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Abstract 47 

 48 

Effectively quantifying hot moments of nitrous oxide (N2O) emissions from agricultural soils is 49 

critical for managing this potent greenhouse gas. However, we are challenged by a lack of 50 

standard approaches for identifying hot moments, including (1) determining thresholds above 51 

which emissions are considered hot moments, and (2) considering seasonal variation in the 52 

magnitude and frequency distribution of net N2O fluxes. We used one year of hourly N2O flux 53 

measurements from 16 autochambers that varied in flux magnitude and frequency distribution in 54 

a conventionally tilled maize field in central Illinois, USA to compare three approaches to 55 

identify hot moment thresholds: 4x the standard deviation (SD) above the mean, 1.5x the 56 

interquartile range (IQR), and isolation forest (IF) identification of anomalous values. We also 57 

compared these approaches on seasonally subdivided data (early, late, non-growing seasons) vs. 58 

the whole year. Our analyses of the datasets revealed that 1.5x IQR method best identified N2O 59 

hot moments. In contrast, the 4 SD method yielded hot moment threshold values too high, and 60 

the IF method yielded threshold values too low, leading to missed N2O hot moments or low net 61 

N2O fluxes mischaracterized as hot moments, respectively. Furthermore, seasonally subdividing 62 

the dataset facilitated identification of smaller hot moments in the late and non-growing seasons 63 

when N2O hot moments were generally smaller, but it also increased hot moment threshold 64 

values in the early growing season when N2O hot moments were larger. Consequently, we 65 

recommend using the 1.5x IQR method on whole year datasets to identify N2O hot moments.   66 

 67 

 68 

 69 



Plain Language Summary 70 

 71 

Nitrous oxide (N2O) is a greenhouse gas that traps 273 times more heat in Earth’s 72 

atmosphere than carbon dioxide (CO2) on a per molecule basis. Microbes in the soil produce 73 

N2O, with short bursts of high production stimulated by environmental triggers such as rainfall 74 

or fertilization. Management strategies targeting these brief periods of high N2O production can 75 

be particularly effective in reducing cumulative annual soil N2O emissions from agricultural 76 

fields. However, to date there is no standard approach to identifying hot moments. Here, we 77 

analyzed 16 one-year datasets of hourly N2O emission measurements from a large area in one 78 

maize field to compared different methods that are used to identify hot moments of N2O. We 79 

learned that the threshold values above which N2O emissions would be considered hot moments 80 

were best determined as 1.5 times greater than the N2O emission value that fell in the middle of 81 

all the emission values in the dataset, a method called “1.5x the interquartile range.” We could 82 

also best identify hot moments of N2O when we analyzed the whole year N2O datasets as 83 

opposed to seasonally subdividing the datasets. Our recommendations to standardize N2O hot 84 

moment identification will facilitate synthesis of knowledge across studies.  85 

 86 

Introduction 87 

 88 

Nitrous oxide (N2O) currently accounts for 6% of Earth’s radiative forcing (Dutton et al. 89 

2023), and soil emissions contribute significantly to rising atmospheric concentrations of this 90 

potent greenhouse gas. Soil N2O emissions are often characterized by short periods of high 91 

reaction rates that contribute disproportionately to cumulative annual N2O emissions, referred to 92 



as hot moments (Groffman et al. 2009, Bernhart et al. 2015, Wagner-Riddle et al. 2020). Hot 93 

moments are prime targets for land management practices to mitigate N2O emissions, especially 94 

in agroecosystems (Wagner-Riddle et al. 2020). However, there is high uncertainty in the 95 

effectiveness of agricultural land management practices in reducing emissions, in part because 96 

assessments largely rely on relatively infrequent manual chamber-based emissions measurements 97 

that may miss many of the hot moments (Kravchenko and Robertson 2015, Charteris et al. 2020). 98 

Understanding of N2O hot moments from high temporal resolution datasets derived from 99 

autochamber and micrometeorological measurements can help guide improved manual chamber 100 

measurement sampling to better capture hot moments (Tallec et al. 2019, Lawrence et al. 2021, 101 

Anthony and Silver 2021) and parameterize models to more accurately predict N2O budgets on 102 

regional to global scales (O’Connell et al. 2022). Despite these datasets becoming more common 103 

