to conduct model-data fusion and estimate model parameters based 283 

on observational constraints [Tang and Zhuang, 2009; Vrugt, 2016]. Therefore, in the following, 284 

we use the Bayesian framework [Jaynes, 2003] to explain the necessity and benefit of coherent 285 

scaling in formulating EBMs.  286 

Given 𝑁 upscaling scheme hypotheses 𝐴', 𝑗 = 1,… ,𝑁, and a set of measurements 𝐵, the 287 

Bayesian theorem ranks the merit of 𝐴' by its posterior probability 𝑃𝑟'𝐴'|𝐵), which is computed 288 

as 289 

𝑃𝑟'𝐴'|𝐵) = 𝑃𝑟'𝐴' , 𝐵)/𝑃𝑟(𝐵) = 𝑃𝑟'𝐵|𝐴')𝑃𝑟'𝐴')/𝑃𝑟(𝐵) (1) 

where the correlation 𝑃𝑟'𝐴' , 𝐵) = 𝑃𝑟'𝐵|𝐴')𝑃𝑟'𝐴') is a product of likelihood probability 290 

𝑃𝑟'𝐵|𝐴') and prior probability 𝑃𝑟'𝐴'), and 𝑃𝑟(𝐵) is the probability of evidence.  291 

As formulated above, in the Bayesian inference framework, identification of the best 292 

upscaling scheme becomes a model selection problem, where 𝑃𝑟'𝐴') represents the prior quality 293 

of 𝑗-th upscaling scheme, whose posterior merit is 𝑃𝑟'𝐴'|𝐵) after considering its capability of 294 

matching the measurements 𝐵. For model-data fusion that aims at parameter estimation of a 295 

given model formulation, 𝐴' is the 𝑗-th sample of model parameters, whose plausibility is 296 

𝑃𝑟'𝐴'|𝐵), and the globally optimal parameter set corresponds to the maximum of 𝑃𝑟'𝐴'|𝐵). For 297 

machine learning that uses some kind of numerical approximation, which could be neural 298 

networks, polynomials, or regression trees, 𝐴' becomes the coefficients of the approximation 299 

method, and 𝑃𝑟'𝐴'|𝐵) ranks the goodness of model fitting conditioned on the measurements 𝐵. 300 

Since model selection, parameter estimation, machine learning based upscaling, and model-data 301 
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fusion all aim to improve EBMs, and share mathematical equivalency, we can explain the 302 

necessity and benefit of incorporating physical rules by examining the parameter estimation 303 

problem within a model-data fusion framework. This approach, in turn, reinforces the 304 

significance of physical rules in all four of these approaches. Specifically, we will show that 305 

incorporating physical rules will alleviate the parametric equifinality.  306 

To simplify the explanation, we assume that the model-data discrepancy follows the 307 

Gaussian distribution, as often assumed in Bayesian inference-based applications of model-data 308 

fusion for EBMs [Tang and Zhuang, 2009; Tarantola, 2005]. Accordingly, the cost function (or 309 

loss function termed in machine learning) of model-data discrepancy for a set of model 310 

parameter values (i.e., ln	𝑃𝑟(𝐵|𝐴) for parameter set 𝐴) can be written in the following plain 311 

language form: 312 

    Cost function=Observational constraint + scaling coherency rules + prior constraint. 
 

Moving towards a more formal definition, the cost function relates processes 𝑅# to the model 313 

parameters 𝜃$ through the numerical model, which is constructed based on mechanistic 314 

representations, empirical response functions, or neural networks in some machine learning 315 

framework [Tsai, 2021]. The 𝜃$ and modelled 𝑅# then affect the model goodness of fit (i.e., 316 

observational constraint) and need to satisfy physical rules (i.e., scaling coherency rules). The 317 

Bayesian inference seeks the optimal 𝜃$ value that produces the least model-data discrepancy. 318 

That is, by identifying the optimal 𝜃$, we can also obtain the best upscaled equations of EBMs.  319 

In mathematical terms, the cost function can be written as 320 

𝐽 = &
(
𝛴''𝑌'(𝑅#) − 𝑌'))

*
𝐶''𝑌'(𝑅#) − 𝑌')) + 𝛴"

+$
(
'𝑀"(𝑅#))

( + 𝐽,,      (2) 
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where vectors 𝑌'(𝑅#) are model predicted snapshots of the observed vectors of response variables 321 

𝑌'), and the corresponding covariance matrix of model-data discrepancy has an inverse specified 322 

by 𝐶'.  323 

In equation (2), 𝑀"(𝑅#) represents the residual of the 𝑘-th tradeoff or the 𝑘-th scaling 324 

coherency rule among the processes 𝑅#, which are related to model parameters 𝜃$. In this term, 325 

𝜆" is the Lagrangian multiplier for the 𝑘-th scaling rule. 𝐽, is the regularization term from the 326 

prior knowledge of 𝜃$. The scaling coherency rules could be empirical relationships, e.g., the 327 

relationship between vapor pressure deficit and stomatal conductance [Yu et al., 2017], the 328 

relationship between methane production and pH [Cao et al., 1998], among others. The scaling 329 

coherency rules could also be physical rules, e.g., the mass conservation relationship among 330 

precipitation, infiltration, surface runoff and ponding. Depending on the specific situation, 331 

physical rules may appear as either equality (e.g., for conservation relationship among fluxes) or 332 

inequality (e.g., some physical variables like mass or volume should never be negative). For 333 

conservation rules, e.g., those of mass or momentum, tradeoff 𝑀"(𝑅#) should be satisfied 334 

exactly, so that considering such rules is equivalent to the incorporation of equality constraint, 335 

aka error-free observations encountered in Bayesian inference or data assimilation [Basir and 336 

Senocak, 2022; Pan and Wood, 2006]. When the above scaling rules are considered in the 337 

physics-based or knowledge-guided machine learning approach [ElGhawi et al., 2023; Liu et al., 338 

2022], 𝑀"(𝑅#) represents the physical knowledge to be incorporated. 339 

The identification of optimal parameters based on equation (2) is equivalent to 340 

minimizing the cost function 𝐽, a process that is related to the first order variation 𝛿𝐽, which can 341 

be obtained by applying the chain rule of differentiation to equation (2), such that 342 
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𝛿𝐽 = 𝛴! G𝛴'𝐶''𝑌'(𝑅#) − 𝑌'))
-.%
-/&

H -/&
-0'

𝛿𝜃$ + 𝛴! G𝛴"𝜆"𝑀"(𝑅#)
-1(
-/&

H -/&
-0'

𝛿𝜃$ + -2)
-0'

𝛿𝜃$.   
   

(3) 
  

In equation (3), 𝛿𝐽 is related to the variation of parameters 𝛿𝜃$ through three types of 343 

constraints, with the first from the observations (i.e., 𝛴! G𝛴'𝐶''𝑌'(𝑅#) − 𝑌'))
-.%
-/&

H -/&
-0'

𝛿𝜃$), the 344 

second from physical rules (i.e., 𝛴! G𝛴"𝜆"𝑀"(𝑅#)
-1$
-/&

H -/&
-0'

𝛿𝜃$), and the third from the prior 345 

information of the parameters (i.e., -2)
-0'

𝛿𝜃$).  346 

Equation (3) allows us to make three assertions. First, for two models of the same number 347 

of parameters, the lower magnitude of -/&
-0'

 will lead to smaller contributions to the cost function 348 

by the first and second types of constraints, so that the cost function is smaller for a given 349 

variability of the parameter 𝛿𝜃$. In other words, making the represented process 𝑅! less 350 

sensitive to the parameters 𝜃$ leads to a model with lower parametric sensitivity. This is the case 351 

when applying physical rules that make the model less sensitive to uncertainty in individual 352 

parameters [Tang and Riley, 2013; 2021] (also see the example in section 3.2). Second, the 353 

tradeoff terms or scaling coherence rules designated by 𝑀"(𝑅#) act like regularization to the 354 

parameter inference processes. When these regularization terms are ignored, posterior models 355 

will be less stable and more vulnerable to overfitting, so that the parameters are less well-356 

constrained. The need for regularization is a phenomenon widely observed in machine learning, 357 

which is the main driver for the recent surge of interest in physics-guided machine learning 358 

[ElGhawi et al., 2023; Goodfellow et al., 2016; Liu et al., 2022]. Third, since 𝛿𝐽 measures the 359 

resultant model-data discrepancy due to uncertain parameters, it quantifies the severity of 360 

parametric equifinality. Therefore, if a model formulation results in lower  𝜕𝐽/𝜕𝜃$ (when 361 

averaged over the uncertain parameters), the parametric equifinality is reduced and the model's 362 
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predictive power is improved. Moreover, since explicitly accounting for process tradeoffs by 363 

𝑀"(𝑅#) often appears as increased model complexity, we contend that more complex models can 364 

potentially be more robust, which is at odds with the common criticism of increasing model 365 

complexity, i.e., higher model complexity leads to more model parameters, and thereby higher 366 

parametric uncertainty.  367 

When formulating EBMs, the empirically based approaches work in a top-down manner, 368 

where they use regressions to derive response functions (aka 𝑀"(𝑅#)) based on observations of 369 

emergent biogeochemical rates, and corresponding environmental factors, such as temperature, 370 

moisture, radiation, pH, and soil properties, e.g., some methane production models [Riley et al., 371 

2011; Zhuang et al., 2004]. Because the empirically based approaches rely strongly on the 372 

amount and context of observations, the resulting response functions can vary significantly from 373 

one study to another, so that there is too much uncertainty in the derived scaling coherency rules 374 

𝑀"(𝑅#). Furthermore, because it is rare and difficult to comprehensively control and measure the 375 

variation of all relevant environmental factors and control variables of the biogeochemical rates, 376 

the strong context-dependence of the response functions is unlikely to be resolved by further 377 

observations. That is, 𝑀"(𝑅#) at one place or time cannot be transferred confidently to the other 378 

place at another time. Such a situation is quite different from measuring the gravitational 379 

constant using a pendulum, where the context dependence can be reduced to almost negligible 380 

[Parks and Faller, 2010]. Moreover, the empirically based regressions of 𝑀"(𝑅#) generally 381 

ignore physical constraints among the subscale processes (i.e., terms as 𝛷#%& -𝑌$!"# , 𝑄'#%&/ = 0 382 

in Figure 3, which are included by 𝜆" into equation (3)). Consequently, the resultant 383 

parameterizations will unlikely be robust. Such a case has been demonstrated with the superiority 384 

of the knowledge guided machine learning model to the pure machine learning based model [Liu 385 
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et al., 2022]. We will provide more analysis on the shortcomings of empirically based 386 

approaches in section 2.2.    387 

In contrast to the top-down empirically based approaches, physical rules-based 388 

approaches work in a bottom-up manner, in which they focus on representing relatively well-389 

understood basic processes and their interactions using well established mathematical constraints 390 

and logical inductions. Because these mathematical constraints and logical inductions have been 391 

vetted by observations in diverse disciplines, the resultant model constraints are much stronger 392 

than can be imposed by limited observed responses (e.g., the term related with 𝑌') in equation 393 

