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Abstract15

Repeating earthquakes provide a novel way of monitoring how stresses load faults16

between large earthquakes. To date, however, and despite the availability of long-17

duration, high-quality seismological datasets, little attention has been paid to tectonic18

repeating earthquakes in New Zealand. We develop a workflow and composite crite-19

rion for identifying repeating earthquakes in New Zealand, using data from the GeoNet20

permanent seismic network, and present New Zealand’s first decadal-scale repeating21

earthquake catalog. For events to be identified as repeating in this study, two or more22

events must have a normalized cross-correlation of at least 0.95 at two or more seismic23

stations, when calculated for 75% of the earthquake coda. By applying our composite24

criterion to seismicity around the Raukumara Peninsula, northern Hikurangi subduc-25

tion margin, we have identified 62 repeating earthquake families occurring between26

2003 and 2018, consisting of 160 individual earthquakes. These families have a mag-27

nitude range of MW 1.5–4.5 and recurrence intervals of < 1–12 years. The repeating28

earthquake families identified in this study coincide with the location and timing of29

previously identified slow-slip events and tremor. However, the responses shown to30

slow-slip are not consistent within families or within regional groups.31

Plain Language Summary32

Repeating earthquakes are earthquakes that re-rupture the same fault patch33

thereby producing highly similar seismograms, and occur sporadically and in some34

cases periodically through time. In this study, we developed a methodological work-35

flow and a criterion for identifying repeating earthquakes in New Zealand, using data36

from the GeoNet permanent seismic network. The criterion is similar to that used37

in previous repeating earthquake studies at plate boundary zones elsewhere, but is38

customized to the available data and earthquake sources of interest. We identified39

62 repeating earthquake families, consisting of 160 individual earthquakes, which oc-40

curred between 2003 and 2018 around the Raukumara Peninsula, northeastern North41

Island. The location and timing of the repeating earthquake families coincide with42

those of previously identified slow-slip and tremor.43

1 Introduction44

Monitoring and interpreting how stresses load faults in the run-up to large earth-45

quakes, and what impact this has on nucleation and rupture processes, remains a46

significant challenge in earthquake physics (e.g. Passelègue et al., 2020). Repeating47

earthquakes provide one means of monitoring these processes within the seismogenic48

portions of faults (Uchida et al., 2003). In New Zealand, little attention has been49

paid to repeating earthquakes, despite the availability of high-quality, long-duration50

seismological datasets. In this paper, we describe the construction and analysis of the51

first long-duration catalog of repeating earthquakes of tectonic origin in New Zealand.52

1.1 Repeating earthquakes53

Repeating earthquakes are identified primarily on the basis of their highly similar54

waveforms, observed at multiple stations, which imply similar hypocenters and focal55

mechanisms (e.g. Nadeau et al., 1994; Nadeau & Johnson, 1998; Uchida et al., 2003;56

Zhang et al., 2008; K. H. Chen et al., 2013; Naoi et al., 2015; Li et al., 2018; Senobari &57

Funning, 2019). Due to their similarities, it is hypothesized that repeating earthquakes58

represent the repeated rupture of the same strong asperity or fault patch (e.g. Nadeau59

& McEvilly, 1999; Uchida et al., 2003). Repeating earthquakes have been the subject60

of extensive research at several plate boundary zones, notably the Japan Trench (e.g.61

Hatakeyama et al., 2017; Uchida et al., 2003) and the San Andreas fault system (e.g.62
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Nadeau et al., 1994; Thomas et al., 2016; J. R. Williams et al., 2019; Abercrombie,63

Rachel E. and Chen, Xiaowei and Zhang, Jiewen, 2020), as well as China (e.g. Schaff64

& Richards, 2004), Taiwan (e.g. K. H. Chen et al., 2008), Costa Rica (e.g. Chaves65

et al., 2020; Yao et al., 2017), Greece (e.g. Mesimeri & Karakostas, 2018) and the66

Tonga–Kermadec Trench (e.g. Yu, 2013).67

If, as hypothesized, repeating earthquakes represent repeated failure of the same68

fault patch, due to successive phases of loading and slip, then their magnitudes —69

or equivalently their stress-drops, assuming the same rupture area — and inter-event70

times will be interpretable in terms of stressing-rate. Furthermore, the interaction71

between repeating earthquakes within a family, between different families, and with72

nearby and distal seismic and aseismic phenomena may provide insights into fault73

properties (e.g. Marone et al., 1995) and changes in the surrounding stress field (e.g.74

Nadeau et al., 1995; Lui & Lapusta, 2016). The interaction between large earthquakes75

nearby and repeating earthquake families can also provide information about how76

stresses are loading the small asperities on which repeating earthquakes are assumed77

to be occurring (K. H. Chen et al., 2010, 2013; Wu et al., 2014). Repeating earthquakes78

have also been recorded during episodes of slow slip (Kato et al., 2012; Shaddox &79

Schwartz, 2019), and have been used as a proxy to monitor aseismic creep prior to80

large earthquakes (e.g. Mavrommatis et al., 2015; Kato et al., 2012).81

Fault slip-rates can be estimated from repeating earthquake observations using82

either the recurrence interval and seismic moments of the repeating earthquakes (e.g.83

Mavrommatis et al., 2015; Nomura et al., 2017) or the average seismic moment of the84

family (e.g. Nadeau & Johnson, 1998; Uchida et al., 2003). Slip-rates can then be85

determined by dividing the estimated slip by the repeating earthquake family dura-86

tion. An extension of this allows variable slip-rates to be modeled to show changes87

in the amount and rate of slip on the fault patches where repeating earthquakes are88

occurring (Mavrommatis et al., 2015; Nadeau & Johnson, 1998; Nomura et al., 2017).89

Changes in slip-rate recorded by repeating earthquake families have been observed in90

the lead up to, and/or following, large earthquakes (Mavrommatis et al., 2015; No-91

mura et al., 2017). Hence, our work provides the first step to potentially monitoring92

changes in slip-rates around the plate boundaries of New Zealand.93

1.2 Tectonic setting94

The Hikurangi Subduction Margin accommodates convergence of the Australian95

and Pacific Plates and runs the length of the North Island of New Zealand (Clark96

et al., 2019), posing the largest seismic hazard for New Zealand (Clark et al., 2019).97

