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Key Points:

• High speed infrared cameras can be used for studying fire-atmosphere
turbulent interactions

• Thermal Image Velocimetry/Image Segmentation methods can be em-
ployed to infer flaming zone kinematics to understand fire spread dynamics

• Turbulence derived from Thermal Image Velocimetry of flaming zone re-
veals similar spectral characteristics with atmospheric measurements

Abstract

We present novel in-field vegetation fire observations, and the analyses used to
process the data, using brightness temperatures recorded by longwave infrared
camera and thermal image velocimetry. The brightness temperatures from a
wind-driven stubble wheat fire were obtained in video format with a 60 frames
per second (fps) acquisition rate. Multi-level sonic anemometers mounted on a
10m in-fire tower were used for in-situ measurements of turbulent velocity and
air temperatures, while fuel level air and flame temperatures were collected by
an array of thermocouples. The camera’s image pixel resolution was adequate
to resolve dynamics and in accordance with the in-fire thermocouple spacing dis-
tances. The in-situ and remotely measured flaming zone dynamics were derived
using two different methodologies, Thermal Image Velocimetry (TIV) and Im-
age Segmentation (IS). The results highlight spatial and spectral information of
coherent turbulent and mean velocity structures. The power spectra decompo-
sition of the thermal image velocimetry showed similar spectral characteristics
to the sonic velocity measurements during the fire passage under the tower with
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a similar inertial subrange slope. This result reveals plausible evidence of inter-
action between the flaming zone and wind turbulence for a prescribed rapidly
moving stubble wheat fire. This research presents a new field measurement
methodology for understanding fire-atmospheric interactions between the flam-
ing zone and the immediate overlying atmospheric turbulent boundary layer.

Plain Language Summary

The size and destructive power of wildfires can vary depending on weather and
fuel conditions. We have carried out wheat stubble burning experiments using
specialized instrumentation in order to study how the wind and fire interact,
and the subsequent role of this interaction in the development of a wildfire. We
used Long-Wave InfraRed or LWIR cameras to capture radiation emitted by
the fire but invisible to the human eye. We then used the time-sequenced LWIR
images to detect and calculate forward motion and fluctuation of the fire. We
demonstrated for the first time the validity of these techniques by comparing the
results with wind measurements collected during the passage of the fire using
sonic anemometers. This new observation method has provided the first set of
two-dimensional observations of the interaction between the flame zone and the
overlying wind.

1 Introduction

A wildfire is a complex, multi-scale, and multi-process dynamical system with its
instantaneous state depending on chemical and physical processes occurring on
a hierarchy of spatial and temporal scales. Observations of multiscale processes
affecting the wildfire are very difficult to make. These scales are as small as
fuel particles during the combustion process (order of <10cm), flame structures
and heat transfer (order of one to tens of meters), and microscale/mesoscale
meteorological processes (orders of 10m to 10000m) (Morvan, 2011; Sullivan,
2017a, 2017b). As point measurements, micrometeorological in-situ towers in
experimental burns provide spatially limited information over a brief period
of time as the fire approaches and then travels underneath the instrumented
tower (Clements et al., 2007, 2008; Heilman et al., 2019; Seto et al., 2013,
2014). This observational approach, while providing information on the quasi-
stationary exchange of turbulent heat and momentum between the fire front and
overlying atmosphere, does not capture the instantaneous spatial interaction
between the flaming zone (defined by the wind and buoyancy driven visible
flames) and the overlying atmospheric turbulence regime.

An observation method that can provide spatial observations of turbulent ve-
locity within the flaming zone at field scale applications will elucidate the role
of convection in fire spread. Earlier attempts of spatially distributed tempera-
ture measurements have showed additional observational advantages, however
the fibre optic cable used in these experiments proved challenging to deploy in
vegetation (Cram et al., 2016; Tangney et al., 2018). Aerial and satellite-based
infrared remote sensing for spatially distributed temperature measurements can
help in the detection and monitoring of wildfires, and have been largely employed
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for operational fire management (Hua & Shao, 2017; Mazzeo et al., 2007), how-
ever resolution is too large to discern the convection physics at the fire front.