(3)) in a calibration study.  394 

Conceptually, the idea adopted by physical rules-based approaches is analogous to 395 

building a great variety of lego structures, in which only a few well-designed basic building 396 

blocks are used, even though some customized blocks are occasionally needed to knit the pieces 397 

together. These customized lego blocks correspond to processes that cannot currently be 398 

formulated using known physical rules or are too complex to be computed using known physical 399 

rules, but the empirical rules are known to be good enough, thus intuitive or empirical 400 

approximations are used instead. For instance, in applying the Richards’ equation, we often use 401 

the empirical soil water retention curve parameterization that relates soil matric potential and soil 402 

water content as a function of soil texture and composition [Clapp and Hornberger, 1978; van 403 

Genuchten, 1980]. As another example, in the modeling of plant phenology, empirical rules of 404 

plant development are used to guide the plants’ temporal development in the model [e.g., Grant 405 

et al., 2020]. Nevertheless, for EBM modeling, we argue that most biogeochemical processes can 406 

be constructed with just a few well-understood basic building blocks. Interestingly, biology 407 

seems to work in such a hierarchical way. For example, protein folding can be described by first 408 
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forming secondary structures from amino acids, then those secondary structures fold into the 409 

native state that is able to carry out various biological functions [Rollins and Dill, 2014]. In this 410 

sense, the physical rules-based approach is explicitly constructing the emergent biogeochemical 411 

processes. We will discuss this concept further in section 2.3. 412 

Three decades ago, Agren and Bosatta [1990] contended that it is impractical to model 413 

ecosystems by fitting (sub)systems together piece by piece; instead, they suggested that 414 

researchers should focus on “abstract theories” describing ecosystem functioning. We partially 415 

agree with them by recognizing that it is impractical to model every function of an ecosystem 416 

with physical rules. However, we contend that physical rules will reveal sufficient integrating 417 

variables to coherently combine the subsystems, which then will enable better understanding and 418 

description of the variability of emergent ecosystem functions. This bottom-up approach 419 

contrasts with top-down ecosystem process representations that are based on observational 420 

evidence of emergent dynamics. The bottom-up approach allows for prediction in a wide range 421 

of conditions, whereas the top-down approach, being constrained by a limited set of 422 

observations, might capture current dynamics at some locations, but not necessarily future ones, 423 

or at sites with different characteristics. Therefore, EBMs built from physical rules will have 424 

much better model-based guidance for ecosystem engineering-based climate mitigation, e.g., 425 

sustainable agriculture intensification [Pretty and Bharucha, 2014] and crop plant modification 426 

[Woo et al., 2020] for food security. 427 

 428 

 429 

 430 

 431 
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Table 2. Example biogeochemical processes used to analyze limitations of the empirically based 432 
approaches. 433 

Process Parameterization Example references 

Soil organic carbon 
decomposition 

𝑅 = 𝑅,𝑓&(𝑇)𝑓((𝑀)𝑓3(𝑂), 
where 
𝑅,: reference rate, 
𝑓&(𝑇): temperature dependence, 
𝑓((𝑀): moisture dependence, 
𝑓3(𝑂): oxygen dependence. 

Azizi-Rad et al. 
[2022]; Bauer et al. 
[2008] 

Methane production 𝑅 = 𝑅,𝑓&(𝑇)𝑓((𝑝𝐻)𝑓3(𝑝𝐸), 
where 
𝑅,: reference rate, 
𝑓&(𝑇): temperature dependence, 
𝑓((𝑝𝐻): pH dependence, 
𝑓3(𝑝𝐸): redox dependence. 

Riley et al. [2011]; 
Zhuang et al. 
[2004] 

Methane consumption 𝑅 = 𝑅,𝑓&(CH4)𝑓((O()𝑓3(𝑇)𝑓4(𝑀), 
where 
𝑅,: reference rate, 
𝑓&(CH4): CH4 availability dependence, 
𝑓((O(): O2 availability dependence, 
𝑓3(𝑇): temperature dependence, 
𝑓4(𝑀): moisture dependence. 

Riley et al. [2011]; 
Zhuang et al. 
[2004] 

Nitrification 𝑅 = 𝑅,𝑓&(NH45)𝑓((𝑇)𝑓3(𝑀)𝑓4(𝑝𝐻), 
where 
𝑅,: microbial biomass dependent reference 

nitrification rate, 
𝑓&(NH45): NH45 availability dependence, 
𝑓((𝑇): soil temperature dependence, 
𝑓3(𝑀): soil moisture dependence, 
𝑓4(𝑝𝐻): pH dependence. 

Li et al. [2000] 

Denitrification 𝑅 = 𝑅,𝑓&(𝑇)𝑓((𝑀)𝑓3(𝑝𝐻)𝑓4(𝑐𝑙𝑎𝑦), 
where 
𝑅,: reference rate as a function NO3%, NO(%, and 

NO availability, 
𝑓&(𝑇): temperature dependence, 
𝑓((𝑀): moisture dependence, 
𝑓3(𝑝𝐻): pH dependence, 
𝑓4(𝑐𝑙𝑎𝑦): clay content dependence. 

Li et al. [2000] 

Photosynthesis 𝑅 = 𝑚𝑖𝑛'𝐴6 , 𝐴' , 𝐴7) − 𝑅8, 
where 

von Caemmerer 
[2013] 
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𝐴6: carbon-limited rate, 
𝐴': light-limited rate, 
𝐴7: triosephosphate-limited rate, 
𝑅8: dark respiration. 

Stomatal conductance 𝑅 = 𝑅,(𝑃𝐴𝑅)𝑓&(𝑉𝑃𝐷)𝑓((𝑇9)𝑓3(𝐶9)𝑓4(𝜓), 
where 
𝑅,(𝑃𝐴𝑅): reference conductance depending on 

photosynthetically active radiation, 
𝑓&(𝑉𝑃𝐷): vapor pressure deficit dependence, 
𝑓((𝑇9): air temperature dependence, 
𝑓3(𝐶9): atmospheric CO2 dependence, 
𝑓4(𝜓): leaf water potential dependence. 

Jarvis [1976]; Yu et 
al. [2017] 

Soil hydraulic 
resistance 

𝑅 = 𝑅,𝐹(𝜃&), 
where 
𝑅,: reference resistance, 
𝐹(𝜃&): regression equation of topsoil moisture 
𝜃&.  

Kondo and Saigusa 
[1994]; van de 
Griend and Owe 
[1994] 

Microbial growth 𝑅 = 𝑅$9:𝑔&(𝑝𝐻)𝑔((𝑇)𝑔3(𝑀)∏ 𝑓''𝑆')' , 
or  
𝑅 = 𝑅$9:𝑔&(𝑝𝐻)𝑔((𝑇)𝑔3(𝑀)𝑚𝑖𝑛^𝑓''𝑆')_, 
where  
𝑅$9:: maximum growth rate, 
𝑔&(𝑝𝐻): pH dependence, 
𝑔((𝑇): temperature dependence, 
𝑔3(𝑀): moisture dependence, 
𝑓''𝑆'): dependence of nutrient 𝑆'. 

Klausmeier et al. 
[2007]; Leon and 
Tumpson [1975]; 
Maggi et al. [2008] 

 434 

2.2 Limitations of the empirical response function approach 435 

Currently, biogeochemical process rates (R) are typically formulated as multiplicative 436 

functions of a reference rate (𝑅,) and ‘rate modifiers’ (𝑓') capturing the effects of environmental 437 

conditions (𝜃'), 438 

𝑅 = 𝑅,∏ 𝑓''𝜃')
';<
';& .         (4) 

Alternatively, minimum functions are used under the assumption that the dominant factor 439 

constrains the overall rate, such that 440 
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𝑅 = 𝑅,min'𝑓''𝜃').       (5) 

These formulations are also used for conductance and resistance that are needed to 441 

compute rates. Usually, 𝑓''𝜃') is a regression-derived multiplier representing the sensitivity of 442 

the rate 𝑅 to environmental factor 𝜃', assuming negligible synergistic or antagonistic interactions 443 

among them [e.g., Jarvis, 1976]. Occasionally, 𝑓''𝜃') has a physical basis. For example, when 444 

𝑓''𝜃')  represents the dependence of substrate availability in the form of Michaelis-Menten 445 

kinetics, it may be argued to be mechanistically based by extrapolating insight obtained at 446 

specific conditions. Moreover, for many controlling factors, such as for pH and moisture, 𝑓''𝜃') 447 

is normalized to vary from 0 to 1. The temperature dependence is an exception, where an 448 

exponential function without an upper bound may be used, e.g., the Q10 function for chemical 449 

reactions. We give some example biogeochemical processes that adopt the above formulations in 450 

Table 2. In contrast, temperature dependence may have upper bounds in biochemical reactions, 451 

with the controlling factor 𝑓''𝜃') constrained by physical feasibility [Pasut et al., 2023; Tang 452 

and Riley, 2023b].  453 

The multiplicative approach by equation (4) assumes that the different factors 𝜃' 454 

influence the response variable independently [Jarvis, 1976]. As this assumption leads to zero 455 

covariance between the influence of any two factors, the multiplicative approach is consistent 456 

with the multiplicative model in probability theory [Feller, 1968; Hoem, 1987; Wermuth, 1976]. 457 

Meanwhile, the logic behind the law of the minimum approach of equation (5) is based on the 458 

crude empirical observations of crop yield that dates back to the 1820s [Liebig, 1840; Sprengel, 459 

1826]. In some applications, the functional form 𝑓'𝜃') can be argued to be mechanistically 460 

based, e.g., the use of Michaelis-Menten or Monod functions [Liu, 2007] for the carboxylation 461 

process by Rubisco in photosynthesis, or, for biological growth directly related to substrate 462 



manuscript submitted to JGR-Biogeosciences 

 25 

availability. Despite a mechanistic basis in limited cases, and their mathematical and conceptual 463 

simplicity, neither of these approaches provides robust formulations of fluxes and conductance in 464 

biogeochemical models, for reasons explained below. 465 

In contrast to the assumption of no synergistic or antagonistic interactions underlining the 466 

multiplicative approach, first, it is uncommon that in real biogeochemical systems each 467 

modulating factor 𝜃' independently influences the response variable of interest. Instead, 468 

interactions between the modulation factors are more common. For example, enzymatic 469 

biochemical reactions involve at least two steps: (1) binding of substrate to the enzyme, and (2) 470 

new molecule production under enzyme catalysis [Briggs and Haldane, 1925]. When one type of 471 

enzyme is acting on one type of substrate, this process is often summarized with the Michaelis-472 

Menten kinetics,  473 

𝑅 = ='*+>?
@5?