(Charteris et al. 2020, Dorrich et al. 2020), there currently is no standard approach for hot 104 

moment identification, and the implications of different approaches on hot moment identification 105 

and quantification have not previously been evaluated. 106 

There are several methods for identifying N2O hot moments, wherein emission values 107 

above a threshold are considered part of an N2O hot moment (Bernhart et al. 2015). Often, 108 

thresholds are arbitrarily determined when visualizing the time series of net N2O flux data 109 

(Mander et al. 2021, Rautakoski et al. 2023). Statistical methods can be applied in a more 110 

standardized manner across studies, but the threshold values determined depend on the frequency 111 

distribution of individual N2O flux datasets. For example, assuming a dataset is normally 112 

distributed, using 1.5x the interquartile range (1.5x IQR; e.g., Molodovskaya et al. 2012) of the 113 

measured net N2O fluxes, flux values higher than 99.3% of the distribution are considered part of 114 

N2O hot moments. Using four standard deviations (4 SD) above the mean (e.g., Anthony and 115 



Silver 2021), only flux values in the top 0.1% of the distribution are identified as hot moments. 116 

These statistical methods are grounded in the assumption that datasets are normally distributed; 117 

however, this assumption belies the very behavior of N2O hot moments (episodic and large 118 

emission pulses), which typically leads to right skewed N2O flux datasets. Transforming the 119 

datasets to achieve normal distributions can lead to extremely high threshold values that result in 120 

few identified hot moments, particularly using the 4 SD method. Consequently, distribution-free 121 

methods such as isolation forest (IF) classification, which are free of assumptions about the 122 

shape of the probability distribution of a dataset, could be more appropriate for hot moment 123 

identification (Ackett et al. 2022). Isolation forest (IF) classification is a machine-learning 124 

method that uses binary trees to identify anomalous data points based on short path-lengths in the 125 

trees that indicate that the data points are few and different from the rest of the dataset. These 126 

threshold determination methods have not been compared across N2O flux datasets that vary in 127 

flux magnitude and distribution, leaving uncertain how much the methods can differ in hot 128 

moment identification and the estimated fraction of annual N2O emissions attributed to hot 129 

moments. 130 

Seasonal variation in N2O flux magnitude and distribution could lead to bias in hot 131 

moment identification and quantification when considering whole year datasets compared to 132 

seasonally subdivided datasets. In agroecosystems, N2O hot moments are largely governed by 133 

seasonally distinct triggers (Butterbach-Bahl et al. 2013). In the early growing season 134 

fertilization with ammonium (NH4+) or nitrate (NO3-) drives hot moments (Molodovskaya et al. 135 

2012, Roy et al. 2014). Throughout the growing season, irrigation or rainfall drives hot moments 136 

(Griffis et al. 2017, Song et al. 2021). During the winter and spring, freeze-thaw and thaw drive 137 

hot moments, respectively (Risk et al. 2013, Wagner-Riddle et al. 2017). The flux magnitudes of 138 



these hot moments vary, with fertilization-driven hot moments typically yielding larger-139 

magnitude N2O fluxes than rainfall-driven hot moments (Kostyanovsky et al. 2019). Thaw-140 

related hot moments can be even larger but vary in magnitude depending on the strength of a 141 

freeze event prior to thaw (Butterbach-Bahl et al. 2002, Groffman et al. 2009). Mitigating both 142 

larger and smaller N2O hot moments can potentially be important to reducing annual N2O 143 

emissions, with mitigation strategies targeting the different mechanisms responsible for N2O hot 144 

moments in different seasons. However, studies to date have conducted hot moment 145 

identification on whole year datasets such that the larger fertilization and thaw-driven N2O 146 

emission pulses elevate the thresholds used to identify N2O hot moments, causing the smaller, 147 

more frequent hot moments from other seasons to be missed. Because seasonally subdivided hot 148 

moment identification has not been previously conducted, it is not known how much these 149 

smaller N2O hot moments contribute to annual N2O emissions. 150 

 Here, we evaluated different threshold determination methods on whole year and 151 

seasonally subdivided net N2O flux datasets to determine which approach best captured N2O hot 152 

moments across datasets varying in N2O flux magnitude and distribution. We took advantage of a 153 

unique study in which one year of hourly measurements of net N2O flux were collected from 16 154 

autochambers located in a ~5 ha area of a conventionally tilled maize field in central Illinois, 155 