Due to the risk of great earthquakes (M ≥ 8) occurring along this margin, extensive98

research has been undertaken to examine and quantify the associated hazard and risks99

(Clark et al., 2019, and references therein). Convergence rates vary from 32 mm/yr in100

the south, to 54 mm/yr in the north. Interface coupling also varies along the margin,101

with the interface locked to ∼35 km depth in the south but only to ∼10 km depth in102

the north (Wallace et al., 2009; Wallace, 2020).103

The Raukumara Peninsula lies above the northern Hikurangi Subduction Margin104

in the northeast of New Zealand’s North Island (Figure 1). Here the Pacific Plate is105

subducting beneath the Australian Plate with convergence rates at the trench rang-106

ing from ∼47 mm/yr at the southern extent of the Peninsula, to ∼57 mm/yr to the107

north (Figure 1) (Wallace et al., 2012). Beneath the eastern edge of the Raukumara108

Peninsula, the plate interface is inferred to lie at ∼12–15 km and it progressively deep-109

ens to ∼50 km beneath the western edge (C. A. Williams et al., 2013). Upper plate110

faults in the North Island Dextral Fault Belt in the overriding Australian Plate ac-111

commodate much of of the right-lateral strike-slip component of the Australia-Pacific112

relative plate motion (Figure 1) (Beanland, 1995; Wallace et al., 2004; Nicol & Wal-113
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lace, 2007). Reverse faults have been imaged offshore from the Raukumara Peninsula114

and accommodate part of the convergent component of relative plate motion (Barnes115

et al., 2010; Mountjoy & Barnes, 2011; Litchfield et al., 2020).116

These tectonic components exhibit a wide range of transient seismic phenomena117

throughout the Raukumara Peninsula and surrounding region (Wallace et al., 2009),118

including moderate- to large-magnitude earthquakes (M≤7.2) (Francois-Holden et al.,119

2008; Koulali et al., 2017; Warren-Smith et al., 2018), repeated episodes of shallow and120

deep slow-slip (e.g. Douglas et al., 2005; Wallace & Beavan, 2010; Wallace et al., 2012,121

2016, 2018; Wallace, 2020), tectonic tremor (Todd & Schwartz, 2016; Todd et al.,122

2018), triggered seismicity (Delahaye et al., 2009), and recently documented burst-123

type repeating earthquakes (Shaddox & Schwartz, 2019) (Figure 1). Several large124

earthquakes have occurred across the region in the last century. Of particular note are125

two MW 7.2 tsunamigenic earthquakes that occurred in March and May of 1947 off the126

coast of Gisborne and Tokomaru Bay (Bell et al., 2014; Doser & Webb, 2003), a normal-127

faulting intraslab MW 6.6 event offshore from Gisborne in December 2007 (Francois-128

Holden et al., 2008), and the MW 7.1 Te Araroa earthquake of September 2016 (Koulali129

et al., 2017; Warren-Smith et al., 2018). These larger events appear to often involve130

interactions with other seismic phenomena: for instance, the Te Araroa earthquake131

was preceeded by slow-slip events (Koulali et al., 2017; Warren-Smith et al., 2018).132

Repeated slow-slip is a common occurrence along the eastern edge of the Rauku-133

mara Peninsula (Wallace, 2020). At the northern end of the Hikurangi Subduc-134

tion Margin, slow-slip events (SSEs) have typical recurrence intervals of 18 to 24135

months (e.g. Douglas et al., 2005; Wallace & Beavan, 2010; Wallace et al., 2016).136

The equivalent moment magnitudes of these SSEs are MW 6.3 to 7.2, and they typi-137

cally occur at depths of less than 15 km (Koulali et al., 2017; Wallace & Beavan, 2010).138

SSEs along most of the the Hikurangi Subduction Margin were triggered by the 2016139

MW 7.8 Kaikōura earthquake in the weeks to months that followed (Wallace et al.,140

2018).141

SSEs have been observed simultaneously with both tremor (e.g. Todd & Schwartz,142

2016; Todd et al., 2018) and distinctive microseismicity (Delahaye et al., 2009), at143

the northern Hikurangi Subduction Margin. Todd and Schwartz (2016) and Todd et144

al. (2018) concluded that the northern Hikurangi SSEs tend to be accompanied by145

tremor, which typically occurs down-dip of the geodetically determined slip patch,146

and typically occur towards the end of the SSE and afterwards. Tremor has been most147

commonly observed during the larger-magnitude SSEs around the Gisborne area, but148

has also been documented during smaller SSEs further north in the vicinity of Tolaga149

Bay and Puketiti. However, tremor associated with offshore SSEs is often difficult to150

detect using New Zealand’s entirely land-based national seismic network (Delahaye et151

al., 2009; Todd & Schwartz, 2016; Todd et al., 2018), complicating interpretation of152

its relationship to SSEs.153

Recently, “burst-type” repeating earthquakes have been identified near the Rauku-154

mara Peninsula following the 2014 Gisborne SSE (Figure 1; Shaddox & Schwartz,155

2019). These repeating earthquakes were inferred to occur on an upper-plate fracture156

network above a subducting seamount, and were only observed to be active for a short157

time period (approximately seven weeks; Shaddox & Schwartz, 2019). We note that158

such “burst-type” repeating earthquakes were detected using less stringent waveform159

similarity criteria than employed in most other repeating earthquake studies referred160

to above (cf. Uchida & Bürgmann, 2019), and may not represent repeated slip of161

exactly the same asperity. Other than the study by Shaddox and Schwartz (2019)162

of burst-type repeating earthquakes accompanying the 2014 Gisborne SSE, no long-163

duration analyses of tectonic repeating earthquakes have been undertaken around the164

Raukumara Peninsula.165

–4–



manuscript submitted to Geochemistry, Geophysics, Geosystems

1.3 Repeating earthquake identification around the Raukumara Penin-166

sula167

In this paper, we describe the construction and interpretation of the first long-168

duration tectonic repeating earthquake catalog in New Zealand. We have focused our169

search for repeating earthquakes on the Raukumara Peninsula, due to the high levels170

of seismicity observed in the region and the large number of previously documented171

interactions between seismic and aseismic deformation phenomena occurring in the172

northern Hikurangi Subduction Margin (Wallace, 2020).173

The first step in our analysis has been to develop and test a workflow and com-174

posite detection criterion for identifying repeating earthquakes in the New Zealand175

context using data from the GeoNet network. Waveform cross-correlation is the most176

commonly used method for identifying repeating earthquakes (Nadeau et al., 1994;177

