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Introduction  

This supplement includes additional figures, tables, and texts to provide more information about 

the contents shown in the main text. 

Specifically, Figure S1 gives a detailed version of Figure 1 shown in the main text. Figure S2 gives 

diagrams of two conceptual linear time-invariant (LTI) systems supporting Figure 2 shown in the 

main text. Figure S3 shows the global mean surface soil moisture content based on the SMAP 

product (Entekhabi et al., 2010) after spatiotemporal normalization. Figure S4 shows the global 

distribution of the coefficient of variation (CV) for 𝐻𝑆𝐸𝑃𝑛
 and 𝐻𝐸𝐸𝑃𝑛 across CMIP5 models in 

the three frequency bands. Figure S5 shows the display of the regions that have potential errors 

in the “uncertainty analysis” discussed in the main text. 

Table S1 provides specific information on the models from CMIP5 (Taylor et al., 2012) used in 

this study. Table S2 and S3 give additional specific information on the Fourier transform 

provided in Text S1. Table S4 gives the observational value of 𝐻𝑆𝐸𝑃𝑛
 and 𝐻𝐸𝐸𝑃𝑛 defined in the 

main text in the three frequency bands. Table S5 gives quantitative differences of 𝐻𝑆𝐸𝑃𝑛
 and 

𝐻𝐸𝐸𝑃𝑛 between CMIP5 models and observation-based data. Table S6 gives the quantitative 

coefficient of variation (CV) of 𝐻𝑆𝐸𝑃𝑛
 and 𝐻𝐸𝐸𝑃𝑛 across the models within CMIP5. 

Text S1 provides more detailed information on Fourier transform, including an overview, 

descriptions of Discrete Fourier Transform (DFT), Fast Fourier Transform (FFT), and spectrum 

analysis. Text S2 provides the background of the color of noise and its application based on the 

spectral slope. 
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Figure S1. Processes to get the normalized variability of SSM (𝑆𝑆𝑀𝑛1
, 𝑆𝑆𝑀𝑛2

, and 𝑆𝑆𝑀𝑛3
), ET 

(𝐸𝑇𝑛1
, 𝐸𝑇𝑛2

, and 𝐸𝑇𝑛3
), and Pr (𝑃𝑟𝑛1

, 𝑃𝑟𝑛2
, and 𝑃𝑟𝑛3

), and further the two ratios to analyze 

the effects of ET and Pr on SSM (i.e., 𝐻𝑆𝐸𝑃, 𝐻𝐸𝐸𝑃) from the original time series of SSM, ET, and 

Pr (i.e., 𝑆𝑆𝑀(𝑡), 𝐸𝑇(𝑡), 𝑃𝑟(𝑡)). The left column shows six plots obtained by each 
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corresponding step on the right (take SSM as an example). This example is based on the data 

located at (51.57°N, 1.25°E) of the "GFDL-ESM2M" model within CMIP5 from January 1, 2001, to 

December 31, 2005. 

 

 

 

Figure S2. Conceptual diagrams of the assumed “ET-SSM” LTI system (a) and “Pr-SSM” LTI 

system (b) and a combination of them (c). The excitations (i.e., input) of the system (a) and (b) 

are 𝑒𝑡(𝑡) and 𝑝𝑟(𝑡), respectively. The responses (i.e., output) of the two systems are all 

𝑠𝑠𝑚(𝑡). The transfer functions of the system (a) and (b) are ℎ𝑠𝑒(𝑡) and ℎ𝑠𝑝(𝑡), respectively. 

For figure(c), the inputs are 𝑒𝑡(𝑡) and 𝑝𝑟(𝑡) together, and the output is 𝑠𝑠𝑚(𝑡). The grey 

dashed box includes the two transfer functions of system (a) and (b) and represented by an 

identical transfer function ℎ𝑠𝑒𝑝(𝑡). 