USA. The autochambers were placed to capture variation in N2O dynamics, including consistent 156 

N2O cold spots and episodic N2O hot spots (Zhang et al. 2023). The variation in N2O flux 157 

magnitude and distribution among the 16 autochamber datasets provided the opportunity to 158 

robustly assess how hot moment identification using (1) the 4 SD, 1.5x IQR and IF methods, and 159 

(2) whole year datasets versus seasonally subdivided datasets (early growing season, late 160 

growing season, and non-growing season) affected hot moment threshold values and 161 



quantification of N2O hot moment fluxes. Based on our findings, we provide recommendations 162 

to standardize hot moment identification approaches. 163 

 164 

Methods 165 

 166 

Net N2O flux data collection   167 

Net N2O fluxes were measured in a commercial field located near Villa Grove, IL that 168 

was cultivated in maize-maize-soy rotations with conventional tillage and planted with maize (Z. 169 

mays) during the 2022 growing season. Deep chisel tillage was performed in November 2021. 170 

Pre-planting fertilizers were applied at the rate of 19.7 kg N ha−1, 93.1 kg P ha−1, and 53.8 kg K 171 

ha−1 in April 2022.  Prior to planting, 134.5 kg N ha−1 of anhydrous ammonia was injected into 172 

the soil on May 7, 2022. Maize was planted on May 10, 2022. Finally, 32% UAN was Y-dropped 173 

as side-dressing at 90.2 kg N ha−1 with ammonium thiosulfate at 13.2 kg N ha−1 on June 11, 174 

2022. Z. mays was harvested on October 28, 2022. The soil in the field is roughly 70% Drummer 175 

silty clay loam and 30% Millbrook silt loam (USDA-NRCS, 2022). In this region, the mean 176 

annual air temperature is 10 °C, with a maximum monthly mean temperature of 24.4 °C in July 177 

and a minimum of -5.5 °C in January (Midwestern Regional Climate Center). The mean annual 178 

precipitation is 1008 mm, of which most rainfalls occur during the period of May to July 179 

(Illinois-Climate-Network, 2017).  180 

To capture spatial and temporal variability in soil N2O emissions at the field scale, net 181 

soil-atmosphere fluxes of N2O were measured hourly using automated chambers at 16 locations 182 

in the maize field. The chambers were distributed among four sampling nodes within a ~5 ha 183 

area of the field. At each node, four automated chambers (LI-8200-104, LI-COR Biosciences, 184 



Lincoln, NE, USA) were radially installed at 12 m distance from a N2O gas analyzer (LI-7820, 185 

LI-COR Biosciences, Lincoln, NE, USA) that sequentially measured hourly net soil-atmosphere 186 

N2O fluxes from each chamber continuously with an automated gas sampling multiplexer (LI-187 

8250, LI-COR Biosciences, Lincoln, NE, USA) starting in May 2022 until April 2023, excluding 188 

a ~3-week period in October-November 2022 during crop harvest.  189 

 190 

Comparison of hot moment identification approaches 191 

 We compared three threshold value determination methods (4 SD, 1.5x IQR, and IF) on 192 

whole year datasets and seasonally subdivided datasets to determine how the hot moment 193 

identification approaches affected the hot moment threshold values, the percentage of hot 194 

moment contributions to annual or seasonal N2O emissions, and the percentage of time in the 195 

year or season attributed to hot moments. The year was divided into three seasons: the early 196 

growing season (May 13-July 7, 2022) when hot moments were driven by fertilizer inputs, the 197 

late growing season (July 8-October 30, 2022) when hot moments were driven by rain events, 198 

and the non-growing season when hot moments were driven by freeze-thaw events (November 1, 199 

2022-April 9, 2023). The breakpoints between the seasons were visually determined from 200 

plotting the whole year datasets for the 16 autochambers together (Figure S1).  201 