Senobari & Funning, 2019; Uchida & Bürgmann, 2019). Cross-correlations are calcu-178

lated for candidate pairs of earthquakes that are within a given hypocentral distance179

of one another, with the events being identified as repeating if they have a normalized180

cross-correlation exceeding some threshold (commonly 0.90 to 0.95) at multiple seismic181

stations (e.g. Nadeau et al., 1995; Nomura et al., 2017). While the majority of studies182

follow this general approach, each study has adapted components of the detection cri-183

teria to local conditions and requirements, including the length of the waveforms used184

to calculate the cross-correlation, the number of stations required, the filtering applied185

to the waveforms, and the threshold imposed to cope with particular geometries and186

data quality (e.g. Nadeau & Johnson, 1998; Bohnhoff et al., 2017).187

2 Methods188

2.1 Dataset and initial clustering189

We constructed our catalog of repeating earthquakes starting with the GeoNet190

seismicity catalog from 1 January 1987 to 26 July 2019 (as downloaded from the191

GeoNet International Federation of Digital Seismograph Networks (FDSN) service192

(https://www.geonet.org.nz/data/tools/FDSN) on 26 July 2019). We downloaded193

waveform data from the GeoNet FDSN service using ObsPy (Krischer et al., 2015)194

for all broadband and short-period stations and channels represented by the cataloged195

picks. We first clustered the entire GeoNet catalog of 570,671 earthquakes throughout196

New Zealand based on inter-event separation and multi-station averaged inter-event197

cross-correlation. This initial clustering was conducted with a low cross-correlation198

threshold (0.75) and relatively large inter-event separation (30 km) to allow for location199

uncertainties. Note that throughout this paper the term “cross-correlation” refers to200

fully normalised cross-correlation.201

In this initial step, cross-correlations were computed on the vertical channels of202

2–15 Hz instrument-response-corrected bandpassed data resampled to 50 Hz beginning203

2 s before the P-pick and of 6 s duration. Single-station correlations were allowed to204

shift by ±1.5 s to allow for pick uncertainty, and the maximum cross-correlations for205

each station were averaged to generate a mean inter-event cross-correlation. Cross-206

correlations were only computed for pairs of events with hypocentral separations of less207

than 30 km to reduce computational demands. To cope with multiple possible group-208

ings, we used a hierarchical clustering approach, as implemented in SciPy (Virtanen209

et al., 2020) and applied using EQcorrscan (Chamberlain et al., 2018) to assign earth-210

quakes to clusters of potentially repeating events (herein termed “families”).211

The purpose of this initial clustering step was to reduce the size of the dataset212

and allow efficient testing of the parameters used to define repeating earthquakes in213

the Raukumara Peninsula study region. Based on this initial clustering, we extracted214

earthquakes within the region between –37.2 and –39.2 degrees latitude and 177.2215
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and 179.7 degrees longitude for further analysis. This region contained 133 possible216

repeating earthquake families. For each of these 133 possible families, we conducted217

manual phase-picking of P and S arrivals for the youngest event in the family to ensure218

consistent phase pick quality for the later analysis.219

2.2 Repeating earthquakes detection220

The core of our detection criterion is a threshold based on the cross-correlation221

of different events recorded at different stations. We assessed the sensitivity of the re-222

peating earthquake catalog to variations in the length of the cross-correlation window,223

waveform filtering parameters, and the specific correlation threshold employed. We224

also compared our cross-correlation-derived catalog with one constructed using coher-225

ence as a measure of similarity (as used by some studies, e.g. Materna et al. (2018)).226

We chose not to use coherence as our detection metric because it introduced additional227

parameters, namely the frequency band over which coherence was assessed, without228

significantly changing our results.229

A cross-correlation window-length of 40 s, encompassing both P- and S-arrivals,230

has commonly been used in studies elsewhere to detect repeating earthquakes (Uchida231

et al., 2003, 2004; Yamashita et al., 2012). However, because the event-to-station232

path-length in our study area varies between <10 km and ∼180 km, S–P times and233

coda durations also varied strongly between different events and different stations.234

We therefore chose to use a waveform length dependent on coda-duration to compute235

robust cross-correlations that captured similar amounts of signal for different event-236

station paths. We found that using 75% of the coda duration (defined herein as when237

the signal to noise ratio first dropped below unity) was appropriate for calculating the238

normalized cross-correlation, as it includes both P- and S-arrivals and most of the coda239

and resulted in the maximum normalized cross-correlation for visibly similar events.240

When the cross-correlation window length was less than 50% or greater than 100% of241

the coda length, the resulting cross-correlation between earthquakes in the prospective242

families was found to be distinctly lower. If we could not identify the end of the coda,243

due to the level of noise in the waveform, a window-length of 25 s was imposed. In all244

cases, our cross-correlation windows started 1 s before the identified P-arrival. Cross-245

correlations were computed after aligning the waveforms on the P-arrivals, with each246

waveform allowed to shift by as much as 1 s in order to achieve optimal alignment and247

thereby allow the maximum cross-correlation to be calculated.248

Prior to computing cross-correlations, we detrended the data and applied a249

fourth-order bandpass filter between 1 and 20 Hz. The lowcut of this filter was chosen250

to remove low-frequency noise found to dominate the signal at some of the broad-251

band stations. We tested the response of the calculated normalised cross-correlation252

to changes in the highcut parameter but observed no strong variations and opted for253

a 20 Hz highcut as this retains a wide range of frequencies while ameliorating high-254

frequency noise.255

Finally, to test the sensitivity of our catalog to changes in cross-correlation thresh-256

old, we determined which earthquakes would be retained as the correlation threshold257

was increased from 0.90 to 0.99 at intervals of 0.01. We required this threshold to be258

exceeded on at least two stations. We found that the number of families that were259

rejected as repeating and the number of events in each family varied more when the260

threshold was set to less than 0.95, compared to when it was larger than 0.95. When261

the threshold was set to greater than 0.95, families were rejected due to small differ-262