 

 

 

Figure S3. The observational mean SSM (surface soil moisture) after spatiotemporal 

normalization (𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛). More than five years’ data from the SMAP Level-3 product, spanning 1 
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April 2015 - 31 December 2020, are used. We first use original data to get the daily average SSM 

(𝑆𝑆𝑀̅̅ ̅̅ ̅̅ ) for each pixel and then normalize them between zero and one based on the min-max 

normalization as: 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 = (𝑆𝑆𝑀̅̅ ̅̅ ̅̅ − 𝑆𝑆𝑀̅̅ ̅̅ ̅̅

𝑚𝑖𝑛) (𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑚𝑎𝑥 − 𝑆𝑆𝑀̅̅ ̅̅ ̅̅

𝑚𝑖𝑛)⁄  . 

 

 

 

Figure S4. The coefficient of variation (CV) of HSEPn
 (Figure a-c) and HEEPn (Figure d-f) across 

all models in the three frequency bands. Similar to the CV of SSMn (Figure 5d – 5f), for each 

model, the CV of HSEPn
 and HEEPn are calculated as their standard deviation divided by their 

mean values for each frequency band, and we then normalize CV values between zero and one 

across the three frequency bands. The dark grey parts are regions with 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 less than 0.1. 
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Figure S5. Display of the regions where have potential errors in the “uncertainty analysis”. Grey 

parts are land surface coverage analyzed in this study. Black parts are regions where being 

masked due to potential uncertainties. 
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Model version Center Forcing 
Spatial 

Resolution 

BCC-CSM1.1 
Beijing Climate Center, China 

Meteorological Administration 

Nat Ant GHG SD Oz Sl Vl SS 

Ds BC OC 
128*64 

BNU-ESM 

College of Global Change and 

Earth System Science, Beijing 

Normal University 

Nat, Ant 128*64 

CanESM2 
Canadian Centre for Climate 

Modeling and Analysis 

GHG, Oz, SA, BC, OC, LU, Sl,Vl 

(GHG includes CO2, CH4, 

N2O, CFC11, effective 

CFC12) 

128*64 

CNRM-CM5 

Centre National de Recherches 

Meteorologiques / Centre 

Europeen de Recherche et 

Formation Avancees en Calcul 

Scientifique (CNRM/CERFACS) 

GHG, SA, Sl, Vl, BC, OC 256*128 

CSIRO-Mk3.6 

Commonwealth Scientific and 

Industrial Research 

Organization/Queensland 

Climate Change Centre of 

Excellence (CSIRO-QCCCE) 

Ant, Nat (all forcings) 192*96 

GFDL-CM3 
Geophysical Fluid Dynamics 

Laboratory 

GHG, SA, Oz, LU, Sl, Vl, SS, 

BC, MD, OC (GHG includes 

CO2, CH4, N2O, CFC11, 

CFC12, HCFC22, CFC113) 

144*90 

GFDL-ESM2G 
Geophysical Fluid Dynamics 

Laboratory 

GHG, SD, Oz, LU, Sl, Vl, SS, 

BC, MD, OC (GHG includes 

CO2, CH4, N2O, CFC11, 

CFC12, HCFC22, CFC113) 

144*90 

GFDL-ESM2M 
Geophysical Fluid Dynamics 

Laboratory 

GHG, SD, Oz, LU, Sl, Vl, SS, 

BC, MD, OC (GHG includes 

CO2, CH4, N2O, CFC11, 

CFC12, HCFC22, CFC113) 

144*90 

MIROC5 

Atmosphere and Ocean 

Research Institute (The 

University of Tokyo), National 

Institute for Environmental 

Studies, and Japan Agency for 

Marine-Earth Science and 

Technology 

GHG, SA, Oz, LU, Sl, Vl, SS, 

Ds, BC, MD, OC (GHG 

includes CO2, N2O, 

methane, and fluorocarbons; 

Oz includes OH and H2O2; 

LU excludes change in lake 

fraction) 