,        (6) 

where 𝐸 and 𝑆 are enzyme and substrate concentrations, 𝐾 is the affinity parameter (or half 474 

saturation constant), and  𝑣$9: is the maximum catalysis rate [Michaelis and Menten, 1913]. 475 

Since biochemical reactions mostly occur in water, and if the unbinding rate is relatively 476 

insignificant compared to the forward binding rate (as is usually assumed based on empirical 477 

observations), 𝐾 is approximately proportional to 𝑣$9:/𝐷, with 𝐷 being the aqueous diffusivity 478 

of the substrate with respect to the enzyme [Tang and Riley, 2019b; Zhou, 1983]. Therefore, in 479 

soil, 𝐾 can be expected to be a function of temperature, moisture, and the type of substrate 480 

molecules. Further, in most cases, 𝑣$9: is only a function temperature, while effective 481 

concentrations of catalytically active enzyme 𝐸 and substrate 𝑆 are functions of soil moisture. 482 

Consequently, the temperature and moisture effect on 𝑅	will only emerge from their influences 483 

on 𝐾, 𝑣$9: and substrate availability, suggesting that it is highly unlikely that the temperature 484 
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sensitivity of 𝑅 is independent of its moisture sensitivity as formulated by the multiplicative 485 

approach. For example, Zhou et al. [2014] observed that temperature sensitivity of microbial 486 

respiration depends strongly on soil moisture status, which cannot be captured by the 487 

multiplicative model. On the other hand, if the process is formulated using the law of minimum 488 

approach, the model will then predict that once the temperature effect is below a threshold, the 489 

moisture effect on increasing the reaction rate will be shielded out. These arguments thus 490 

invalidate both equations (4) and (5) for acting as a logically consistent formulation of the 491 

biogeochemical rates.  492 

Although the above argument does not rule out the feasibility of formulating stomatal 493 

conductance with equation (4) or (5) (as one example for their use on representing conductance 494 

and resistance), there are sufficient mechanistic reasons to invalidate these two approaches. Like 495 

many biochemical processes, stomatal conductance emerges from the interactions between many 496 

aspects of plant functioning, so that its response to changes in one influencing factor is 497 

dependent on other factors. Moreover, each plant grows by coordinating the traits of all its 498 

organs and adjusting to the presence of its neighbors. As a result, stomata behave accordingly. 499 

Consequently, there must be a directional information flow (including causality) among a plant’s 500 

response to its influencing factors, which in turn regulates the behavior of stomatal conductance. 501 

Therefore, the effects of different influencing factors on stomatal conductance are unlikely to be 502 

simply multiplicative, as this oversimplification neglects the complexity of the plant and its 503 

interactions with the environment. A heuristic analogy is the process of putting on one’s socks 504 

and shoes, in which socks must be put on first even though the selection of socks and shoes may 505 

appear to be independent. However, the multiplicative model cannot differentiate the logical 506 

order between putting on socks and shoes. 507 
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In this example of stomatal conductance, the opening of stomata is controlled by the 508 

volume and therefore turgor of the guard cells [Meidner, 1968] (and epidermal cells as well 509 

[Buckley, 2019], but including epidermal cells will not influence the conclusion of the following 510 

logical induction). The volume of guard cells is an exponential function of their turgor pressure 511 

[Steudle et al., 1977], which is linearly related to osmotic pressure inside the guard cells. 512 

According to von Hoff’s equation [Atkins and de Paula, 2006], the osmotic pressure is a linear 513 

function of solute concentration inside the guard cell, which depends on the photosynthesis rate 514 

(of chloroplasts inside guard cells), and water flux into the guard cell [Meidner, 1968]. By 515 

applying the mechanical balance in the first order approximation (neglecting xylem cavitation), 516 

the osmotic pressure, turgor pressure and the leaf water potential will be linearly related. 517 

Therefore, even leaf water potential would be linearly related to soil water potential, soil water 518 

potential is affected by photosynthesis rate non-multiplicatively via photosynthesis controls on 519 

transpiration. These arguments may partially explain why the empirical Ball-Berry model [Ball, 520 

1987] and the empirical Leuning model [Leuning, 1990; 1995] are not numerically robust in 521 

practice, where the effect of soil water stress is applied as a multiplier [Tang et al., 2015].  522 

Admitting that the water vapor pressure does not influence stomatal conductance 523 

multiplicatively, the model by Medlyn et al. [2011] is based on optimality theory [Cowan, 1977], 524 

which assumes that, within some time period, stomatal conductance adjusts to minimize the 525 

marginal water cost for photosynthesis. This assumption results in a deterministic relationship 526 

between stomatal conductance and water vapor pressure deficit. In contrast, field data have 527 

shown hysteretic relationships between leaf surface vapor pressure deficit and stomatal 528 

conductance [Wang et al., 2009]. Coincidentally, when photosynthesis is represented using the 529 

model by Farquhar et al. [1980], the resultant stomatal conductance is described by a 530 
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combination of the multiplicative approach and the law of the minimum approach. However, 531 

Walker et al. [2021] suggested that the law of the minimum approach adopted by the Farquhar 532 

model caused significant numerical uncertainty. This evidence indicates that new formulations 533 

are needed to capture the rich variability of the response of stomatal conductance to changes in 534 

important environmental influencers such as vapor pressure deficit and soil moisture content.  535 

 536 
Plate 2. A brief description of three microbial models that differently treat resource allocation for 537 
maintenance and growth.  538 

Second, even if the influence from factors 𝜃' on 𝑅 can be regarded as mutually 539 

independent, 𝑓''𝜃') may still be highly context dependent, particularly, when 𝜃' is dependent on 540 

Pirt Model

Specific growth rate: !"!
#"!
#$ = "% # = "&'(,%ℎ% # ,

Specific substrate uptake rate: !"!
#*
#$ = %% # = +" *

,#
+ '% .

In this model, specific biomass (and population) growth "% 	is non-negative and increases 
with substrate (#) availability, while cellular maintenance '% 	is only provided by substrate 
taken up. )-  is growth yield of biomass *. 	from the substrate assimilation.
Compromise model

Specific growth rate: !"!
#"!
#$ = "/ # = "&'(,/ℎ/ # − '0 1 − ℎ/ # , 

Specific substrate uptake rate: !"!
#*
#$ = %/ # = "&'(,/

1$ *
,#

+ '0
1$ *
,#

.

In this model, specific biomass (and population) growth "/ 	increases from negative values 
under low substrate availability to positive values at high substrate availability, while the 

cost of maintenance '0 1 + !
,#
− 1 ℎ/ #  *. 	 is paid by both biomass and substrate 

taken up. )-  is growth yield from the substrate assimilation.

Dynamic energy budget (DEB) model

Specific reserve biomass growth: !"!
#"%
#$ = .2,&'(ℎ3 # − / − "3 # "%

"!
,

Specific structural biomass growth: !"!
#"!
#$ = "3 # = 4"%,%!5&&"!

"!6"%,%!
,

Specific substrate uptake rate: !"!
#*
#$ = %3 # = .2,&'(

1& *
,'%

.

In this model, substrate (#) first drives the increase of reserve biomass *7 , whose turnover 
flux /*7 	drives the growth of structural biomass "3*. 	after subtracting the cost of 
structural biomass maintenance ('3  *.). When reserve biomass turnover is lower than the 
cost of maintenance, deficit will lead to the decrease of structural biomass or cell lysis (Tolla 
et al., 2007). )*7  is the reserve biomass yield from substrate assimilation, while )7. is the 
structural biomass yield from mobilizing the reserve biomass.
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soil conditions. For instance, for soil respiration temperature sensitivity, the literature reports 541 

more than 10 different functional forms [Sierra et al., 2015]. Although each of them is able to fit 542 

the empirical data used to derive its functional form, none of them is able to extrapolate 543 

temperature sensitivity from one experiment to another, and the difference between the diverse 544 

functional forms is far from being random and cannot be regarded as noise. When similar 545 

procedures are applied to all relevant influencing factors, we should not be surprised to find out 546 

that the resultant model lacks accurate spatiotemporal variability when conducting large-scale 547 

simulations [Carvalhais et al., 2014; Todd-Brown et al., 2013]. Moreover, because interactions 548 

between different modulating factors are not considered with the multiplicative approach of 549 

equation (3), the resultant EBMs will be overly sensitive to the parameterization of those 550 

factorial dependences [Exbrayat et al., 2013a; Exbrayat et al., 2013b]. As ignoring these 551 

interactions corresponds to omitting the scaling rules in equation (2) (aka 𝑀"(𝑅#)), it implies that 552 

less constrained relationships are modeled between state variables, and thus the EMBs are of 553 

higher parametric equifinality [Luo et al., 2015; Tang and Zhuang, 2008]. To help understand 554 

this last point, imagine we are describing a dynamic system of three variables, adding a tradeoff 555 

between two variables will reduce the three-variable system to a two-variable system, so that the 556 

predicted range of variation by the new model is smaller than the original less constrained model. 557 

The law of the minimum approach has mostly been applied to biochemical reactions 558 

controlled by the supply of multiple substrates. Such processes include photosynthesis [Farquhar 559 

et al., 1980] and multiple nutrients co-limited biological growth [Chakrawal et al., 2022; Tang 560 

and Riley, 2021; Wang et al., 2010]. It has also been generalized to process rates that are 561 

subjected to multiple influencing factors, e.g., the Miami model used it to model net primary 562 

productivity as a function of temperature and precipitation [Lieth, 1973], and Noe and Giersch 563 
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[2004] used it to model stomatal conductance as a function of light and vapor pressure deficit. 564 

Despite its wide adoption in the ecology community, many empirical studies suggest deviations 565 

from the law of minimum for both plant and microbial growth [Egli, 1991; Rubio et al., 2003]. 566 

Alternatively, the “multiple limitation hypothesis”, which assumes that plants optimize 567 

physiologically and morphologically to achieve no wasteful use of nutrients, is not well 568 

supported by empirical observations [Rubio et al., 2003]. The “multiple limitation hypothesis” is 569 

also unlikely correct for microbial growth due to the often-observed luxury uptake of abundant 570 

nutrients while others are in short supply [Powell et al., 2008].  571 

Besides the inconclusive empirical support, the law of the minimum approach also 572 

introduces numerical difficulty by creating jumps when the predicted limitation shifts between 573 

limiting factors. For modeling photosynthesis, such a jump is usually smoothed out by quadratic 574 

functions, which involves two hyperparameters without physical meaning (for three co-limiting 575 

processes) that are obtained by trial and error [Collatz et al., 1990]. The (arbitrary) choice of 576 

these parameters have large effects on simulated plant gross primary productivity [Walker et al., 577 

2021]. In the context of model parameter inference, the law of the minimum approach similarly 578 

mistreats the tradeoff terms in equation (2), and, as a result, it will lead to significant parametric 579 

equifinality, just as the multiplicative approach does.  580 

Therefore, due to issues discussed above, the convenient empirically based response 581 

function approaches will not facilitate improvement of climate-biogeochemistry feedback 582 

predictions, no matter how many more observations are applied as constraints (through model-583 

data fusion). Further, incorporating more biogeochemical processes using the same approach will 584 

only increase parametric equifinality and degrade model performance, where the latter has led to 585 

the incorrect impression held by the research community that increasing model complexity is 586 
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usually bad and should be avoided. We will show below (in section 3) that by using physical 587 

rules-based approaches, increasing the model’s complexity may potentially make it more capable 588 

of resolving dynamic variability and be more resilient to parameter uncertainty.   589 

2.3 Feasibility of physical rules-based approaches 590 

As we argued above, the empirically based approaches are unlikely to result in EBMs 591 

with high spatiotemporal transferability. We thus turn to the physical rules-based approaches. 592 