 We ran each of the threshold value determination methods for the whole year and by 202 

individual season for each of the 16 autochambers. For the 4 SD method, we calculated the mean 203 

and SD of the dataset and then determined the hot moment threshold value as four SD above the 204 

mean. For the 1.5x IQR method, the IQR is calculated as the difference between the 75th 205 

percentile (Q3) and the 25th percentile (Q1) of the dataset. To identify the hot moment threshold, 206 

we calculated the upper threshold, which is Q3 plus 1.5 times the IQR. The IF method isolates 207 



anomalies instead of profiling normal data points. The algorithm utilizes 'isolation trees' to 208 

partition the data space, where anomalies are identified based on shorter path lengths in these 209 

trees, indicating easier isolation compared to normal points. For IF, we employed 210 

the IsolationForest function from sklearn.ensemble module in Python (version 3.10), setting 211 

the contamination parameter to 'auto'. This configuration allows the algorithm to automatically 212 

estimate the proportion of outliers in the dataset. This approach classifies data points with an 213 

anomaly score below 0 as anomalies. The threshold for identifying significant hot moments in 214 

N2O flux was determined by the lowest net N2O flux value that corresponded to an anomaly 215 

score below this threshold.  216 

 Although all 16 autochamber datasets were right-skewed (Figure S2), for several reasons 217 

we chose not to transform the datasets to achieve normal distributions. First, about 4% of the net 218 

N2O flux measurements across all datasets were negative fluxes that would have to be excluded 219 

to proceed with log transformation. Second, log transformation would diminish the data points 220 

on the high end of the frequency distributions such that the hot moment identification methods 221 

would not capture these extreme values as “hot moments.” Third, IF is an unsupervised learning 222 

algorithm that does not assume a specific distribution, negating the need for transformation.  223 

Using the determined threshold values above which a data point was considered part of a 224 

hot moment, we calculated the cumulative hot moment N2O emissions and the number of hot 225 

moment data points. We calculated the percentage of hot moment contributions to cumulative 226 

N2O emissions from the cumulative hot moment N2O emissions divided by cumulative N2O 227 

emissions. We also calculated the percentage of time in hot moments from the number of hot 228 

moment data points divided by the total number of N2O flux data points. These calculations were 229 



performed separately for each of the 16 autochambers across the whole year and by individual 230 

season. 231 

 232 

Statistical analyses 233 

 We used one-way ANOVAs and Tukey pairwise comparisons to determine the effect of 234 

threshold determination method on threshold values, percentage of hot moment contributions to 235 

the cumulative N2O emissions, and the percentage of time in hot moments in the whole year and 236 

in individual seasons. We also conducted similar analyses within each threshold determination 237 

method to determine the effect of season. Additionally, we calculated Pearson’s coefficient of 238 

skew using the median for each autochamber’s N2O flux measurements. The 16 autochambers 239 

were considered independent replicates for this analysis because of the high variation among 240 

autochamber datasets, even within sampling nodes. This analysis was performed separately for 241 

the whole year datasets and for each of the three individual season datasets. These statistical 242 

analyses were performed in RStudio (version 4.2.2 (2022-10-31) -- "Innocent and Trusting" © 243 

2022 The R Foundation for Statistical Computing). Statistical significance was determined as P < 244 

0.05. 245 

 246 

Results 247 

 248 

Comparison of hot moment threshold values 249 

On average across all 16 autochamber datasets, the 4 SD method yielded 1-2 orders of 250 

magnitude higher threshold values compared to the 1.5x IQR and IF methods, which had 251 

comparably lower threshold values (Table 1). The 4 SD method threshold values were 252 



significantly higher than the other two methods when considering the whole year and individual 253 

seasons (Table 1). This difference was detectable despite high variation in threshold values 254 

among autochambers: for the whole year analysis, thresholds ranged from 0.39-2.2, 0.0002-2.2, 255 

and 3.7-36 nmol N2O m-2 s-1 for 1.5x IQR, IF, and 4 SD methods, respectively (Figure S3).    256 

When subdividing the datasets into the early, late, and non-growing seasons, the 257 

threshold values determined by a given threshold determination method differed significantly 258 

among seasons (Table 1, Figure S3). All three methods yielded higher threshold values in the 259 

early growing season compared to the other two seasons, although for the IF method this was not 260 

statistically significant for the early versus non-growing season comparison (Table 1, Figure S4). 261 