ences in the background noise of the waveform rather than significant differences in the263

signal. We therefore chose to use a threshold of 0.95, as used in multiple other repeat-264

ing earthquake studies (e.g. Uchida & Bürgmann, 2019, and references therein). We265

were unable to require high cross-correlation on more than two stations due to station266
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continuity: nearby stations generally provide the highest cross-correlation values due267

to higher signal-to-noise ratios, but prior to 2003 there only two permanent broadband268

seismometers and seven permanent short period seismometers within 120 km of the269

main clusters of repeating earthquakes. This station continuity limits our analysis to270

times after 2003.271

2.3 Location procedure272

We undertook absolute location and relative relocation of all possible repeating273

earthquakes to verify that events identified with the correlation-based detection crite-274

rion are indeed closely spaced. The phase picks in the original GeoNet catalog vary275

in quality, having been made using both automatic and manual methods, so we con-276

ducted additional phase picking for all events in our repeating earthquake catalog to277

ensure consistency. We manually picked P- and S-wave first arrivals for the youngest278

event in each family, which is commonly the best-recorded event due to the general279

increase with time of the number of stations, and identified P-wave polarities for later280

focal mechanism analysis. This yielded a total of 1,159 P-picks and 939 S-picks for the281

133 possible families, resulting in an average of 9 P-picks and 7 S-picks for each of the282

youngest events. Fewer S-picks than P-picks were made due to the P-coda obscuring283

the S-arrival at short epicentral distances. Since all events in a particular family are, by284

definition, well-correlated we were able to compute accurate (sub-sample) relative pick285

times for all the other events using the EQcorrscan cross-correlation pick correction286

function xcorr pick family() (Chamberlain et al., 2018). This function follows the287

approach of Deichmann and Garcia-Fernandez (1992) and computes a moving window288

cross-correlation that is represented at each epoch by a parabolic function fit to the289

five samples around the maximum correlation. The peak of this parabola is taken as290

the time-shift of the pick. This workflow not only provides accurate and consistent291

phase arrivals but also provides 572 additional phase picks compared to the GeoNet292

catalog from which we started.293

All the events in our catalog have hypocenters computed by GeoNet but the294

location algorithms and velocity models with which they have been determined have295

changed throughout the catalog period. To generate consistent locations, and to take296

advantage of our additional phase-picks, we computed absolute locations for all events297

using the NonLinLoc location software (Lomax et al., 2000) and the New Zealand-wide298

3D velocity model (version 2.1) (Eberhart-Phillips et al., 2017; Eberhart-Phillips &299

Bannister, 2015). We also computed absolute locations using the SIMUL2014 soft-300

ware (Eberhart-Phillips et al., 2015), but found that this gave poorer fits to our picks301

compared to the NonLinLoc locations.302

To test whether the earthquakes we identified as repeating based on correlation303

criteria truly overlap in source area, we also undertook relative relocation of all events.304

Due to the number and positions of seismometers in the network changing and gener-305

ally improving with time, the absolute locations of older earthquakes are generally of306

poorer quality than the more recent earthquakes. To cope with this variable quality,307

and to test whether earthquakes within each family overlap, we used the absolute lo-308

cation of the youngest event in each family as the starting location for the relocation309

of all other events within the family. Using this starting location allows us to ver-310

ify whether the earthquakes within a family can be well-fit by overlapping locations,311

rather than necessarily providing highly accurate relative locations between families.312

For this relocation we used the GrowClust software of Trugman and Shearer (2017)313

with the onshore 1D velocity model from Yarce et al. (2019).314
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2.4 Focal Mechanisms315

We constructed focal mechanisms for the youngest event in each family, using the316

manually picked P-wave first-motion polarities in the FPFIT (Reasenberg, 1985) routine317

implemented in SEISAN (Havskov & Ottemoller, 1999). The event locations were fixed318

to the locations obtained using GrowClust, no relative weightings were applied to the319

polarities and a 2◦ increment was used to search for the best fit solution.320

2.5 Magnitudes321

Alongside variations in location procedure throughout the cataloged period, the322

magnitudes procedures used by GeoNet have also varied. To generate consistent mag-323

nitudes we recomputed the local magnitudes of the youngest event in each family, and324

computed relative magnitudes for all other events within a family. To compute the325

magnitudes of the youngest events in each family we first generated automatic ampli-326

tude picks for the horizontal components of each station picked. Automatic amplitude327

picks were made on data that were filtered between 1 and 20 Hz, then instrument328

corrected and convolved with the response of a Wood Anderson seismometer. The329

response of the pre-filter was subsequently corrected for in the resulting amplitude330

picks. The resulting amplitude picks were used to compute a consistent set of station331

correction and attenuation terms based on the GeoNet-computed local magnitudes332

for these events. The magnitudes for all other events within families were computed333

using a correlation-weighted average of the relative-amplitudes, following the method334

of Schaff and Richards (2014).335

3 Results336

We identified 62 repeating earthquake families active between 2003 and 2018,337

which collectively contained 160 individual earthquakes. The 62 families are clustered338

into more active regions around the Raukumara Peninsula (Figure 2). To facilitate339

further description, we assigned each family to one of eleven regional groups, which340

were named based on their proximity to local population centers (see Figure 2). Within341

each of the regional groups, families were assigned a two letter geographic code and a342

two-digit number, based on the relative order of the first recorded repeating event in343

the family. The number of families within each of the regional groups ranges from one344

to 34 (Figure 2 and Table 1).345

The repeating earthquake families identified have a magnitude range of ML0.6346

to ML5.3, and the recurrence intervals range between <1 yr and ∼12 yrs (Table 1).347

The number of repeating events in each of the families ranges from two to five, with348

only five families containing more than three events. In Figure 3, the waveforms of the349

repeating events in four region groups are depicted, highlighting the visual similarities350

between the events in each of the families. In Figure 3, WA01 is the largest magnitude351

family in the catalog and is the only family located to the northwest of the Raukumara352

Peninsula, TA01 is the furthest offshore family (∼30 km), TS01 locates ∼10 km offshore353

just south of Tolaga Bay and NU01 and NU02 locate onshore to the west of the Māhia354