We argue that physical rules-based approaches are feasible, because biogeochemical processes 593 

(the focus of this perspective) can be broadly classified into two groups: (1) transfer of mass and 594 

energy, and (2) chemical conversion of molecules. The transfer of mass and energy is achieved 595 

through radiation, convection, advection, and diffusion, all of which are well-studied in physics 596 

[Plawsky, 2020]. The chemical conversion of molecules involves chemical kinetics and 597 

thermodynamic control of chemical reaction rates, whose physical rules are also well-studied 598 

[Horn and Jackson, 1972; Klotz, 2008]. These two groups together conceptualize 599 

biogeochemical processes as reactive-transport systems. Accordingly, biogeochemistry can be 600 

modeled by applying the reactive-transport concept at various spatiotemporal scales with proper 601 

mathematical approximations. For aqueous chemistry, this can be done using existing 602 

formulations of reactive-transport models [Molins and Knabner, 2019; Steefel and Lasaga, 603 

1994]. Such an approach would in principle be sufficient to model the dynamics of carbon, 604 

nutrients, gasses, and solids in soils and water bodies [Riley et al., 2014; Steefel et al., 2015]. 605 

However, the reaction and transport pathways are not all known, and heterogeneous chemical 606 

substrates and complex, biologically-mediated reaction networks make the direct application of 607 

reaction-transport model difficult in practice [Dudal and Gerard, 2004].  608 
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Apart from landscape upscaling issues (which we do not consider here), the most difficult 609 

part of the physical rules-based approach is to properly deal with biological growth of both 610 

micro- and macro-organisms that drive or modulate biogeochemical processes. Biological 611 

growth is a phenomenon that emerges from an enormous number of chemical reactions at 612 

microscales, for many of which there are robust functional relationships [Madigan et al., 2009; 613 

Young et al., 2001]. However, we currently do not have a well-established upscaling scheme to 614 

create a bottom-up representation of biological growth—that is, even though we may know the 615 

kinetics of each reaction, we do not know their relative importance and their interactions in a 616 

living organism. Rather, biological growth could and should currently be modeled using a 617 

combination of physical rules and phenomenological formulations. For example, 618 

phenomenological rules can be applied to plant growth stages, which are fortunately well-619 

observed for many species, particularly row crops [Hanway, 1966; Miller, 1992], and have been 620 

successfully used to parameterize many natural ecosystem plant types [Grant, 2013; Zhou et al., 621 

2021]. With a combination of remote sensing data and in-situ measurements [Dronova and 622 

Taddeo, 2022; Harfenmeister et al., 2021; Xiao, 2009], it will be possible to obtain plant growth 623 

stage parameterizations that are sufficiently robust. Eco-evolutionary approaches can also be 624 

used instead of purely phenomenological rules to constrain processes with bounds of ecological 625 

and evolutionary feasibility. Compared to phenomenological rules, eco-evolutionary approaches 626 

offer a ‘built-in’ flexibility to deal with varying environmental conditions [Franklin et al., 2020; 627 

Harrison et al., 2021]. 628 

Physical rules can be used to formulate biomass accumulation and translocation in a 629 

similar way as for chemical reactions, except that growth is the net result of several related 630 

subprocesses. This can be done by dividing growth into several subprocesses, including substrate 631 



manuscript submitted to JGR-Biogeosciences 

 33 

uptake, internal physiology, and mortality. The substrate uptake process is amenable to relatively 632 

well-established physical rules (e.g., law of mass action, which will be discussed with an 633 

example in section 3.3). Microbial internal physiology relates how carbon and nutrients, 634 

particularly nitrogen and phosphorus, are used for biomass growth, cellular maintenance, and 635 

release of extracellular products (e.g., exoenzymes), and has been described using, e.g., the Pirt 636 

model [Pirt, 1982], the compromise model [Beeftink et al., 1990; Wang and Post, 2012], and the 637 

dynamic energy budget model [e.g., Kooijman, 2009; Tang and Riley, 2015; 2023b] (see Plate 2 638 

for a brief description). 639 

Compared to empirically based models (e.g., the Pirt model, and the compromise model), 640 

the dynamic energy budget (DEB) model has a relatively good mechanistic foundation that fully 641 

integrates mass and energy trade-offs during metabolic allocation for microbial growth. 642 

Importantly, the DEB formulation is structurally compatible with flux-balance models that 643 

represent biological growth by considering a large number of intra-cellular chemical processes 644 

that include enzymes, metabolites, and genomes [Antoniewicz, 2021]. DEB models have also 645 

been successfully applied to animals and plants by treating individuals as a population of cells 646 

[Russo et al., 2022; Zonneveld and Kooijman, 1989]. In particular, it is the only model structure 647 

that can reasonably predict the nonlinear relationship between carbon use efficiency (i.e., the 648 

ratio of carbon used to grow and carbon from uptake) and growth rate consistent with empirical 649 

observations and thermodynamics [Tang and Riley, 2023b]. That is, carbon use efficiency will 650 

first increase, then plateau and finally decrease with growth rate, whereas the Pirt and 651 

compromise models fail to predict the decrease of carbon use efficiency at high growth rate.  652 

For plants, the modular nature of plant leaves, branches, stems, and roots, and the 653 

associated carbon and nutrient translocation (including both transformation and transport) allows 654 
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us to model a single plant as a reactive transport system, where each modular part acts as an 655 

autonomous individual whose internal physiology follows a DEB-based formulation and the 656 

transport of carbon and nutrient between parts follows gradient driven flow with a close coupling 657 

with plant hydraulics. A conceptually similar approach has been successfully implemented in the 658 

ecosys model [Grant, 1998] and has been advocated by Thornley [1972] to address the balanced 659 

growth between plant shoots and roots. We note that this physiological formulation resembles 660 

the Pirt’s model and does not rigorously follow the DEB framework. However, coupling 661 

physiological, plant hydraulics, and morphological parameterizations allows accounting for 662 

many geometric and metabolic trade-offs, e.g., the popular pipe-model for plant xylem and 663 

canopy development by Shinozaki [1964] can emerge naturally from such a treatment [Grant, 664 

1998].   665 

We note that our ideas above are meant to be applied to individual microbes and plants, 666 

forming the foundation to model population and community dynamics (e.g., population 667 

demography, community and ecosystem assembly). These individual-based formulations can be 668 

combined in ‘ecosystem demography’ models [Koyen et al., 2020; Ma et al., 2022; Medvigy et 669 

al., 2019], contributing to better modeling of biogeochemistry-climate feedbacks regulated by 670 

plant and microbial physiology (a knowledge gap in existing models).   671 

3. Examples to contrast the predictive power of two approaches 672 

In the following, we give three examples to contrast the efficacy of the empirically based 673 

and the physical rules-based approaches. Particularly, we demonstrate how the concerns of 674 

worsening parameterization equifinality associated with more mechanistic (and usually more 675 

complex) models are not universally supported. For more examples, such as for the 676 

thermodynamic regulation of biogeochemistry, we refer readers to [Jin and Bethke, 2003; Maggi 677 
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et al., 2008], and for nutrient-regulated microbial growth to [Chakrawal et al., 2022; Tang and 678 

Riley, 2023b].   679 

3.1 Soil moisture dependence of substrate affinity parameter 680 

This first example addresses the substrate affinity parameter involved in soil carbon and 681 

nutrient dynamics, based on the analysis by [Tang and Riley, 2019b]. In modeling soil 682 

biogeochemistry, we often encounter Michaelis-Menten or Monod-type equations for 683 

decomposition rates or nutrient uptake (e.g., equation (6), or variants including microbial 684 

biomass instead of enzyme concentrations). The affinity parameter 𝐾 requires a value to compute 685 

the overall reaction rate 𝑅. Because 𝐾 is important for almost every biogeochemical process 686 

using a substrate (e.g., Table 2), it often represents a significant fraction of the model calibration 687 

effort. Moreover, because 𝐾 is defined for biogeochemistry in an aqueous environment, and soil 688 

moisture is a dynamic variable, the effective 𝐾 (denoted hereforth by 𝐾A as compared to the 689 

intrinsic 𝐾A,, for a pure aqueous environment) should be a function of soil moisture, and 690 

dimensionally consistent with solutes in the pore space, whose concentration varies with soil 691 

moisture (𝐾A must have a dimension of mass per unit water volume, though).  692 

In existing EBMs, the moisture effect on 𝐾 is often represented using a multiplier 693 

function [Maggi et al., 2008; Riley et al., 2011; Tang et al., 2010; Zhuang et al., 2004]. When a 694 

dual-Monod formulation is used for biogeochemical reactions involving both gas and solute 695 

substrates, a potential double counting of moisture effects may occur. This is because both 696 

gaseous and solute substrate concentrations, along with microbial physiology, depend on soil 697 

moisture content in different ways, and therefore it is unclear which aspects of the 698 

biogeochemical rate’s moisture dependence are accounted for by the moisture multiplier.   699 
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 700 

Figure 4. The conceptual model used to derive the moisture dependence of substrate affinity 701 
parameter 𝐾 (i.e., 𝐾A in equation (7)). For simplicity, pumps, channels, and carriers for substrate 702 
uptake are all called substrate transporters. 703 

Tang and Riley [2019b] developed a parameterization of 𝐾A by first delineating three 704 

levels of hierarchical structures: (1) an individual microbe (representative of a bacterium), (2) a 705 

colony of microbes (which may represent soil aggregates to some extent), and (3) the soil matrix 706 

(Figure 4). They further assumed that (i) a microbial colony is covered by a water film (whose 707 

thickness is computed as a function of soil suction pressure); (ii) within a colony, microbial cells 708 

are evenly distributed, immersed in water, and compete for a diffusion-limited substrates; and 709 

(iii) microbial colonies are connected to each other by diffusion through the soil matrix. By using 710 

diffusion as the major scaling rule, which is implemented through Smoluchowski’s diffusion 711 

theory of chemical reaction [von Smoluchowski, 1917] and the Berg-Purcell formula for substrate 712 

interception by a spherical bacterial cell [Berg and Purcell, 1977], the affinity parameter for an 713 

aqueous substrate is found as 714 

𝐾A =
<",,.
"#,/

-1 + "#,/C'/E'
F'

/, (7) 
 715 
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where 716 

𝑘&,A = 4𝜋𝑁G𝐷A,,𝑟H
<I.