Seasonally subdividing the datasets led to increased early growing season hot moment thresholds 262 

compared to whole year thresholds for the 1.5x IQR and 4 SD methods, whereas it did not 263 

significantly decrease the late- and non-growing season thresholds relative to the whole year 264 

thresholds. In contrast, seasonally subdividing the datasets led to decreased late- and non-265 

growing season thresholds compared to whole year thresholds for the IF method, and it did not 266 

change the early season threshold relative to the whole year threshold. 267 

 268 

 269 



Table 1. Mean ± SE net N2O flux threshold values (nmol N2O m-2 s-1) for the three hot moment threshold determination method applied to whole year datasets 270 
and seasonally subdivided datasets (N = 16 in all cases). Different lowercase letters indicate statistically significant Tukey pairwise differences at P < 0.05 among 271 
the threshold determination methods. Different uppercase letters indicate statistically significant Tukey pairwise differences at P < 0.05 among the time intervals 272 
for each threshold determination method. The column of ANOVA main effects corresponds to the differences among threshold determination methods, and the 273 
row of ANOVA main effects corresponds to the differences among seasons for a given method. For all one-way ANOVAs, df = 2. For P < 0.001, ***; P < 0.01 274 
**; P < 0.05, *. To see all threshold values for each autochamber by method and season, see Figures S3 and S4 in the Supplement.      275 
 276 

 Threshold determination method  Compare by method 
 1.5x IQR Isolation forest 4 SD ANOVA main effects 
Time interval     

Whole year 1.5 ± 0.24 (a, A)  0.89 ± 0.14 (a, B)  9.9 ± 2.0 (b, AB)  P < 0.001, F = 18 ***  
Early growing season 5.0 ± 0.90 (a, B)  0.92 ± 0.36 (a, B)   19 ± 4.6 (b, B)  P < 0.001, F = 12 *** 
Late growing season 1.3 ± 0.44 (a, A)  0.07 ± 0.03 (a, A)  3.9 ± 0.83 (b, A)  P < 0.001, F = 12 *** 
Non-growing season 0.91 ± 0.28 (a, A)  0.34 ± 0.07 (a, AB)  2.7 ± 0.66 (b, A)  P < 0.001, F = 8.4 *** 

Compare by time interval     
ANOVA main effects P <0.001, F = 13 *** P = 0.01, F = 4.6 * P < 0.001, F = 8.1 ***  

277 
278 



Comparison of hot moment contributions to cumulative N2O emissions 279 

For the whole year and each season, the percentage of cumulative N2O emissions from 280 

each chamber that was attributed to hot moments was, on average, lowest for the 4 SD method 281 

compared to the other two threshold determination methods (Table 2). However, this pattern did 282 

not necessarily hold when comparing the three methods for a given chamber within an individual 283 

season (Figure 1). In the early growing season, the three methods were sometimes 284 

indistinguishable. For example, regardless of the threshold determination method, 99-100% of 285 

the cumulative seasonal N2O emissions was attributed to hot moments for the five autochambers 286 

with the highest cumulative early season N2O emissions (N1C3, N1C4, N4C1, N4C2, N4C3; 287 

Figure 1). For one chamber (N3C2), the IF method attributed 100% of cumulative seasonal N2O 288 

emissions to hot moments in all three seasons, which was far higher than the other two methods. 289 

For all threshold determination methods, the mean percentage of cumulative seasonal 290 

N2O emissions attributed to hot moments was greater in the early growing season compared to 291 

the late and non-growing seasons (Table 2). However, this pattern did not necessarily hold across 292 

all chambers (Figure 1). For example, in Node 2, for Chambers 1 and 3, most of the cumulative 293 

annual flux was attributed to the non-growing season, but for Chambers 2 and 4 the cumulative 294 

N2O flux is more evenly distributed among the seasons (Figure 1).  295 

The percentage of time attributed to hot moments was higher for whole year datasets 296 

compared to the sum of seasonally subdivided datasets for the 1.5x IQR and 4 SD methods but 297 

was the opposite for the IF method (Table 2). The hot moment contributions for 1.5x IQR, IF, 298 

and 4 SD differed by 19%, 9%, and 12%, respectively, for the summed seasonal contributions vs. 299 

the whole year contributions (Table 2). Chamber by chamber, there was some more notable 300 

variation between the two approaches, but not across all chambers. Chambers that varied by 20% 301 



or more between the seasonally summed vs. whole year hot moment contributions included: all 302 