Peninsula.355

Focal mechanism for 56 of the 62 families were constructed, with the remaining six356

families not having focal mechanism created due to a lack to first arrival polarities being357

identified during manual picking. The focal mechanisms of the repeating earthquake358

families are consistent with both upper and lower intra-plate faulting, as well as faulting359

along the subduction interface. Due to the location of the families with respect to the360

GeoNet seismic network, many of the focal mechanisms are poorly constrained, with361

maximum one sigma errors for the strike, dip and rake being 34.0◦, 30.0◦ and 54.0◦362
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respectively. The average one sigma error in the strike, dip and rake of the focal363

mechanisms are 7.06◦, 8.67◦ and 14.53◦ respectively.364

The repeating earthquake catalog we have constructed is intrinsically no-more365

complete than the GeoNet catalog. However, the magnitude of completeness of the366

GeoNet catalog around the Raukumara region varied from ∼M 3 in 2003 to ∼M 2367

in 2019 (Figure 4 a). In the Raukumara repeating earthquake catalog, only nine of368

the 160 identified repeating earthquakes have calculated local magnitudes which are369

less than ML 2 (Figure 4 b). As the catalog was formed using the GeoNet catalog, if370

smaller magnitude events were not identified in the GeoNet catalog, then they would371

not be included in this repeating earthquake catalog.372

4 Discussion373

4.1 Spatial and temporal relationships to other subduction phenomena374

Based on the location of the youngest event and focal mechanism of each family,375

we categorized the repeating earthquakes as occurring on the subduction interface,376

within the Australian plate, or within the Pacific plate. Families which had a low-377

angle reverse focal mechanism and were within ∼5 km of the C. A. Williams et al.378

(2013) interface model were assumed to be occurring on the interface, or associated379

faults, and the remaining families were assigned to the over-riding or down-going plate380

based on their location relative to those events. As a result, 40 families are concluded381

to occur within the over-riding Australian Plate, exhibiting a range of faulting types,382

15 occur along the subduction interface, and 7 are in the down-going Pacific Plate and383

exhibit predominantly strike-slip and normal faulting focal mechanisms. However, 35384

of the families not concluded to occur on the plate interface, due to the type of faulting385

are located within ±5 km of the interface (Figure 5). While the focal mechanism of386

WA01 is consistent with interface faulting, the mean depth (58 km) of the family is387

slightly shallower than the interface model, so is not consistent with being on the388

interface.389

All of the repeating earthquake families inferred, on the basis of their hypocenters390

and focal mechanisms, to occur on the subduction interface lie within regions identified391

by (Wallace et al., 2012) to have low-coupling (Figure 5). The spatial relationship of392

the intraplate families to interface locking is less clear, with only the Pouawa and393

Tolaga-South families located above, and below, the locked–sliding transition.394

Heise et al. (2017) recently investigated the relationship between geodetically395

observed locking of the subduction interface (Wallace et al., 2012; Dimitrova et al.,396

2016) and the physical properties of the interface inferred from electrical resistivity397

observations. They argued that areas in which the interface is locked and the upper398

plate is undergoing areal contraction are electrically resistive, notably between the399

Māhia Peninsula and Tolaga Bay, and concluded that the frictional coupling of the400

interface is governed by low fluid or sediment volumes.401

We observe that repeating earthquake families occurring on the subduction in-402

terface and in the over-riding plate in the Te Karaka group coincide with an area of403

distinctively high resistivity on and above the interface (200–600 Ωm) identified by404

Heise et al. (2017); the single family in Whatatutu group, which occurs in the Pacific405

plate, lies beneath this zone of high resistivity. However, repeating earthquakes occur-406

ring on the interface or in the upper plate in the the Māhia and Nūhaka groups in the407

south of the Peninsula and the Tolaga Bay and Tokamaru Bay groups further north408

occur within zones of relatively low interface resistivity (≤20 Ωm; cf. Figure 2 of Heise409

et al., 2017). Moreover, no clear spatial relationship is evident between the epicenters410

of repeating earthquakes and areal strain rates (Figure 4 of Dimitrova et al., 2016).411
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Active-source seismic imaging has revealed two seamounts subducting offshore412

between the Māhia Peninsula and Tokomaru Bay (Figure 5, after Bell et al., 2010).413

Additionally, high-amplitude reflections have been observed adjacent to the plate in-414

terface, down-dip of the subducting seamounts (Bell et al., 2010). Bell et al. (2010)415

interpreted these high-amplitude reflections as fluid-rich sediments, entrained by the416

subducting seamount. The Pouawa group families (offshore to the southeast of To-417

laga Bay) are located down-dip of the southern seamount, coincident with the high-418

amplitude reflectors mapped by Bell et al. (2010) and down-dip of the “burst–type”419

repeating earthquakes identified by Shaddox and Schwartz (2019), but no repeating420

earthquakes have been detected in the vicinity of the northern seamount.421

When the location of the repeating earthquakes are compared to the location of422

previously identified slow slip, the Te Karaka, Whatatutu, Tokomaru-Tolaga and Te423

Puia groups locate along the down-dip periphery of the identified cumulative slow-424

slip patch (Figure 2; Wallace & Beavan, 2010; Wallace et al., 2016; Koulali et al.,425

2017). In comparison, the Nūhaka and Māhia repeating earthquakes transect the426

southern extent of the modeled slow-slip patch (Wallace & Beavan, 2010; Wallace et427

al., 2016). Furthermore, the Pouawa and Tolaga-South group families lie along the428

boundary between two persistent patches of slow-slip which occur to the northeast and429

southwest of the families locations (Wallace & Beavan, 2010; Wallace et al., 2016).430

We next consider the temporal relationships between the repeating earthquakes431

and previously described slow slip. Such relationships have been extensively docu-432

mented throughout the Japan subduction zone (Gardonio et al., 2018; Kato et al.,433

2012; Igarashi et al., 2003; Uchida et al., 2004, 2006; Uchida & Matsuzawa, 2013;434

Uchida et al., 2016) and we similarly compare the timing of individual repeating earth-435

quakes and their cumulative moment release to time-series of geodetically measured436

displacement and recognized episodes of slow slip (Figure 6). For the purposes of com-437

parison with measured deformation, we focus on the displacement time-series from438

GeoNet’s global navigation satellite system station near Gisborne (“GISB”) as it pro-439

vides a general reference for motion in the region of interest and has been operating440

continuously since 2002. We compute the moment of each repeating earthquake by441

converting the calculated local magnitudes using the following scaling relationship in442