<I.5JI0K1
, (8) 
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R

, (11) 
and 717 

𝛿 = max -10%S, exp'−13.65 − 0.857log(−𝜓))/. (12) 
From the above, we can see that 𝐾A (mol m-3 water) is influenced by the following four 718 

groups of input parameters: 719 

1. Soil: soil matric water potential 𝜓 (MPa), tortuosity of aqueous tracer 𝜏A (m m-1), 720 

tortuosity of gaseous tracer 𝜏P (m m-1), water-filled porosity 𝜙A (m3 m-3), air-filled 721 

porosity 𝜙P (m3 m-3), and water film thickness 𝛿 (m). 722 

2. Tracers: aqueous tracer diffusivity 𝐷A,, (m2 s-1), gaseous tracer diffusivity 𝐷P,, (m2 s-1), 723 

and Bunsen solubility for gas tracer 𝛼 (mol mol-1). 724 

3. Microbes: radius of microbial microsite 𝑟$(m), whose volume is 𝜈$(= 4𝜋𝑟$3/3), mean 725 

microbial biomass density of a microbial microsite 𝐵$/𝜈$, number of substrate uptake 726 

sites per microbial cell 𝑁 (sites per cell), mean microbial cell radius 𝑟H  (m), mean radius 727 

of microbial substrate uptake site 𝑟7 (m),  the maximum substrate processing rate per 728 

uptake site 𝑘(,7 (s-1), and the production rate of the given substrate in the microsite 𝑝H  729 

(mol m-3).  730 

4. Universal constants: Avogadro number 𝑁G (mol-1), and 𝜋. 731 

The above formulation of 𝐾A allows one to describe the moisture control of substrate 732 

uptake for a biogeochemical process in a soil volume that is of the order of cm3. It may also help 733 
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represent microbial substrate uptake in 1-D vertically resolved reactive-transport based models 734 

of soil biogeochemistry [Dwivedi et al., 2019; Pasut et al., 2020; Riley et al., 2014].  735 

With its diverse parameters, equation (7) provides insights on how 𝐾A will be modified 736 

by soil physical properties (e.g., soil texture, organic matter content), soil moisture content, 737 

tracer characteristics, and microbial traits (cf. Figures 2, 3 and 4 in Tang and Riley [2019b]). For 738 

the results reproduced in Figure 5, 𝐾A for oxygen increases as soils become wetter, following a 739 

sigmoidal shape whose inflection point varies with soil texture (Figure 5, left column). 𝐾A for 740 

solutes decreases following a nearly exponential decay down to a minimum value upon 741 

saturation (Figure 5, center column). When combining these formulations for oxygen and solute 742 

affinities in a steady-state microbial respiration model (see [Tang and Riley, 2019b] for details), 743 

prediction of respiration responses to soil moisture, and their dependence on soil properties, 744 

captures observed patterns (Figure 5, right column).  745 

Almost all the parameters needed by the above model are routinely measured (e.g., soil 746 

characteristics, diffusivities of various molecules [Cussler, 2008], tortuosity effect on gas and 747 

solute diffusion [Moldrup et al., 2003]), or have been estimated in the literature (e.g., microbial 748 

biomass density in a microsite [Raynaud and Nunan, 2014]), enabling us to apply equation (7) 749 

with very little calibration. Tang and Riley [2019b] demonstrated reasonable predictions of the 750 

moisture-microbial respiration relationship with typical parameters from the literature and, 751 

importantly, without parameter calibration.   752 

Additionally, with some modifications, the above model can be adapted to clay particles, 753 

fine roots, and fungal hyphae. When this approach is implemented within a reactive-transport 754 

based framework of plant shoot-root growth, like that in [Grant, 1998], we can obtain new 755 
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insights on how soil, plant, and microbial traits affect plant-mycorrhizal associations and soil 756 

nutrient dynamics.     757 

The approach mentioned above has been found to work well for evaluations where 758 

microbial traits (e.g., 𝑘(,7	and 𝑁) and microbial biomass ( 𝐵$/𝜈$) are relatively static. However, 759 

in dynamic environments, soil moisture fluctuates, and both microbial biomass and traits related 760 

to substrate utilization also vary. The next logical step is to couple this framework with equations 761 

that describe microbial biomass and trait dynamics, aiming to achieve a mechanistic and 762 

ecologically sound soil carbon cycling model. Microbial biomass dynamics are already routinely 763 

modeled using more empirical kinetics laws (as discussed in the review by Chandel et al. 764 

[2023]). Therefore, the challenge lies in how to couple these mechanistic formulations to various 765 

aspects of microbial biomass growth (see Plate 2), mortality, maintenance, dormancy, and other 766 

functions. We recognize that a mechanistic understanding is not available for some of these 767 

functions, but phenomenological or optimization-based approaches can serve as initial 768 

approximations to the missing mechanistic representation. During the pursuit of this goal, it 769 

would be intriguing to assess to what extent biological (or even ecological) processes are so 770 

strongly coupled (or coordinated) to transport processes that they do not need to be modeled 771 

independently (aka can be lumped through coarse graining).  772 
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 773 

Figure 5. Example application of equations (7)-(12) for affinity parameters of gaseous O2 (panels 774 
a1, a2, a3, and a4), and dissolved organic carbon (DOC; panels b1, b2, b3, and b4) as a function 775 
of soil moisture for 32 soils in 4 classes. The four soil classes are (1) medium to fine texture soils 776 
from Doran et al. [1990]; (2) coarse texture soil from Doran et al. [1990]; (3) other soils from  777 
Doran et al. [1990]; and (4) soils from Franzluebbers [1999]. The rightmost panels are 778 
correspondingly predicted respiration-moisture relationships using the synthesizing unit model. 779 
Same parameters are used from Tang and Riley [2019b]. Gray lines are for different soils, black 780 
lines are computed from mean soil texture of each soil class, blue circles are measurements. 781 

3.2 A network of multiple substrates and consumers. 782 

The second example of physical rules-based approaches is for competitive interactions in 783 

a network of substrates and consumers, which are relevant in various contexts of 784 

biogeochemistry and ecology (Figure 6). These interactions include soil organic carbon 785 

decomposition by microbes [Wieder et al., 2014], nutrient competition between plants and 786 

microbes [Zhu et al., 2016], interactions between enzymes and substrates in the cytoplasm of a 787 
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microbial cell [Etienne et al., 2020], and trophic networks including producers, consumers, and 788 

predators in population ecology [Barraquand, 2014; Buchkowski et al., 2022].  789 

In the context of biogeochemistry, a network of substrates (𝑆) and consumers (𝐸) can be 790 

constructed using the law of mass action, which by aid of the quasi-steady approximation, can be 791 

presented in the following form: 792 

𝑆T + ∑ 𝑋T'
';2
';& = 𝑆T,*, for 𝑖 = 1,⋅⋅⋅, 𝐼, (13) 

𝐸' + ∑ 𝑋T'T;U
T;& = 𝐸',*, for 𝑗 = 1,⋅⋅⋅, 𝐽, (14) 

𝑆T𝐸' = 𝐾T'𝑋T',           (15) 
8V3%
8W

= 𝑘T',(𝑋T',     (16) 
where subscripts i and j indicate different substrates (in total 𝐽 substrates) and consumers (in total 793 

𝐼 consumers), and subscript 𝑇 designates the total concentration of substrate 𝑆T and consumer 𝐸' 794 

in the spatial domain of analysis, regardless of their form (free or bound in a complex). 795 

Equations (13) and (14) account for the mass balance relationships of substrates and consumers 796 

in the system, equation (15) describes the formation of substrate-consumer complex 𝑋T', which is 797 

used in equation (16) to compute the production of new materials, denoted by 𝑃T'. For a predator-798 

prey network, 𝐾T' is related to the handling and attacking rates of a predator on a prey [Real, 799 

1977], and 𝑘T',(𝑋T'is biomass growth of the predator 𝐸' upon the successful handling of prey 𝑆T. 800 

The above system as a whole lacks an analytical solution, but it does have a first-order 801 

approximation (the Equilibrium Chemistry Approximation, ECA; [Tang and Riley, 2013]) as 802 

follows: 803 

𝑋T' =
?3,4>%,4/@3%

&5∑ ?!,4/@!,%!56
!5# 5∑ >!,4/@3,!

!57
!5#

, (17) 

Equation (17) can be shown to satisfy the partitioning principle [Tang and Riley, 2017], which is 804 

critical for developing a theory to coherently upscale from a single chemical reaction to 805 

unicellular and multicellular organisms [Kooijman, 2009]. Specifically, when 𝑆T are samples 806 
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from the same substrate 𝑆 (i.e., 𝛴T𝑆T = 𝑆), and 𝐸' are samples from the same consumer 𝐸 (i.e., 807 

𝛴'𝐸' = 𝐸), the sum of 𝑋T' will become exactly as the equation that can be obtained by starting 808 

with substrate 𝑆, and consumer 𝐸. That is, by summing over all substrates and consumers in 809 

equation (16), we obtain 810 

𝑋 = 𝛴T'𝑋T' =
?4>4/@

&5?4/@5>4/@
. (18) 

 811 

 812 

Figure 6. Examples of substrate-consumer networks that can be approximated by the equilibrium 813 
chemistry approximation kinetics. Here substrate 𝑆T is consumed by consumer 𝐸' as specified 814 
with kinetic parameters 𝐾T' and 𝑣$9:,T'. It is assumed that the units of   𝑆T and 𝐸' have been 815 
properly converted for the equation shown in the figure to hold for various problems. 816 

Corresponding to equation (18), the total production rate of new material (𝑃 = 𝛴T'𝑃T') is 817 

8V
8W
= 𝑘(𝑋,          (19) 

In the literature, however, equations (13)-(16) have often been solved with an incomplete 818 

consideration of the mass balance constraints imposed by equations (13) and (14). For instance, 819 
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Williams [1973] modeled a system of many consumers competing for a single substrate, whose 820 

solution based on ECA is 821 

𝑉 = ∑ ?4Y'*+,%>%,4/@%
&5Z%5#

%57?4/@%5>%,4/@%

';2
';& , (20) 

where V represents the total consumption rate by predators, with 𝑢$9:,' being the maximum 822 

substrate uptake rate by consumer 𝑗. 823 

However, Williams [1973] applied a simple juxtaposition of the empirical Holling’s type 824 

II predation functions [Holling, 1959], and obtained 825 

𝑉 = ∑ ['*+,%?
?5@%

';2
';& , (21) 

where the dependence of individual’s predation rate on consumer 𝐸' is not captured (note 𝐸',* is 826 

part of 𝑉$9:,' through 𝑉$9:,' = 𝑢$9:,'𝐸',*). Moreover, in models that do include consumer 827 

effects on predation rate, the predator competition effect (𝛴'𝐸' in the denominator) is often 828 

neglected [Murdoch, 1973; Real, 1977]. Without these consumer effects, the model could result 829 

in incorrect parametric sensitivity when the total substrate is limited [Tang, 2015].  830 

Additionally, in predator-prey modeling, there has been a long-lasting debate regarding 831 

whether the specific predation rate should be dependent on both the density of prey (𝑆*) and 832 

consumers (𝐸* in our nomenclature), and various formulations have been hypothesized 833 

[Beddington, 1975; Berryman, 1992; DeAngelis, 1975; Ginzburg and Akcakaya, 1992]. Based on 834 

the application of physical rules, the simplest ECA formulation by equation (18) reproduces the 835 

Beddington-DeAngelis formulation that is obtained through ad hoc assumptions, while the more 836 

general ECA form (equation (17)) has many other applications [Cheng et al., 2019; Huang et al., 837 

2018; Zhu et al., 2016].         838 

In soil biogeochemical modeling, the simple juxtaposition approach was also used to 839 

formulate the decomposition of two pools of soil carbon by a single microbial population, such 840 
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as in the MIMICS model [Wang et al., 2014], where the growth of microbial biomass is 841 

formulated as 842 

8H8
8W

= 𝑌\
H8='*+,!H!
H!5@!