256*128 
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MIROC-ESM 

Atmosphere and Ocean 

Research Institute (The 

University of Tokyo), National 

Institute for Environmental 

Studies, and Japan Agency for 

Marine-Earth Science and 

Technology 

GHG, SA, Oz, LU, Sl, Vl, MD, 

BC, OC 
128*64 

MIROC-ESM-

CHEM 

Atmosphere and Ocean 

Research Institute (The 

University of Tokyo), National 

Institute for Environmental 

Studies, and Japan Agency for 

Marine-Earth Science and 

Technology 

GHG, SA, Oz, LU, Sl, Vl, MD, 

BC, OC (Ozone is predicted) 
128*64 

MRI-CGCM3 
Meteorological Research 

Institute 

GHG, SA, Oz, LU, Sl, Vl, BC, 

OC (GHG includes CO2, CH4, 

N2O, CFC-11, CFC-12, and 

HCFC-22) 

320*160 

MRI-ESM1 
Meteorological Research 

Institute 

GHG, SA, Oz, LU, Sl, Vl, BC, 

OC (GHG includes CO2, CH4, 

N2O, CFC-11, CFC-12, and 

HCFC-22) 

320*160 

NorESM1-M 
Norwegian Climate Centre 

(NorClim) 
GHG, SA, Oz, Sl, Vl, BC, OC 144*96 

Table S1. Fourteen CMIP5 models used in this research and some of their specific information. 

The model simulations have the same temporal coverage from 01/01/1950 to 12/31/2005. 

 

 

Form of Fourier Transform Time Domain Frequency Domain 

Fourier Transform (FT) aperiodic, continuous aperiodic, continuous 

Fourier Series (FS) periodic, continuous aperiodic, discrete 

Discrete Time Fourier Transform 

(DTFT) 

aperiodic, discrete periodic, continuous 

Discrete Fourier Transform (DFT) periodic, discrete periodic, discrete 

Table S2. Four different forms of Fourier transform. 
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Algorithm Complex multiplication (#) Complex addition (#) 

DFT 𝑁

2
log2 𝑁 

𝑁 log2 𝑁 

FFT 𝑁2 𝑁(𝑁 + 1) 

Table S3. Computation complexity comparison between DFT and FFT. 

 

 

Frequency band 

(day-1) 
1/7 ~ 1/30 1/30 ~ 1/90 1/90 ~ 1/365 

𝐻𝑆𝐸𝑃𝑛
 0.4127 (0.3733) 0.8708 (0.7883) 0.5129 (0.5662) 

𝐻𝑬𝐸𝑃𝑛 0.2064 (0.1966) 0.3393 (0.3601) 0.7586 (0.7622) 

Table S4. Observational-based 𝑯𝑺𝑬𝑷𝒏
 and 𝑯𝑬𝑬𝑷𝒏 in the three frequency bands. 𝑯𝑺𝑬𝑷𝒏

 and 

𝑯𝑬𝑬𝑷𝒏 here are original values without normalization across the three frequency bands. The 

numbers in brackets are corresponding values masked by regions with potential uncertainties 

(see main text). 

 

 

Significance 100% significance test 75% significance test 

Frequency band 

(day-1) 
1/7 ~ 1/30 1/30 ~ 1/90 1/90 ~ 1/365 1/7 ~ 1/30 1/30 ~ 1/90 1/90 ~ 1/365 

𝐻𝑆𝐸𝑃𝑛
 

-0.3365 

(-0.2816) 

-0.6792 

(-0.5898) 

0.4797 

(0.4168) 

-0.2871 

(-0.2366) 

-0.4492 

(-0.3797) 

0.4011 

(0.3402) 

𝐻𝐸𝐸𝑃𝑛
 

0.1259 

(0.1471) 

0.0677 

(0.0532) 

-0.0872 

(-0.0919) 

0.0770 

(0.0899) 

0.0515 

(0.0449) 

-0.0597 

(-0.0628) 

Table S5. Multimodel average differences of 𝑯𝑺𝑬𝑷𝒏
 and 𝑯𝑬𝑬𝑷𝒏 within CMIP5. The numbers 

in brackets are corresponding values masked by regions with potential uncertainties (see main 

text). 