Node 1 chambers, N3C1, and N4C3 for 1.5x IQR, N2C2, N2C4, and N4C4 for IF, and N4C1 and 303 

N4C2 for 4 SD (Figure S5).  304 



Table 2. Mean ± SE hot moment contribution percentages (%) for the three hot moment threshold determination methods applied to whole year datasets and 305 
seasonal datasets (n = 16 in all cases). Different lowercase letters indicate statistically significant Tukey pairwise differences at P < 0.05 among the threshold 306 
determination methods. Different uppercase letters indicate statistically significant Tukey pairwise differences at P < 0.05 among the time intervals for each 307 
threshold determination method. The column of ANOVA main effects corresponds to the differences among threshold determination methods, and the first row of 308 
ANOVA main effects corresponds to the differences among seasons within a method. The second row of ANOVA main effects corresponds to the differences 309 
between the whole year versus the sum of individual seasons. For all one-way ANOVAs, df = 2. For P < 0.001, ***, P < 0.01 **, P < 0.05, *.  310 

 Threshold determination method  Compare by method 
 1.5x IQR Isolation forest 4 SD ANOVA main effects 
Time interval     

Whole year 66 ± 2.8 (b, AB) 76 ± 2.9 (a, A) 24 ± 2.3 (c, A) P < 0.001, F = 107 *** 
Early growing season 85 ± 6.1 (ab, B) 96 ± 1.8 (b, B) 65 ± 8.2 (a, B) P = 0.003, F = 6.7 ** 
Late growing season 57 ± 9.4 (ab, A)  72 ± 8.0 (b, A) 37 ± 8.8 (a, A) P = 0.03, F = 4.0 * 
Non-growing season 48 ± 3.9 (b, A) 70 ± 3.3 (c, A) 16 ± 1.8 (a, A) P < 0.001, F = 76 *** 
All seasons summed 47 ± 3.5 (b, A) 87 ± 3.0 (c, B) 12 ± 2.3 (a, A) P < 0.001, F = 177 *** 

Compare by time interval     
ANOVA main effects P < 0.001, F = 6.7 *** P < 0.001, F = 6.6 ** P < 0.001, F = 12 ***  

 P < 0.001, F = 18 *** P = 0.02, F = 6.2 * P < 0.001, F = 16 ***  
 311 

 312 



 313 
Figure 1. Hot moment contributions to the cumulative N2O flux for each automated chamber over the whole 314 
sampling period (May 2022-April 2023). For each automated chamber (each panel in the figure), the three bars 315 
correspond to the three threshold determination methods, the different color portions within each bar correspond to a 316 
different season, and the shaded fraction of each colored portion corresponds to the N2O flux values that were 317 
included in hot moments. Flux values greater than or equal to the threshold value were considered part of a hot 318 
moment. The percentage values written inside each colored bar portion corresponds to the percentage of the N2O 319 
flux for each season that was attributed to hot moments of N2O.    320 
 321 
 322 
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Comparison of the amount of time attributed to hot moments 324 

The percentage of time within each season attributed to hot moments was significantly lower 325 

for the 4 SD and 1.5x IQR methods compared to the IF threshold determination method (Table 3, 326 

Figure S6). Within each season, roughly 1% and 9% of data points were categorized as hot 327 

moments by the 4 SD and 1.5x IQR methods, respectively. Among seasons, the 1.5x IQR and 4 328 