+ 𝑌\
H8='*+,9H9
H95@9

,   (22) 
where 𝑌\  is the microbial growth efficiency, assumed the same for both substrates. Note, in 843 

equation (22) we have ignored the mortality term to simplify the discussion. Similar as in 844 

equation (21), equation (22) predicts that the specific consumption of carbon pool 𝐶# is 845 

independent from that of carbon pool 𝐶?.  846 

Since there is only one microbial biomass degrading two soil carbon pools, the metabolic 847 

effort of the microbial biomass is expected to be divided between the two pools. That is, working 848 

on carbon pool 𝐶# has a direct influence on the microbial effort allocated to carbon pool 𝐶?, and 849 

vice versa. This subdivision means the formulation by equation (22) predicts the wrong 850 

parameter sensitivity, whereas the mechanistically consistent formulation based on the ECA 851 

should be 852 

8H8
8W

= 𝑌\
H8='*+,!H!/@!

&5H!/@!5H9/@95RH8/@!
+ 𝑌\

H8='*+,9H9/@9
&5H!/@!5H9/@95RH8/@9

, (23) 
where 𝛼 scales the available metabolic effort to the microbial biomass 𝐶], which, is estimated to 853 

be of the order 10%4 when substrates are expressed in carbon mass units [Tang and Riley, 854 

2019a]. Thus, terms multiplied with 𝛼 can be ignored mostly, but keeping them may prevent 855 

runaway microbial biomass growth when applying the model.  856 

Because 1 + 𝐶#/𝐾# + 𝐶?/𝐾? > max(1 + 𝐶#/𝐾# , 1 + 𝐶?/𝐾?), equation (23) then predicts 857 

lower sensitivity of 8H8
8W

 to 𝐾# and 𝐾? than equation (22).  Further, it can be shown that the 858 

parametric sensitivity of 8H8
8W

 to 𝐾# and 𝐾? are correlated in equation (23), making the resultant 859 

model parametrically better constrained, and very likely have less severe parametric equifinality 860 

compared to equation (22). This last assertion is consistent with our inference at the beginning of 861 
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section 2, and supported by the model-data fusion experiment in [Tang and Riley, 2013], where 862 

the ECA formulation was much more robust than the simple juxtaposition of Holling’s type II 863 

uptake functions (see comparison of Figures 11 and 12 there). We leave a comprehensive 864 

analysis of the new formulations (equation (23) and the corresponding equations of 𝐶# and 𝐶^) on 865 

long term soil carbon dynamics for future work. 866 

Besides obtaining a more consistent formulation of microbial growth over multiple soil 867 

carbon pools, the solution to equations (13)-(16) also leads to a natural incorporation of soil 868 

mineral influences on organic carbon decomposition by approximating the organic carbon-869 

mineral interaction with the Langmuir isotherm, leading to a modification of equation (23) as 870 

8H8
8W

= 𝑌\
H8='*+,!H!/@!

&5H!/@!5H9/@95RH8/@!51/@!,:
+ 𝑌\

H8='*+,9H9/@9
&5H!/@!5H9/@95RH8/@951/@9,:

, (24) 
where M indicates the total concentration of mineral surfaces available for adsorption and 𝐾?,1 871 

and 𝐾#,1 are sorption parameters for substrates 𝐶# and 𝐶^.  872 

From equation (24), it is inferred that through competitive adsorption of (dissolved) soil 873 

organic matter (and exoenzymes; [Tietjen and Wetzel, 2003]), microbial decomposition and 874 

growth are suppressed by soil minerals. However, if the turnover of exoenzymes is assumed to 875 

be positively linked with its catalysis rate, interaction with clay particles could increase the 876 

exoenzymes’ lifetime by reducing the catalysis rate. Equation (24) then explains that, with 877 

increasing soil depth, along with the usual decrease of soil carbon, the specific decomposition 878 

rate naturally decreases, lending mechanistic insight to corroborate the attenuation factor in 879 

CENTURY-like models, where an exponential attenuation factor is needed to suppress carbon 880 

decomposition in order to correctly model the soil carbon profile [Koven et al., 2013]. However, 881 

with proper characterization of soil mineral surfaces 𝑀 and the associated sorption parameters 882 

𝐾?,1 and 𝐾#,1, one can more mechanistically characterize the observed vertical heterogeneity 883 
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than achieved with constant attenuation functions. In particular, the mechanistic model will 884 

enable us to evaluate many hypotheses regarding how the interactions between SOM molecule 885 

composition, microbial abundance and diversity, soil conditions, and plant input regulate the 886 

multiple facet responses of soil respiration and SOM storage to environmental changes. 887 

As an example to demonstrate the parametric sensitivity due to different model 888 

formulations, we define the specific substrate uptake 𝐹] =
&

.;H8

8H8
8W

 and compute the parametric 889 

sensitivity of 𝐹] with respect to 𝑉# and 𝑉? for the Monod kinetics of equation (22),  890 

-_8
-='*+,!

= H!/@!
&5H!/@!

, (25) 
-_8

-='*+,9
= H9/@9

&5H9/@9
;   (26) 

and, similarly, for the ECA-based equation (24), 891 

-_8
-='*+,!

= H!/@!
&5H!/@!5H9/@95RH8/@!51/@!,:

,  
  

(27) 

-_8
-='*+,9

= H9/@9
&5H!/@!5H9/@95RH8/@951/@9,:

 .  (28) 
From equations (25) and (26), we see that Monod kinetics predicts the parametric sensitivities 892 

-_8
-='*+,!

 and -_8
-='*+,9

 to be independent from the interactions between 𝐶#, 𝐶?, and 𝑀, while such 893 

dependence is captured by ECA kinetics (equations (27) and (28)). In particular, the Monod 894 

kinetics always predicts higher parametric sensitivity than the ECA kinetics (Figure 7), implying 895 

that the same parametric uncertainty will lead to higher parametric equifinality for models using 896 

the Monod kinetics.   897 



manuscript submitted to JGR-Biogeosciences 

 47 

 898 

Figure 7. Comparison of parametric sensitivity for -_8
-='*+,!

 and -_8
-='*+,9

 when computed using the 899 

Monod kinetics vs the ECA kinetics. For all calculations, it is assumed 𝐾? = 10𝐾#. 900 

3.3 Temperature dependence of enzyme-catalyzed one-substrate reactions 901 

In our third example, we discuss the temperature sensitivity of an enzyme-catalyzed one-902 

substrate reaction [Tang and Riley, 2013]. Depending on the size contrast between substrate and 903 

enzyme molecules, we have three limiting classes of solutions derived from ECA kinetics [Tang, 904 

2015; Tang and Riley, 2019a]:  905 

(1) When substrate molecules are much larger than enzymes, or the enzymes are in 906 

significant excess of substrate binding surface area (e.g., cellulose during hydrolysis), equations 907 

(18) and (19) can be approximated by reverse Michaelis-Menten (MM) kinetics: 908 

𝑅 = 𝑣$9:,>
>?

@<5>
. (29) 

(2) When substrate molecules are much smaller than enzymes (e.g., microbial uptake of 909 

glucose) or the system is enzyme limited (i.e., in the typical Michaelis-Menten regime), we have 910 

𝑅 = 𝑣$9:,>?
>?

@<95?
. (30) 

 911 
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(3) When substrate and enzyme molecules have similar size (e.g., when fructose is 912 

the substrate and invertase is the enzyme), we have the reaction represented using the ECA 913 

kinetics  914 

𝑅 = 𝑣$9:,>?
>?

@<95?5>
.   (31) 

For all cases, temperature dependence of the maximum reaction rate can be approximated 915 

by the transition state theory [Eyring, 1935]: 916 

𝑣$9:(𝑇) = 𝑣$9:,, -
*
*)
/ 𝑒𝑥𝑝 �− `a=

/2*
-1 − *

*)
/�,    (32) 

where 𝛥𝐻I is the enthalpy of activation (which is constant), 𝑅P is the universal gas constant, 𝑇, 917 

is the reference temperature (K), 𝑣$9:,, is the rate at 𝑇,. By adopting the usual assumption that 918 

the unbinding rate is negligible compared to forward binding rate and the relative movement 919 

between substrates and enzymes is dominated by diffusion [Tang et al., 2021], the temperature 920 

sensitivity of the affinity parameter 𝐾>? is determined by the ratio between the temperature 921 

sensitivity of 𝑣$9: and that of the aqueous diffusivity 𝐷A (see equation (7) is example 1). 922 

According to the Stokes-Einstein equation [Cussler, 2008], the aqueous diffusivity for a 923 

spherical object of radius 𝑎 is 𝐷A,9 = 𝑘C𝑇/(6𝜋𝜂𝑎), where the dynamic viscosity 𝜂 has an 924 

empirical temperature dependence as 𝑒𝑥𝑝(𝐵/𝑇) (with 𝐵 > 0; [Holmes, 2011]), thus a good 925 

approximation is:   926 

𝐾(𝑇) = 𝐾,𝑒𝑥𝑝 �−
`a(
/2*

-1 − *
*)
/�,          (33) 

where 𝛥𝐻@ is the effective enthalpy of 𝐾, which is the difference between 𝛥𝐻I and the 927 

activation enthalpy of the self-diffusion of water, so that 𝛥𝐻@ < 𝛥𝐻I. 928 

In addition to temperature effects on reaction kinetics, temperature also affects the 929 

capacity of enzymes to perform the reaction. In fact, enzymes are proteins, and proteins may lose 930 

or regain their native structure (and thus functionality) spontaneously. Because this spontaneous 931 



manuscript submitted to JGR-Biogeosciences 

 49 

transition is taking advantage of the structural perturbations caused by thermal motions in the 932 

enzyme solution, the transition between native and unfolded states always occurs for an enzyme 933 

that is not irreversibly denatured [Finkelstein and Ptitsyn, 2016]. The fraction of active enzymes 934 

in native state at a given temperature can be described by the well-established temperature 935 

relationship [Ghosh and Dill, 2009; Murphy et al., 1990; Sawle and Ghosh, 2011] 936 

𝑓96W(𝑇) =
&

&5b:7c%`\<//2*d
,     (34) 

where the Gibbs free energy of unfolding 𝛥𝐺> is defined as 937 

𝛥𝐺> = 𝛥𝐻> − 𝑇𝛥𝑆> = 𝑛>𝛥𝐶7[(𝑇 − 𝑇a) + 𝑇𝑙𝑛(𝑇?/𝑇)],   (35) 
where 𝑛> is the number of amino acid residues of the enzyme, heat capacity 𝛥𝐶7 (J K-1 (mol 938 

amino acid)-1) defines the energy required to reorganize the water molecules surrounding the 939 

protein, 𝑇a is the temperature at which enthalpy 𝛥𝐻> equals to zero, and 𝑇? is the temperature at 940 

which entropy 𝛥𝑆> equals to zero.  941 

Based on the survey by Silverstein [2020], 𝛥𝐶7 seems to be quite consistent among 942 

thermophobic, mesophilic, and thermophilic proteins, centering around 60 J (mol amino acid)-1, 943 

with an increasing variability from thermophobic to thermophilic proteins. Meanwhile, 𝑇a 944 

increases from thermophobic to thermophilic proteins, with an increasing difference between 𝑇? 945 

and 𝑇a  (see Table 6 in [Silverstein, 2020]). A comprehensive analysis using data from the 946 

Protein Data Bank will be very helpful to gain more insights on the parameterization of equation 947 

(35). 948 

When the above relationships are applied together to class (1) (reverse MM kinetics), we 949 

have 950 

𝑅 = 𝑣$9:,>(𝑇)
K*>?(*)>?