 

 

Significance 100% significance test 75% significance test 

Frequency band 

(day-1) 
1/7 ~ 1/30 1/30 ~ 1/90 1/90 ~ 1/365 1/7 ~ 1/30 1/30 ~ 1/90 1/90 ~ 1/365 

𝐻𝑆𝐸𝑃𝑛
 

0.5120 

(0.4648) 

0.4409 

(0.4029) 

0.2325 

(0.2174) 

0.5148 

(0.4690) 

0.4489 

(0.4032) 

0.2370 

(0.2261) 

𝐻𝐸𝐸𝑃𝑛
 

0.3352 

(0.3335) 

0.2287 

(0.2153) 

0.0894 

(0.0877) 

0.3474 

(0.3507) 

0.2558 

(0.2466) 

0.0966 

(0.0922) 
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Table S6. Coefficient of variation (CV) of 𝑯𝑺𝑬𝑷𝒏
 and 𝑯𝑬𝑬𝑷𝒏 across the 14 CMIP5 models. 

Values here are original values without normalization across the three frequency bands. The 

numbers in brackets are corresponding values masked by regions with potential uncertainties 

(see main text). 
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Text S1. Fourier Transform 

1. Overview 

Fourier transform is a linear integral transform. The basic idea was first systematically put 

forward by French mathematician and physicist Joseph Fourier in 1822. The purpose of the 

Fourier transform is to establish a specific transformation relationship between the signal with 

time as the independent variable and the frequency spectrum function with frequency as the 

independent variable, that is, to realize the transformation from the time domain to the 

frequency domain. Considering various types of signals (periodic, aperiodic, continuous, 

discrete), there can be four different forms of Fourier transform. Their corresponding periodicity 

and continuity in the time domain and frequency domain are shown in Table S2. 

Generally speaking, the Fourier transform is referred to the first form in Table S2, which can 

be expressed as: 

 𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡
∞

−∞

𝑑𝑡 (1) 

 𝑥(𝑡) = ∫ 𝑋(𝑓)𝑒𝑗2𝜋𝑓𝑡
∞

−∞

𝑑𝑡 (2) 

where 𝑥(𝑡) is the signal in the time domain, and 𝑋(𝑓) is the spectrum function of 𝑥(𝑡) in 

the frequency domain. 𝑥(𝑡) and 𝑋(𝑓) form a transform pair. 

For the first three forms of Fourier transform in Table S2 (i.e., FT, FS, and DTFT), since there 

is always a variable that is continuous in either time or frequency domain, they are not suitable 

for the calculation by computer. Compared to the first three forms, DFT can be applied on the 

computer since its transform pairs are discrete in both time and frequency domains. 

2. Discrete Fourier Transform (DFT) 

Discrete Fourier Transform (DFT) is a discrete form of continuous Fourier transform in both 

time and frequency domains. DFT is aimed at a finite-length sequence, and its essence is to 

discretize the continuous Fourier transform of the sequence and transform the sampling of the 

signal in the time domain into the sampling of DTFT in the frequency domain. In this way, the 

discretization of the frequency domain results in a periodic time domain, so the Fourier series is 

limited to one cycle. The transformation pair in the form of DFT series can be expressed as: 

 𝑋(𝑘𝑓1) = ∑ 𝑥(𝑛𝑇𝑠)𝑒−𝑗
2𝜋
𝑁

𝑛𝑘

𝑁−1

𝑛=0

 (3) 

 𝑥(𝑛𝑇𝑠) =
1

𝑁
∑ 𝑋(𝑘𝑓1)𝑒𝑗

2𝜋
𝑁

𝑛𝑘

𝑁−1

𝑘=0

 (4) 

where 𝑋(𝑘𝑓1) is the periodic discrete time function in the time domain, 𝑥(𝑛𝑇𝑠) is the periodic 

discrete frequency function in the frequency domain. Here, the time interval 𝑇𝑠 of the discrete 

time function and the repetition period 𝑓𝑠 of the frequency function satisfy: 𝑓𝑠 =
1

𝑇𝑠
, and the 
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interval 𝑓1 of the discrete frequency function and the period 𝑇1 of the time function satisfy: 

𝑓1 =
1

𝑇1
. Besides, there are the following relationships in each cycle of the time domain and the 

frequency domain: 

 
𝑇1

𝑇𝑠
= 𝑁 or 

𝑓𝑠

𝑓1
= 𝑁 (5) 

that is there are N sampling points in each cycle. 