SD methods attributed similar percentages of time to hot moments. In contrast, on average across 329 

all 16 autochambers, the IF method led to a highly variable percentage of time attributed to hot 330 

moments, ranging from 23% in the non-growing season to 89% in the late growing season. In 331 

addition, IF attributed higher percentages of time to hot moments during the early and late 332 

growing seasons, but a much lower percentage of time to hot moments during the non-growing 333 

season (Table 3, Figure S6).  334 



Table 3. Mean percentage of time for each season that was identified as a hot moment using the different threshold determination methods, averaged across all 335 
chambers (n = 16 in all cases); ± corresponds to 1 SE from the mean, and letters correspond to Tukey pairwise differences. Different lowercase letters indicate 336 
statistically significant Tukey pairwise differences at P < 0.05 among the threshold determination methods. Different uppercase letters indicate statistically 337 
significant Tukey pairwise differences at P < 0.05 among the seasons for each threshold determination method. The column of ANOVA main effects corresponds 338 
to the differences among threshold determination methods, and the row of ANOVA main effects corresponds to the differences among seasons within a method. 339 
For all one-way ANOVAs, df = 2. For P < 0.001, ***, P < 0.01 **, P < 0.05, *.  340 
 341 

 Threshold determination method  Compare by method 
 1.5x IQR Isolation forest 4 SD ANOVA main effects 
Season     
Early growing season 9.3 ± 1.0 (a, A) 65 ± 9.7 (b, B) 0.81 ± 0.11 (a, A) P < 0.001, F = 38 *** 
Late growing season 7.7 ± 1.2 (b, A) 89 ± 7.2 (a, B) 0.85 ± 0.15 (b, A) P < 0.001, F = 136 *** 
Non-growing season 8.8 ± 0.58 (a, A) 23 ± 5.3 (b, A) 1.2 ± 0.07 (a, A) P < 0.001, F = 13 *** 

Compare by season     
ANOVA main effects P = 0.51, F = 0.70 P < 0.001, F = 19 *** P = 0.08, F = 2.7  

342 



Discussion 343 

 344 

To better measure and mitigate N2O emissions, we must identify and quantify hot 345 

moments of N2O that contribute disproportionately to annual N2O budgets. Currently, there is no 346 

standard approach for hot moment identification, which challenges synthesis of knowledge about 347 

N2O hot moments across studies. The work we present here is the first assessment of different 348 

approaches for hot moment identification and their implications for hot moment quantification.  349 

Our analysis of 16 hourly net N2O flux datasets that vary in N2O flux magnitude and 350 

distribution revealed that the 4 SD method yielded hot moment threshold values too high, and the 351 

IF method yielded threshold values too low. This led to missed N2O hot moments or low net N2O 352 

fluxes mischaracterized as hot moments, respectively (Table 1, Figure S3, Figure 1). Hot 353 

moment identification by the 1.5x IQR method was most consistent with the definition of N2O 354 

hot moments, yielding an estimate that on average 9% of the net N2O fluxes measured over the 355 

year were hot moments that contributed 66% of the cumulative N2O emissions (Table 3, Table 356 

2). Seasonally subdividing the annual datasets facilitated identification of smaller hot moments 357 

in the late and non-growing seasons when N2O hot moments were generally smaller (Table 2, 358 

Figure S4, Figure 1). However, it also increased the 4 SD and 1.5x IQR hot moment threshold 359 

values in the early growing season when N2O hot moments were larger, leading to lower 360 

estimates of hot moment contributions to annual N2O emissions (Table 1, Figure S5). In the 361 

interest of identifying the N2O hot moments that are most important to measure and mitigate, we 362 

recommend whole year analyses as opposed to seasonally subdivided analyses.  363 

 364 

Evaluation of hot moment threshold determination methods 365 



 Our analysis suggests that the 4 SD method was too stringent for hot moment 366 

identification, missing what would reasonably be considered hot moments in visual evaluations 367 

of the 16 autochamber datasets (Figure S7). By definition, this method should only identify the 368 

top 0.1% of the net N2O flux data as hot moments in datasets exhibiting normal distributions. 369 

When we applied the 4 SD method to untransformed right-skewed datasets, approximately 1% of 370 

the net N2O flux data were identified as hot moments (Table 3). On average across the 16 371 

autochamber datasets, the 4 SD method yielded ten times higher hot moment threshold values 372 

which led to three times lower estimates of hot moment contributions to annual N2O emissions 373 

compared to the 1.5x IQR and IF methods (Table 1, Figure 1). The high threshold values 374 

estimated by the 4 SD method not only caused smaller hot moments to be missed but also caused 375 

net N2O fluxes on the rising and falling limbs of large hot moment pulses to be missed (Figure 376 