Aki (1972).443

log(M0) = 1.4 log(ML) + 17.0 (1)

We observe some episodes of slow slip to be accompanied by repeating earthquake444

activity in some families, such as in 2004 (TA and TP groups) and in 2011 (TA and445

TP groups again) (Figure 6). However, this is not consistent for all slow-slip events or446

regional repeating earthquake groups. Of the 31 slow-slip events previously identified447

to the north of Māhia Peninsula, five are not clearly associated with a step in the448

cumulative moment curve of any repeating earthquake groups. The Ruatōria and449

Pouawa Groups show the clearest correlation between the occurrence of the repeating450

earthquakes and the occurrence of a slow-slip event (Figure 6, e and f respectively).451

For the Ruatōria Group, four of the seven repeating earthquakes occur during the452

approximate timing of the slow-slip events that occurred after 2008, with the slow-slip453

events occurring from the Māhia Peninsula to Puketiti (Figure 6e). These earthquakes454

account for ∼45% of the total moment of the group. Moreover, six events in the Pouawa455

Group correspond to the occurrence of slow-slip events, with four of these slow-slip456

events occurring around Gisborne.457

Overall, the repeating earthquakes show little consistent response to any of the458

three large earthquakes that have occurred in the time spanned by this study. However,459

the 2008 Gisborne earthquake was followed 10 days later by a repeating earthquake460

in the Pouawa group (Figure 6f), and the 2016 Kaikōura earthquake was similarly461

followed, 19 days later, by the next event in that same family. Similarly, both the Te462
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Araroa and Kaikōura earthqukes were followed within days by repeating earthquakes463

in the Tokomaru-Tolaga area(Figure 6i).464

Distinguishing the repeating earthquakes on the basis of tectonic position (Fig-465

ure 6m) reveals marked steps in the cumulative moment release of earthquakes oc-466

curring on the subduction interface at the time of slow slip in early 2010. The early467

2010 episode of slow slip occurred between Tolaga Bay and Māhia (Wallace & Beavan,468

2010). The two largest increments of moment release associated with Pacific Plate re-469

peating earthquakes occurred in late 2005 and early 2011 and neither is associated with470

recognized slow slip. Australian Plate repeating earthquakes exhibit a generally con-471

stant rate of moment release with the largest increments showing no clear relationship472

to episodes of slow slip.473

Jacobs et al. (2016) analyzed seismicity associated with slow-slip events along474

the length of the Hikurangi Subduction Margin and found that three of the largest475

sequences occurred in 2007, 2009 and 2010 approximately 20 km to the east of the476

Raukumara Peninsula. We observe increases in the number of repeating earthquakes477

occurring in the Australian Plate at the times of both the 2009 and 2010 sequences but478

not the 2007 sequence. Similar patterns are observed with the Pacific Plate families,479

with the rate of repeating earthquakes increasing in response to the 2010 sequence480

but not the 2007 or 2009 sequences. However, no response to any of these sequences481

is observed for the repeating earthquakes inferred to occur on the subduction inter-482

face. The patterns we have observed are consistent with the findings of Delahaye et al.483

(2009), who identified microearthquakes occurring either on the subduction interface484

or just below that were triggered down-dip of a slow-slip event in October–November485

2004. The repeating earthquakes families also occur in similar locations to the micro-486

seismicity identified by Yarce et al. (2019), with only one repeating earthquake family487

(TS01) occurring in a seismicity gap identified in that study. Moreover, work done488

by Bassett et al. (2014), to try and explain the occurrence of slow-slip in the region,489

identified slower wavespeeds and the possibility of near-lithostatic fluid pressures on490

the interface, which may also have an effect on the repeating earthquakes, alongside491

inferred fluid-pressure cycling related to SSE occurrence (Warren-Smith et al., 2019).492

We also compared the timing of three large earthquakes to the timing of the493

occurrence of repeating earthquakes. Two of these earthquakes occurred within the494

area of interest around the Raukumara Peninsula. The first was the MW 6.6 Gisborne495

earthquake, which occurred on the 20th of December 2007 UTC, 64 km from Gisborne496

at a depth of 40 km, in the subducting Pacific Plate (Francois-Holden et al., 2008).497

The second was the MW 7.1 Te Araroa earthquake 1st of September 2016 UTC, at498

a depth of 19 km, also in the subducting Pacific Plate (Warren-Smith et al., 2018).499

The timing of the 2016 MW 7.8 Kaikōura earthquake was also compared to the timing500

of repeating earthquakes despite not occurring within the study area. This is due to501

the Kaikōura earthquake triggering slow-slip in the study region following the earth-502

quake (Wallace et al., 2018). We observe a step in the cumulative moment in three of503

the regional groups following the three large earthquakes previously mentioned. The504

Pouawa Group is the only regional group where steps in the cumulative moment is505

observed following to the Gisborne MW 6.6 earthquake, occurring five months follow-506

ing the event, as well as a step 19 days after the Kaikōura earthquake (Figure 6f).507

Three days following Kaikōura earthquake, a step in the Tokomara-Tolaga Group is508

also observed (Figure 6i). Moreover, the Te Puia Group is the only regional group509

which showed a step in the cumulative moment following the Te Araroa earthquake510

(Figure 6f). We see no evidence for direct triggering of repeating earthquakes following511

these large earthquakes.512
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4.2 Scaling relationships for the the Raukumara Peninsula repeating earth-513

quakes514

Nadeau and Johnson (1998) proposed that the magnitudes of repeating earth-515

quakes should scale as a function of recurrence interval, based on the cyclic loading and516

stress release model. They demonstrated this to be the case near Parkfield, California,517

obtaining the relationship518

log(T ) = 4.85 + 0.17 log(MO) (2)

where T is the recurrence interval in seconds and MO is the seismic moment in dyne-519

cm. This scaling of moment with recurrence interval has since been examined and520

verified in other many other locations (K. H. Chen et al., 2007; T. Chen & Lapusta,521

2009; Dominguez et al., 2016; Johnson, 2010; Lengliné & Marsan, 2009; Marone et al.,522

1995; Mavrommatis et al., 2015; Mesimeri & Karakostas, 2018; Nadeau & Johnson,523