@<(*)5K*>?(*)>
,    (36) 

and when applied to case (2) (MM kinetics), we have  951 

𝑅 = 𝑣$9:,>?(𝑇)
K*>?(*)>?
@<9(*)5?

. (37) 
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Therefore, these results show that the overall temperature sensitivity of an enzyme 952 

catalyzed one-substrate reaction emerges from three types of temperature functions: (1) 953 

Arrhenius equation, (2) the Eyring’s transition-state theory, and (3) the thermal stability of native 954 

proteins. The equation for case (3) is not reported here because it is just a combination of cases 955 

(1) and (2). 956 

We note that when the above results are adapted to the substrate affinity parameter of 957 

microbial substrate uptake, e.g., the bacterial cells discussed in the first example in Section 3.1, 958 

the temperature dependence of the affinity parameter will be more complicated than represented 959 

by the Arrhenius-like function, because it will also involve 𝑓96W(𝑇) through its interaction with 960 

the number of transporters distributed over the microbial cells (i.e., parameter 𝑁 in equations (7)-961 

(9)).  962 

To visualize the above relationships, we show some examples of hypothetical enzymes 963 

based on mean values of 𝛥𝐶7,  𝑇?, and 𝑇a from Table 6 in Silverstein [2020] and a typical 964 

enzyme length of 290 amino acids of prokaryotes [Brocchieri and Karlin, 2005]. In Figure 8a-b, 965 

we see that the range of temperatures in which enzymes stay active expands as the Gibbs free 966 

energy curves shift from thermophobic to thermophilic enzymes. More interestingly, for case (1) 967 

described by equation (36), the normalized reaction rate 𝑅/(𝑣$9:(𝑇,)𝑆) increases steadily 968 

(almost exponentially because 𝑓96W is close to 1) across most of the biochemically relevant 969 

temperatures, with sharp drop-offs at the low and high temperature ends (Figure 8c, where 970 

curves are drawn for the hypothetical mesophilic enzyme).     971 
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 972 

Figure 8. (a) examples of unfolding Gibbs free energy  𝛥𝐺> as a function of temperature based 973 
on equation (35); (b) fraction of active enzymes under different temperatures based on equation 974 
(34); (c) normalized reaction rate based on equation (36) as a function of temperature for a 975 
hypothetical mesophilic enzyme for different ratios of enzyme concentration to affinity constant 976 
𝐸/𝐾>,; (d) normalized reaction rated based on equation (37) as a function of temperature for a 977 
hypothetical mesophilic enzyme; (e) and (f) are the same as (d) but for hypothetic mesophilic 978 
and thermophilic enzymes, respectively, and at different ratios of substrate concentration to 979 
affinity constant 𝑆/𝐾>?,. For both 𝐾> and 𝐾>?, we use 	𝐾(𝑇) = 𝐾,exp �−37300/𝑅P𝑇 -1 −980 
*
(e,
/� computed from the activation energy of glucose uptake (58 kJ mol-1) reported by 981 

Reinhardt et al. [1997], and the activation energy of diffusion (20.7 kJ mol-1) reported in Table 982 
2.3 by Stein [2012]. Accordingly, for both 𝑣$9:,> and 𝑣$9:,>?, we use 𝑣$9:(𝑇) =983 
*
(e,

exp �−58000/𝑅P𝑇 -1 −
*
(e,
/�. 984 

  985 

In contrast to the relationship by equation (36) shown in Figure 8c, when the relationship 986 

by equation (37) is illustrated (Figure 8d, e, and f), all cases show the often observed asymmetric 987 

temperature response [Peterson et al., 2004; Ratkowsky et al., 2005; Sharpe and Demichele, 988 

1977]. In addition to temperature, substrate concentration also plays a role: higher substrate 989 
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availability increases the reaction rate for a given value of the affinity constant. Therefore, our 990 

examples imply that it is problematic to assume that, under high substrate concentrations, the 991 

temperature response curve only reflects the temperature-dependence of enzyme catalysis rate. In 992 

reality, the temperature response curve also depends on the temperature dependence of the 993 

affinity parameter, so that a high substrate concentration cannot ensure equation (37) to derive a 994 

temperature response curve that accurately approximates that of  𝑣$9:. As this assumption is the 995 

foundation of the macromolecular rate theory by Hobbs et al. [2013] that is built off the study by 996 

Peterson et al. [2004], a comprehensive analysis is presented elsewhere [Tang and Riley, 2023a]. 997 

4. How to make physical rules-based approaches easily accessible? 998 

With the three examples above, we showed that it is feasible and advantageous to 999 

formulate EBMs using physical rules-based approaches. However, compared to the more 1000 

intuitive empirically based approaches, significant efforts are needed to realize these proposed 1001 

advantages, at least partially because modeling equations are less intuitive to understand and 1002 

apparently contain more parameters to calibrate. We recommend the following steps to achieve 1003 

this goal. 1004 

First, bringing more expertise and knowledge of mathematical physics into the field of 1005 

ecosystem biogeochemistry. This is already done well in the research area of ecosystem 1006 

biogeophysics, where physical rules like Ohm’s law for resistor networks, transport theories of 1007 

diffusion, and advection are used to formulate the exchange and temporal evolution of mass and 1008 

energy between soil, water, atmosphere, and other related components [Shuttleworth and 1009 

Wallace, 1985], and textbooks also explain those applications in detail [e.g., Bonan, 2019]. For 1010 

ecosystem biogeochemistry, we believe constructive effort can be applied through (1) building 1011 

long-term and stable collaborations between biogeochemistry empiricists, applied 1012 
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mathematicians, chemists, and physicists who are keen to model ecosystem biogeochemistry 1013 

mechanistically, and (2) enhanced exposure of students in ecosystem biogeochemistry to 1014 

concepts in mathematical physics including law of mass action; chemical reaction theories; and 1015 

basic reactive transport modeling. From a pedagogic perspective, students could be challenged to 1016 

test the classic Michaelis-Menten equation, or a linear model, using datasets where the use of 1017 

ECA is necessary. Also, faculties with expertise in biochemistry can team with colleagues in 1018 

mathematics and physics to develop a course on mathematical biogeochemistry. This approach 1019 

could motivate more young people with interests in physics rules-based ecosystem 1020 

biogeochemical modeling.    1021 

Second, EBMs formulated using physical rules-based approaches will often be 1022 

mathematically more complex, which may be contrary to the heuristic belief that models should 1023 

be simple. We fully agree that unnecessary complexity should be avoided by all costs. However, 1024 

we contend that the research community should be more open to endorsing the higher 1025 

complexity resulting from constructions based on solid mathematical logic and coherency, as 1026 

compared to the simpler empirical equations typically derived by regression with context-1027 

dependent measurements. For instance, when the Lagrangian of the standard model of particle 1028 

physics is written explicitly term by term [Shivni, 2016], the resulting gargantuan equation may 1029 

easily fill a whole regular page of a journal paper. Nonetheless, the astonishing success of the 1030 

standard model so far does not warrant any omission of its terms, and when the model is 1031 

explained term by term, the mechanisms behind are readily interpretable. As we argued 1032 

previously, given that ecosystem biogeochemistry encapsulates both living actors and inanimate 1033 

matter, which exist in different phases, and interact from very small to very large spatial scales, 1034 

the true governing equations of EBM may be as complex as, if not more complex than, the 1035 
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standard model of particle physics (in terms of length when they are put down onto paper). 1036 

Therefore, we should not judge the complexity of EBMs by the number of mathematical terms 1037 

involved, rather the complexity should be measured by the basic ideas of physics and 1038 

mathematics being incorporated. Notably, even for a very complex system, physical rules will 1039 

provide additional constraints to significantly reduce the actual degrees of freedom, so that the 1040 

resultant EBM is simpler. As such, we believe that mechanistically more interpretable, and 1041 

logically more coherent EBMs could be developed with improved model predictability.   1042 

Third, we acknowledge that EBMs formulated using physical rules-based approaches will 1043 

usually be computationally more complex and demanding, and therefore may be more difficult to 1044 

be applied at large scales. We propose that this scalability issue can be solved in two steps: (1) 1045 

creating a numerical library that consists of processes that are formulated using physical rules, 1046 

but are provided with user friendly software interfaces to be used in other models [e.g., Riley et 1047 

al., 2022; Tang et al., 2022], and (2) improving the numerical efficiency of these model 1048 

formulations by leveraging new developments in machine learning and artificial intelligence. 1049 

The first idea has led to software like OpenFOAM [Jasak, 2009] and COMSOL [Pryor, 2009] 1050 

that are able to solve computational fluid dynamics problems in various configurations. The 1051 

second idea is currently used to develop more advanced parameterization schemes, such as 1052 

turbulence closure schemes [Kurz et al., 2023] and cloud processes parameterization for 1053 

atmospheric models [Beucler, 2021]. In ecosystem biochemical modeling, a machine learning 1054 

model, when pretrained with a physical rules-based ecosystem biochemistry model, could 1055 

conduct spatiotemporal extrapolation more efficiently and even outperform the original EBM, 1056 

successfully resolving the challenge of upscaling [Liu et al., 2022].   1057 
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Last but not least, as can be seen from our three examples, physical rules-based 1058 

approaches require substantial comprehensive empirical data support for both forming the 1059 

conceptual model and parameterization. Fortunately, much relevant data is available from the 1060 

literature, such as solubility and diffusivities of chemical tracers in water and air [Cussler, 2008; 1061 

Sander, 2015]. New biological data that characterize the morphology and rates of biological 1062 

organisms, however, are needed. These data should be collected more frequently, together with 1063 

macro-chemical data such as carbon and nutrient concentrations. Microbial elemental 1064 

stoichiometry, morphology, number or mass density in various soils, and their relative 1065 

abundances under various conditions, will be very helpful for formulating physical rules-based 1066 

models of soil microbial processes. However, for most of these processes there are no established 1067 

measurement methods and novel tracer experiments are only now starting to provide detailed 1068 

microbial trait and rate data  [e.g., Canarini et al., 2020; Warren and Manzoni, 2023]. For plants, 1069 

more in-situ phenological data and morphological data (such as leaf sizes, thickness, height, root 1070 

architecture, and morphology) will be essential to robustly formulate biogeochemistry using 1071 

physical rules, which can also improve the model representation of biogeophysics, such as water 1072 

and heat exchange between soils, plants, and atmosphere. On the one hand, existing databases 1073 