The discrete Fourier series is commonly used for periodic sequence analysis. Actually, the 

periodic sequence only has a finite number of meaningful sequence values, so the finite-length 

sequence 𝑥(𝑛) of length N can be regarded as a period of the periodic sequence of period N, 

and the DFT of a finite sequence can be calculated by the Fourier series of the periodic 

sequence. The transform pair of DFT of a finite sequence can be expressed as: 

 𝑋(𝑘) = ∑ 𝑥(𝑛)𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

, 0 ≤ 𝑘 ≤ 𝑁 − 1 (6) 

 𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘)𝑊𝑁

−𝑛𝑘

𝑁−1

𝑛=0

, 0 ≤ 𝑘 ≤ 𝑁 − 1 (7) 

where 𝑊𝑁 = 𝑒−𝑗
2𝜋

𝑁 . 

3. Fast Fourier Transform (FFT) 

Because DFT calculation is relatively cumbersome, DFT has not been widely used for a long 

time, until 1965, Curry and Atlas proposed a fast DFT algorithm (Cooley & Tukey, 1965). This 

method and a series fast of DFT algorithms later are collectively referred to as Fast Fourier 

Transform (FFT) (Cochran et al., 1967; Gentleman & Sande, 1966). There are two commonly 

used FFT methods, one is decimation-in-time (DIT), another one is decimation-in-frequency 

(DIF). FFT is not a new transformation but a fast algorithm to implement DFT. 

Recall the equation of DFT for N-point sequence, generally, 𝑥(𝑛) and 𝑊𝑁
𝑛𝑘 are plural. 

Each calculation of an 𝑋(𝑘) value requires N complex multiplications and (𝑁 − 1) complex 

additions. Therefore, for an N-point sequence, DFT needs to do 𝑁2 complex multiplications 

and 𝑁(𝑁 − 1) complex additions, which is a very large amount of computation. 

FFT utilizes the periodicity and symmetry of 𝑊𝑁
𝑛𝑘 to decompose the DFT operation with a 

length of N points into a shorter sequence of DFT operations. Specifically, the periodicity of 

𝑊𝑁
𝑛𝑘 can be expressed as: 

 𝑊𝑁
𝑛𝑘 = 𝑊𝑁

((𝑛𝑘))𝑁  (8) 

where ((𝑛𝑘))𝑁 is the value for 𝑛𝑘 modulo of N, and the symmetry of 𝑊𝑁
𝑛𝑘 can be expressed 

as: 

 𝑊𝑁

(𝑛𝑘+
𝑁
2

)
= −𝑊𝑁

𝑛𝑘 (9) 
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The N-point DFT can be decomposed into two sets of 
𝑁

2
-point DFT, and then take the sum of 

them, which can be expressed as: 

 𝑋(𝑘) = ∑ 𝑥(2𝑟)𝑊𝑁
2

𝑟𝑘

𝑁
2

−1

𝑟=0

+ 𝑊𝑁
𝑘 ∑ 𝑥(2𝑟 + 1)𝑊𝑁

2

𝑟𝑘

𝑁
2

−1

𝑟=0

 (10) 

 𝑋 (
𝑁

2
+ 𝑘) = ∑ 𝑥(2𝑟)𝑊𝑁

2

𝑟𝑘

𝑁
2

−1

𝑟=0

− 𝑊𝑁
𝑘 ∑ 𝑥(2𝑟 + 1)𝑊𝑁

2

𝑟𝑘

𝑁
2

−1

𝑟=0

 (11) 

where 𝑘 = 0,1, … ,
𝑁

2
− 1, 2𝑟 represents even numbers, and 2𝑟 + 1 represents odd numbers. 

Equation (10) and equation (11) give the value of the first 
𝑁

2
 points and the last 

𝑁

2
 points of 

𝑋(𝑘), respectively. 

By performing FFT, the computation complexity can be reduced from 𝑂(𝑛 ∗ 𝑛) to 𝑂(𝑛 ∗

𝑙𝑜𝑔𝑛). The computation complexity comparison between DFT and FFT is shown in Table S3. 