1998; Peng et al., 2005; Schaff & Richards, 2011; Uchida, 2019; Yu, 2013). Slight524

variations in the relationship have been observed between different regions, as have525

changes in scaling before and after nearby large earthquakes (Schaff & Richards, 2011;526

Yu, 2013; Chaves et al., 2020).527

To investigate this relationship in the New Zealand context, we used the average528

recurrence interval for each of the repeating earthquake families and the moment of529

the youngest event in the family (Figure 7). The magnitude of the youngest event530

was taken to represent each family as a whole, rather than averaging the values of all531

the events in a family, for two reasons: first, the magnitudes of each of the families532

were extremely similar; and second, it was assumed that the youngest event in each533

family had the best-constrained magnitude and lowest associated error due to overall534

improvements in network coverage and geometry.535

In Figure 7, families with durations shorter than six months were removed be-536

fore the relationships were calculated, as the relationship identified by Nadeau and537

Johnson (1998) was for long duration repeating earthquake families, and we wanted538

to compare similar families. Furthermore, these short duration families masked any539

identifiable relationship between recurrence interval and seismic moment. As can be540

seen in Figure 7, the relationship between seismic moment and recurrence interval for541

the Raukumara Peninsula repeating earthquake families is weaker than the relation-542

ship identified by Nadeau and Johnson (1998). However, the 95% confidence intervals543

for both the gradient and the intercept include the values for the Parkfield repeating544

earthquakes. Due to the scatter in the data for all the plate locations, the confidence545

intervals are extremely wide, and prevent us from determining a reliable relationship.546

Overall, while we found that the Raukumara Peninsula repeating earthquake families’547

relationship between recurrence interval and seismic moment followed a very weakly548

positive trend, consistent with the findings of repeating earthquake studies elsewhere,549

the uncertainty associated with these trends is very large. This places uncertainty on550

applying other relationships established by Nadeau and Johnson (1998) to the Rauku-551

mara Peninsula repeating earthquakes. We speculate that the scatter we observe may552

be due to the influence of variable slip-rates associated with nearby slow-slip episodes.553

4.2.1 Calculating the slip-rate of the repeating earthquake families554

Using 53 repeating earthquake families, from the Parkfield segment of the San555

Andreas fault, and 8 repeating earthquake families from the Stone Canyon section,556

Nadeau and Johnson (1998) derived a formula which relates the average seismic mo-557

ment to the average amount of slip of a repeating earthquake family (Equation 3).558

The Parkfield segment families had a magnitude range of MW –0.7–1.4, while the559

Stone Canyon families were added to the analysis to extend the magnitude range to560
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MW 3.7–6.0. Nadeau and Johnson (1998) derived the relationship:561

log(d) = −2.36 + 0.17 log(MO) (3)

where d is the average amount of slip for a repeating earthquake family in cm, and562

M0 is the average seismic moment of the repeating earthquake family, in dyne-cm.563

This relationship has also been applied to other tectonic setting and studies, including564

Japan, to determine the slip of identified repeating earthquake families (Uchida et al.,565

2003). Based on the magnitude range the relationship was derived over, and that it566

has been universally applied to different settings, we applied the relationship to the567

Raukumara Peninsula repeating earthquake families, to calculate the slip-rate.568

Preliminary slip-rates calculated for the Raukumara Peninsula repeating earth-569

quake families range from < 10 mm/yr up to ∼80 mm/yr, when the families with ex-570

tremely short family durations (less than 1 year) are excluded. Generally, the shorter571

the family duration the faster the slip-rate will be. This trend follows previously es-572

tablished relationships for Parkfield and Japan, with short duration families having573

slip-rates which are significantly higher than the tectonic loading rate, compared to574

long-duration families. TT19 is the only interface family that has a calculated slip-575

rate close to the plate convergence rate (31 mm/yr compared to 45 mm/yr). However,576

due to the differences observed in the seismic moment–recurrence interval relationship577

previously mentioned, applying the Parkfield repeating earthquake slip model to the578

Raukumara Peninsula families, may not be appropriate.579

We close this section by noting that in this first New Zealand study of earthquakes580

we made no attempt to detect events not otherwise listed in the original GeoNet581

catalog. Future work using matched-filter methods to detect lower-magnitude events582

is likely to greatly expand the number of repeating earthquakes detected, and provide583

a more robust basis for investigating scaling relationships and the use of repeating584

earthquakes to quantify slip rates.585

5 Conclusions586

We have identified 62 repeating earthquake families containing a total of 160587

earthquakes that occurred between 2003 and 2018 in the vicinity of the Raukumara588

Peninsula, on the northern Hikurangi Subduction Margin. These families represent a589

range of faulting types and occur along the subduction interface and in the overlying590

and subducting plates. We observe steps in the cumulative moment of the repeating591

earthquakes coinciding with 26 of 31 previously identified slow-slip events. We also592

compared the Raukumara Peninsula families to families and repeating earthquake593

relationships previously identified around Parkfield, California. When comparing re-594

currence interval–seismic moment relationships, we identified a similar trend between595

the two locations, and when calculating the slip-rate of the families, only one was596

found to have an estimated slip-rate that matched the plate convergence rate.597
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Table 1. Summary of the repeating earthquake families identified in each of the regions. Geo-

graphic areas are identified in Figure 2, and abbreviations how each of the families are identified.

Tmin and Tmax are the minimum and maximum recurrence intervals respectively for each of the

regional groups. Mmin and Mmax are the minimum and maximum local magnitudes respectively

for each of the regional groups.