S7). An exception to this stark difference between methods was the autochamber datasets that 377 

included extremely high N2O fluxes following fertilization, which led to comparably high early 378 

growing season hot moment contributions (99-100%) estimated by all three methods (Figure 1, 379 

Table 2). Our analysis suggests that the 4 SD method would not capture the importance of the 380 

smaller-magnitude hot moments to cumulative annual N2O budgets. We conclude that the 4 SD 381 

method is appropriate for identifying the hottest hot moments that are most important to measure 382 

and mitigate (Anthony and Silver 2021), but it is likely not ideal for developing comprehensive 383 

models of annual N2O flux patterns because it only effectively hones in on the greatest hot 384 

moment triggers. 385 

 The 1.5x IQR and IF methods yielded similar estimates of hot moment contributions to 386 

annual or seasonal N2O emissions (Figure 1, Figure S5), but the IF method often attributed 387 

considerably more net N2O flux data to hot moments (Figure S6, Table 3). This was due to lower 388 



hot moment threshold values estimated by the IF method which led to more N2O flux data points 389 

attributed to hot moments (Table 1, Figure S3). However, these smaller “N2O hot moments” 390 

contributed little to cumulative N2O emissions over the year or the individual season (Figure S3, 391 

Figure S4, Figure 1). This was most exaggerated in the late growing season, which was marked 392 

by few and small hot moments across most autochambers. On average across the 16 393 

autochamber datasets, the late growing season threshold value estimated by the IF method was 394 

so low (ten times lower than that estimated by the 1.5x IQR method), that 89% of late growing 395 

season net N2O flux data points were attributed to hot moments (Figure S4, Table 2). Even in the 396 

early growing season when large hot moments occurred, the IF method on average attributed 397 

65% of net N2O flux data points to hot moments (Table 2). The IF method, therefore, appears too 398 

permissive in identifying N2O hot moments which should represent short periods of high net 399 

N2O fluxes that disproportionately contribute to cumulative N2O emissions (Wagner-Riddle et al. 400 

2020). In contrast, the percentage of net N2O fluxes attributed to hot moments by the 1.5x IQR 401 

method was constrained to ~9%, which is more in line with the definition of hot moments (Table 402 

3, Figure S6; Wagner-Riddle et al. 2020). We conclude that, of the three threshold determination 403 

methods we evaluated, the 1.5x IQR method strikes the best balance in identifying hot moments. 404 

Moreover, although there are not yet many published studies that have analyzed high temporal 405 

resolution N2O flux measurements for hot moments, a substantial fraction of published studies 406 

have opted to use the 1.5x IQR method (e.g., van den Heuvel et al. 2009, Molodovskaya et al. 407 

2012, Li et al. 2015, Bastos et al. 2021), likely because it can robustly detect hot moments even 408 

when they vary in flux magnitude.  409 

 410 

Evaluation of whole year versus seasonally subdivided analyses 411 



 Because different mechanisms trigger different magnitude N2O hot moments in the 412 

different seasons, we evaluated seasonally subdivided N2O flux datasets to ensure that hot 413 

moments were appropriately identified in all seasons. While most of the 16 autochamber datasets 414 

exhibited large N2O hot moments in the early growing season and smaller N2O hot moments in 415 

the late- and non-growing seasons (Figure 1, Figure S7), the threshold values estimated from the 416 

analysis of whole year datasets did not exclude the smaller N2O hot moments (Table 1). As such, 417 

seasonally subdividing the datasets was not necessary to improve hot moment identification. On 418 

the contrary, it detrimentally affected hot moment identification in the early growing season by 419 

raising the hot moment threshold value estimated by the 4 SD and 1.5x IQR methods (Table 1). 420 

This resulted in a decrease in estimated hot moment contributions to annual N2O emissions 421 

(Figure 1, Table 2). For the IF method, the low threshold values estimated for the late and non-422 

growing seasons led to more than half of those seasons being inappropriately identified as hot 423 

moments, thereby increasing the estimated hot moment contribution to annual N2O emissions 424 

relative to whole year analysis (Figure 1). We conclude that seasonal subdivision of N2O flux 425 

datasets can be counterproductive to N2O hot moment identification and quantification 426 

regardless of the threshold determination method. 427 
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