4. Spectrum analysis 

Spectrum (including amplitude spectrum and phase spectrum) describes signal 

characteristics in the frequency domain. Spectrum reflects the distribution of the amplitude and 

phase of the components contained in the signal with frequency. Spectrum analysis is the 

process of obtaining the frequency structure of the signal by calculating the amplitude and 

phase of the signal at each frequency (Kay & Marple, 1981). 

For computer applications, an analog signal 𝑥(𝑡) is usually converted into a discrete-time 

signal 𝑥(𝑛) through sampling in the time domain, and then use DFT and FFT for spectrum 

analysis, which can be expressed as: 

 𝑋(𝑘) = 𝐷𝐹𝑇[𝑥(𝑛)] = ∑ 𝑥(𝑛)𝑊𝑁
𝑘𝑛

𝑁−1

𝑛=0

= 𝑋𝑅(𝑘) + 𝑗𝑋𝑙(𝑘) (12) 

The amplitude and phase corresponding to each frequency value are as follows: 

 |𝑋(𝑘)| = √𝑋𝑅
2(𝑘) + 𝑋𝑙

2(𝑘) (13) 

 𝜃(𝑘) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑋𝑙(𝑘)

𝑋𝑅(𝑘)
 (14) 

where 𝑘 = 0,1, … , 𝑁 − 1, equation (13) and (14) are the amplitude and phase for k frequency, 

respectively. 

Besides, the power spectrum can also be used to describe the signal, which indicates the 

energy of the signal varying with frequency in the frequency domain. The energy of the signal is 

based on its amplitude and can be expressed as: 

 𝐸(𝑘) = |𝑋(𝑘)|2 = 𝑋𝑅
2(𝑘) + 𝑋𝑙

2(𝑘) (15) 



14 
 

 

Text S2. Color of noise 

Noise is a stochastic process. The power spectrum, which describes the variance as a sum of 

sinusoidal waves of different frequencies, is an important characteristic of environmental noise 

(Vasseur and Yodzis, 2004). There are many ways to characterize different noise sources. Noise 

distributed in the whole frequency domain and with the form that variance scales with frequency 

according to an inverse power law, 1 𝑓𝛽⁄ , can be used to describe noise in nature, and is called 

power-law noise (Mandelbrot, 1982). For power-law noise, its spectrum can be used to 

characterize different noise and categorize noise into different “colors”. The color of the 

environmental noise has been investigated for some time. For instance, it was brought to 

attention in ecology by Steele, who proposed the color of terrestrial and marine noise should be 

different (Steele, 1985). Based on this, a wide range of studies examined different climatological 

and hydrological variables based on various colored noise and their influence on population 

dynamics (Vasseur and Yodzis, 2004). In this paradigm, white noise (𝛽 = 0) is a special case with 

the same variance at all frequencies. Therefore, the power spectral density of white noise is flat, 

and its corresponding spectral slope is zero. The spectrum of precipitation sets was assumed as 

white noise in previous studies (Delworth and Manabe, 1988; Katul et al., 2007; Nakai et al., 2014). 

Compared to white noise, colored noise refers to noise whose power spectral density function is 

not flat, which is dominated by frequencies in a certain band. 

According to the slope of the power spectral density (i.e., 𝛽 in inverse power law 1 𝑓𝛽⁄ ), 

the colored noise can be mainly divided into five types: violet noise, blue noise, pink noise, red 

noise (also known as Brownian noise (Gilman et al., 1963)), and black noise. In a limited frequency 

band, the spectral density of blue and violet noise increases with the increase of frequency by 3dB 

and 6dB per octave, and the spectral density of pink and red noise decreases with the increase of 

frequency by 3dB and 6dB per octave. In other words, the spectral density of blue and violet noise 

is proportional to the frequency and the square of the frequency, respectively, while the spectral 

density of pink and red noise is inversely proportional to the frequency and the square of the 

frequency, respectively. Therefore, the spectral slopes of violet, blue, pink, and red noise are 2, 1, 

-1, and -2, and the spectral slope of black noise is less than -2 (Nakai et al., 2014). 
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