loading page

Existence of positive solutions for an approximation of stationary mean-field games
  • +20
  • Diogo Gomes,
  • Maria Sargsyan,
  • Daniela,
  • Andre,
  • Nojood Almayouf,
  • Andreia Chapouto,
  • Avetik Karagulyan,
  • Elena Bachini,
  • Giorgia Pagliari,
  • Hector Velasco-Perez,
  • João Reis,
  • Kengo Terai,
  • Sagar Pratapsi,
  • tommaso seneci,
  • Juan de Monasterio,
  • Ryota Tomisaki,
  • Rita Ferreira,
  • David Evangelista da Silveira Junior,
  • Awaiting Activation,
  • Orlando Romero,
  • xianjin yang,
  • Levon Nurbekyan,
  • Mariana Prazeres
Diogo Gomes
Author Profile
Maria Sargsyan
Author Profile
Nojood Almayouf
Author Profile
Andreia Chapouto
Author Profile
Avetik Karagulyan
Author Profile
Elena Bachini
Author Profile
Giorgia Pagliari
Author Profile
Hector Velasco-Perez
Author Profile
João Reis
Author Profile
Kengo Terai
Author Profile
Sagar Pratapsi
Author Profile
tommaso seneci
Author Profile
Juan de Monasterio
Author Profile
Ryota Tomisaki
Author Profile
Rita Ferreira
Author Profile
David Evangelista da Silveira Junior
Author Profile
Awaiting Activation
Author Profile
Orlando Romero
Author Profile
xianjin yang
Author Profile
Levon Nurbekyan
Author Profile
Mariana Prazeres
Author Profile

Abstract

Here, we consider a regularized mean-field game model that features a low-order regularization. We prove the existence of solutions with positive density. To do so, we combine a priori estimates with the continuation method. Since low order regularizations are easier to implement numerically, our methods give a theoretical foundation for their use.