Geographic area Abbreviation Number of families Tmin Tmax Mmin Mmax

Waihau WA 1 12.3 12.3 5.2 5.3
Te Araroa TA 1 6.6 6.6 2.3 2.5
Ruatōria RA 2 1.9 2.0 2.3 2.6
Te Puia TP 4 0.0 10.3 2.3 3.5
Tokomaru-Tolaga TT 34 0.0 11.8 0.6 4.5
Whatatutu WH 1 4.4 4.4 2.3 2.4
Tolaga South TS 1 2.0 2.0 2.2 2.5
Te Karaka TK 7 2.2 8.0 2.0 4.1
Pouawa PO 5 2.1 7.8 2.1 3.4
Māhia MA 4 1.7 6.1 2.1 2.6
Nūhaka NU 2 1.3 1.8 1.6 2.3
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Figure 1. Seismic and aseismic phenomena recorded around the Raukumara Peninsula. Black

arrows represent the convergence rates at the trench (Wallace et al., 2012) and black dotted lines

represent the depth (labeled in km) to the plate interface (C. A. Williams et al., 2013). Red

stars mark the locations of the MW 6.6 Gisborne earthquake of 2007 and the MW 7.1 Te Araroa

earthquake of 2016. Red circles represent the location of two tsunami-generating earthquakes

that occurred in 1947 (Bell et al., 2010). Filled black boxes mark the locations of burst-type

repeating earthquakes between May 2014 and July 2015 that were reported by Shaddox and

Schwartz (2019). Purple dashed contours demarcate locations of tremor between 2010 and 2015

identified by Todd and Schwartz (2016). Blue contours represent the cumulative slow slip, in mm,

that occurred between 2002 and 2014, as described by Wallace (2020). The orange box in the

main panel indicates the focus area of this study. Red lines represent active faults from the New

Zealand Active Fault Database (Langridge et al., 2016), including the North Island Dextral Fault

System (NIDFS). Inset: Map of New Zealand showing the study area in a larger context.
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Figure 2. Maps (panels a and c) and cross-section (panel b) of repeating earthquake focal

mechanisms. a) The repeating earthquakes are colored by depth and scaled by the calculated

magnitudes. The red dashed line labeled A–A’ represents the location of the cross-section in b).

Contours mark the depth to the subduction interface modeled by C. A. Williams et al. (2013).

Black inverted triangles mark the GeoNet seismic stations used to calculate the hypocenter loca-

tions. Data from the labeled stations are plotted in Figure 3. Blue contours demarcate slow-slip

patches identified by Wallace and Beavan (2010) and Koulali et al. (2017) and are labeled in

mm. Red stars mark the locations of the Gisborne MW 6.6 earthquake and the Te Araroa MW 7.1

earthquake. b) Cross-section of the line A-A’, displaying seismicity with a ±10 km swath. c)

Expanded view of the Tokomaru-Tolaga group families focal mechanism locations. Note: the

maps in a) and c) shows lower hemisphere projections and the cross-section in b) shows back

hemisphere projections.
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Figure 3. Representative repeating earthquake waveforms from four regional groups. All

waveforms have had a fourth-order bandpass filter between 1 and 20 Hz applied. The GeoNet

stations and channels that the waveforms were recorded on are included in the brackets under

the family names. Waveforms are colored by earthquake depth. Top left: Waihau (WA) group

family. Te Puia (TP) group families. Top right: Te Araroa (TA) group family. Bottom left:

Tolaga-South (TS) group family. Bottom right: Nūhaka (NU) group families.
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Figure 4. Magnitude of completeness for the repeating earthquake catalog. a) Calculated

magnitude of completeness of the GeoNet catalog around the Raukumara region, from 1992 to

2019. We calculated completeness using the maximum curvature method (Wiemer & Wyss, 2000)

for groups of 2000 events. b) Calculated local magnitude of the repeating earthquakes identified

in this catalog through time. Note the shortened time scale in panel b).
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Figure 5. Maps (panels a and c) and cross-section (panel b) of repeating earthquake tectonic

locations. a) Locations of the Raukumara Peninsula repeating earthquake families colored ac-

cording to whether an event is occurring in the Australian Plate, along the interface or within the

Pacific Plate, and scaled by calculated magnitude. The red dashed line labeled A–A’ represents

the location of the cross-section in b). Blue contours demarcate slow-slip patches identified by

Wallace and Beavan (2010) and Koulali et al. (2017) and are labeled in mm. Blue and red dashed

lines identify the transition from locked to creeping regions of the geodetic locking model of

Wallace et al. (2012). The interface is locked to the right of the red line and creeping to the left

of the blue line. Seamount locations and high- and low-amplitude reflections are adapted from

Bell et al. (2010), and the regions of the interface which have a high resistivity (200–600 Ωm) are

illustrated after Heise et al. (2017). “Burst-type” repeating earthquakes identified by Shaddox

and Schwartz (2019) are shown in gray squares. Red stars mark the locations of the Gisborne

MW 6.6 earthquake and the Te Araroa MW 7.1 earthquake. b) Cross-section of the line A-A’,

displaying seismicity with a ±10 km swath. c) Expanded view of the Tokomaru-Tolaga group

families focal mechanism locations. Note: the maps in a) and c) shows lower hemisphere projec-

tions and the cross-section in b) shows back hemisphere projections.
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Figure 6. Chronology of repeating earthquakes and cumulative moment release within each

geographic area. The lollipop symbols indicate the timing and magnitude of each repeating

earthquake and are colored by family. Panel l) depicts the timing of every repeating earthquake

colored by their tectonic location (blue is Australian Plate, orange is interface and green is Pa-

cific Plate) and the respective cumulative moment release, while the black line represents the

total cumulative moment release. Episodes of slow slip periods (Koulali et al., 2017; Todd &

Schwartz, 2016; Wallace & Beavan, 2010; Wallace et al., 2012; Wallace & Eberhart-Phillips,

2013; Wallace et al., 2016) are shown in gray and large earthquakes are marked in red. Note

that the slow-slip catalog completeness is not consistent in time. The panels m) and n) show the

east-component from the GISB (Gisborne) GNSS site operated by GeoNet and are repeated to

aid visual comparisons. The cumulative moment curves are normalized to unity for comparison

between different regional groups.
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Figure 7. Repeating earthquake recurrence interval–seismic moment relationship. Top:

Raukumara Peninsula repeating earthquake families’ average recurrence interval plotted against

seismic moment and colored according to occurrence in the overlying Australian Plate, on the

subduction interface or in the subducting Pacific Plate. Shown in the black dashed line is the re-

lationship obtained for repeating earthquakes near Parkfield, California, by Nadeau and Johnson

(1998). Linear relationships of the logarithms of each of the variables were fitted by minimizing

the L2 norm, after families with durations shorter than six months had been removed. Bottom:

Intercept and gradient values, including the 95% confidence intervals for the recurrence interval

seismic moment relationships plotted above. The relationship identified by Nadeau and Johnson

(1998) has been included for comparison.
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