(e.g., ESS-DIVE (https://ess-dive.lbl.gov), TRY plant trait database [Kattge and Sandel, 2020]) 1074 

can aid making data accessible. On the other hand, physical rules-based approaches can suggest 1075 

more specific answers to the question from empiricists to modelers: “what do you want us to 1076 

measure?” 1077 

5. Summary 1078 

 Lao Tzu has said that “the Tao that can be told is not the eternal Tao”, so all ecosystem 1079 

biogeochemical models (EBMs) that we develop are inherently limited. Nevertheless, we argue 1080 
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that the currently popular approach that extensively uses empirically based functions to 1081 

formulate biogeochemical processes limits EBMs to incorporate needed improvements. Instead, 1082 

by adopting the physical rules-based approach proposed here, more robust and accurate EBMs 1083 

can be developed for spatial and temporal extrapolation. Compared with empirical functions, the 1084 

primary physical rules are more consistent with our current knowledge of the world, and the 1085 

derived physical rules are less context dependent and have more easily quantifiable uncertainty. 1086 

Moreover, using physical rules to formulate biogeochemical processes will reveal more detailed 1087 

insights about the interactions between the entities involved, which will facilitate the design of 1088 

more targeted empirical experiments. To build EBMs that maximally use current knowledge of 1089 

physical rules, we advocate more and closer interdisciplinary collaborations in both research and 1090 

education between scientists in biogeochemistry, biophysics, soil physics, and mathematics.    1091 

 1092 

Table A 1093 

Nomenclature. For units, “variable” means the unit is problem formulation dependent. 1094 

Symbol Unit Meaning and places of use 
𝑓''𝜃') None Effect multiplier from influencer 𝜃'; Eq. (4) and (5).   
𝑓96W(𝑇) None Fraction of enzymes being active; Eq. (34), (36) and (37). 
ℎH(𝑠) None Substrate dependency for the compromise model.  
ℎM(𝑠) None Substrate dependency for the DEB model. 
ℎV(𝑠) None Substrate dependency for the Pirt model. 
𝑗G,$9: s-1 Maximum substrate uptake rate for the DEB model. 
𝑘&,A m mol-1 s-1 Microbe-substrate forward binding rate; Eq. (7) and (8). 
𝑘(,7 s-1 Maximum substrate uptake rate per site; Eq. (7). 
𝑘T',( s-1 Maximum uptake rate of substrate 𝑆T by enzyme 𝐸'; Eq. (16). 
𝑚V s-1 Specific microbial maintenance rate. 
𝑛> None Number of amino acid residues of the enzyme; Eq. (35). 
𝑞H(𝑠) s-1  Specific substrate uptake rate for the compromise model. 
𝑞M(𝑠) s-1 Specific substrate uptake rate for the DEB model. 
𝑞V(𝑠) s-1 Specific substrate uptake rate for the Pirt model. 
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𝑟H  M Bacteria cell radius; Eq. (8) and (9). 
𝑟$ M Microbial microsite radius; Eq. (10). 
𝑣$ m3 Microbial microsite volume; Eq. (10). 

𝑣$9:(𝑇) s-1 Maximum substrate processing rate at temperature 𝑇; Eq. (32). 
𝑣$9:,, s-1 Maximum substrate processing rate at temperature 𝑇,; Eq. (32). 
𝑣$9:,> s-1 Maximum substrate processing rate; Eq. (29). 

𝑣$9:,>(𝑇) s-1 Maximum substrate processing rate at temperature 𝑇; Eq. (36). 
𝑣$9:,>? s-1 Maximum substrate processing rate; Eq. (30). 

𝑣$9:,>?(𝑇) s-1 Maximum substrate processing rate at temperature 𝑇; Eq. (37). 
𝐵$ mol cell m-3 Mean microbial biomass in a microsite; Eq. (7). 
𝐵/ mol C m-3 Reverse microbial biomass in DEB model. 
𝐵[ mol C m-3 Structural microbial biomass in DEB model. 
𝐶] mol C m-3 Microbial biomass; Eq. (23) and (24). 
𝐶' None Inverse of covariance matrix for variable 𝑌'; Eq. (2) and (3). 
𝐶# mol C m-3 Fast decaying carbon pool; Eq. (22)-(24), (25), (27), (28). 
𝐶? mol C m-3 Slow decaying carbon pool; Eq. (22)-(24), (26)-(28). 
∆𝐶7 J K-1 (mol 

amino acid)-1 
Heat capacity; Eq. (35) 

𝐷P,, m2 s-1 Gaseous diffusivity; Eq. (11). 
𝐷A,, m2 s-1 Aqueous diffusivity; Eq. (10), (11). 
𝐸 mol m-3 Enzyme concentration; Eq. (6) 
𝐸' Variable Consumer concentration; Eq. (14), (15). 
𝐸',* Variable Total consumer concentration; Eq. (14), (17), (18), (20). 
𝐹!! Variable Total flux of variable 𝑌!!; Figure 3. 
𝐺$!"# Variable Total flux of variable 𝑌$!"#; Figure 3.	
∆𝐺> J mol-1 Gibbs free energy of enzyme unfolding; Eq. (34), (35). 
𝐻"! Variable Process function corresponding to 𝑅"!; Figure 3. 
∆𝐻>  J mol-1 Enthalpy of the enzyme unfolding; Eq. (35). 
∆𝐻@ J mol-1 Enthalpy of affinity parameter; Eq. (33). 
∆𝐻I J mol-1 Enthalpy of enzymatic chemical reaction; Eq. (32). 
𝐽, None Cost function contributed by prior information; Eq. (1). 
𝐾 mol m-3 Substrate affinity parameter; Eq. (6). 
𝐾, mol m-3 Substrate affinity parameter at temperature 𝑇,; Eq. (33). 
𝐾> mol m-3 Substrate affinity parameter; Eq. (29).  
𝐾>? mol m-3 Substrate affinity parameter; Eq. (30). 
𝐾>(𝑇) mol m-3 Substrate affinity parameter at temperature 𝑇; Eq. (36). 
𝐾>?(𝑇) mol m-3 Substrate affinity parameter at temperature 𝑇; Eq. (37) 
𝐾T' Variable Affinity parameter between substrate 𝑆T and consumer 𝐸'; Eq. 

(15). 
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𝐾# mol m-3 Microbial affinity parameter to carbon pool 𝐶#; Eq. (22)-(24), 
(25), (27), (28). 

𝐾? mol m-3 Microbial affinity parameter to carbon pool 𝐶?; Eq. (22)-(24), 
(26)-(28). 

𝐾#,1 mol m-3 Affinity parameter between carbon pool 𝐶# and mineral 𝑀. 
Eq.(24). 

𝐾?,1 mol m-3 Affinity parameter between carbon pool 𝐶? and mineral 𝑀. 
Eq.(24). 

𝐾A mol m-3 Effective substrate affinity parameter in soil; Eq. (7). 
𝐾A,, mol m-3 Substrate affinity parameter in water; Figure 4. 
𝑀"(𝑅#) Variable 𝑘-th scaling rule between processes 𝑅#; Eq. (2) and (3). 
𝑁 None Number of transporters per microbial cell; Eq. (8) and (9). 
𝑁G mol-1 Avogadro number; Eq. (8) 
𝑃 Variable  Product concentration from consumption of substrate; Eq. (19). 
𝑃T' Variable Product concentration by 𝐸' from consuming 𝑆T; Eq. (16). 
𝑄'!"# Variable Mechanistic interactions between 𝑌$!"#; Figure 3. 
𝑅 Variable Rate, or conductance, or resistance; Eq. (4)-(6), (29)-(31), (36), 

(37). 
𝑅, Variable  Reference value of 𝑅; Eq. (4), (5). 
𝑅P J mol-1 K-1 Universal gas constant; Eq. (32). 
𝑅"! Variable  Process rate; Figure 3. 
𝑆 mol m-3 Substrate concentration; Eq. (6). 
∆𝑆> J mol-1 Entropy of enzyme unfolding; Eq. (35). 
𝑆T Variable Free concentration 𝑖-th Substrate; Eq. (13), (15), (17). 
𝑆T,* Variable Total concentration of 𝑖-th substrate; Eq. (13), (17). 
𝑇 K Thermodynamic temperature; Eq. (32)-(37). 
𝑇, K Reference thermodynamic temperature; Eq. (32), (33). 
𝑇a K Thermodynamic temperature when ∆𝐻> equals zero; Eq. (35). 
𝑇? K Thermodynamic temperature when ∆𝑆> equals zero; Eq. (35). 
𝑉 mol m-3 s-1 Total substrate uptake rate; Eq. (20), (21). 

𝑣$9:,# s-1 Specific maximum uptake rate of 𝐶#; Eq. (22)-(25), (27). 
𝑉$9:,' mol m-3 s-1 Maximum uptake rate by consumer 𝐸'; Eq. (21). 
𝑣$9:,? s-1 Specific maximum uptake rate of 𝐶?; Eq. (22)-(24), (26), (28). 
𝑋T' Variable Substrate-consumer complex between 𝑆T and 𝐸'; Eq. (15)-(18). 
𝑋 Variable Total substrate-consumer complex; Eq. (18), (19). 
𝑌\  None Biomass yield coefficient; Eq. (22)-(24); Plate 2.  

𝑌'(𝑅#) Variable Generic model variable; Eq. (2), (3). 
𝑌') Variable Observations corresponding to 𝑌'(𝑅#); Eq. (2), (3). 
𝑌$!"# Variable State variable at the fine scale; Figure 2. 
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𝑌!! Variable State variable at the coarse scale; Figure 2. 
𝑌 / None Reserve biomass yield for the DEB model; Plate 2. 
𝛼 None Scaling parameter from microbial biomass to substrate binding 

sites; Eq. (23), (24), (27), (28). 
𝜆" None Lagrangian multiplier for 𝑘-th scaling rule; Eq. (2), (3). 
𝜅 s-1 Specific reserve biomass mobilization rate; Plate 2. 
𝛿 M Water film thickness; Eqs. (10), (12). 
𝜅$ s-1 Specific substrate transfer rate between soil matrix and 

microbial microsite; Eqs. (7), (10). 
𝜃$ Variable Model parameters; Eqs. (2), (3). 

𝜇$9:,V s-1 Specific maximum biomass growth rate for the Pirt model; 
Plate 2. 

𝜇$9:,H  s-1 Specific maximum biomass growth rate for the compromise 
model; Plate 2. 

𝜇H(𝑠) s-1 Specific biomass growth rate for the compromise model; Plate 
2. 

𝜇M(𝑠) s-1 Specific biomass growth rate for the DEB model; Plate 2. 
𝜇V(𝑠) s-1 Specific biomass growth rate for the Pirt model; Plate 2. 
𝜓 MPa Soil matric potential; Eq. (12). 
𝜙P m3 m-3 Air-filled soil porosity; Eq. (11). 
𝜙A m3 m-3 Water-filled soil porosity; Eq. (11). 
𝜏P None Soil tortuosity for gas diffusion; Eq. (11). 
𝜏A None Soil tortuosity for solute diffusion; Eq. (11). 
Φ#%& Variable Fine-scale physical constraints; Figure 3. 
Φ# Variable Coarse-scale physical constraints; Figure 3. 
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