In previous fire behavior studies, the use of near-target Long Wave InfraRed
(LWIR) imagery with other spectral imaging techniques was used to under-
stand the relationship between fuel spatial variability and characteristics, fuel
consumption, and smouldering and flaming processes with the fire’s emitted
radiative heat flux (Hudak et al., 2016; McRae et al., 2005). In these efforts,
the challenge was calibrating for accurate brightness temperature (hereafter re-
ferred to as Tb) based upon image geo-referencing and ortho-rectification, and
removing wind-induced camera movements (O’Brien et al., 2016). In addition,
selecting the correct target emissivity values is problematic as they can vary
between 0.1 and 0.9 depending on flame thickness and mixture of soot and com-
bustible gas (Boulet et al., 2011; Johnston et al., 2014). Despite the availability
of research grade LWIR cameras that are capable of high frame rates (exceeding
100 frames per second; fps), their use in experimental fires to study spatial and
temporal flow dynamics within and around the fire are hereto limited.

For wildfire applications, Coen et al. (2004) and Clark et al. (1999) used a 30
and 60fps mid-wave infrared camera to calculate hot-plume vertical advection
velocity based on time sequential velocimetry analysis of brightness temperature
patterns. The images were taken from the side and front of a crown fire to derive
hot plume vertical and along sloping terrain advection velocities. They observed
new crown fire spread dynamics where local fire-induced bursts of heat emerged
from the canopy crown to aid the spread of the fire. In other disciplines, such
as micrometeorology, high speed infrared cameras were used to derive the veloc-
ity of coherent temperature structures and study their impacts on the energy
and moisture exchange between the surface and overlying atmosphere (Garai &
Kleissl, 2013; Inagaki et al., 2013; Katurji et al., 2013; Schumacher et al., 2019).
High frame rate LWIR cameras have been used with the development of new
velocimetry methods suitable for characterizing atmospheric turbulence. One
such method is Thermal Image Velocimetry (TIV), which tracks the movement
of thermal footprints using time sequenced image correlation techniques. In
non-fire applications, the TIV method was used to visualise airflow over artifi-
cial surface types like polystyrene boards and turf (Inagaki et al., 2013). This
was then validated against numerical simulations and in-situ field measurements
(Schumacher et al., 2019).

In this work, we demonstrate that the derivation of advection velocity using
TIV from high frame rate LWIR is suitable for observing fire-atmospheric in-
teractions at the intermediate scale between the flaming zone and the overly-
ing atmospheric turbulence boundary layer. We used a high frame rate (60
fps) LWIR camera to observe a rapidly advancing flaming zone front associated
with an experimental stubble wheat burn. Advection velocity was derived from
the observed thermal patterns using TIV. We present a description of our TIV
method for tracking thermal patterns over a fire front. The TIV results are then
compared to an independent velocimetry technique based on Image Segmenta-
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tion (IS) to validate the method. This is then followed by the experimental
set up, description of observations, and the use of the TIV with traditional
in-fire and tower-based temperature and wind velocity point measurements. Fi-
nally, we compare the derived advection speeds of flame parcels from within the
flaming zone to the overlying atmospheric turbulence, and then discuss the po-
tential coupling of atmospheric driven coherent turbulence structures to flame
dynamics.

2 Description of Techniques

2.1 Thermal Image Velocimetry

The Thermal Image Velocimetry (or TIV) method tracks the surface movement
of thermal patterns measured by a LWIR camera using time sequenced image
correlation techniques (Inagaki et al., 2013; Schumacher et al., 2019). The al-
gorithm converts the time sequenced images into a spatiotemporally resolved
velocity field at the camera’s pixel resolution and sampling frame rate. The
method involves maximizing the correlation between time and space window
filters for individual pixels while going through all the image pixels at two con-
secutive time steps. Within a fire, the Tb (brightness temperature) of the flam-
ing zone is an order of magnitude greater than its surroundings, including the
smouldering ground or the reflectance from instrumentation (Figure 1). This
minimizes the noise inside the flaming zone and allows for high quality analyses
on thermal advection speed of the flaming zone. The thermal image velocime-
try algorithm is continuously under development and an updated copy is freely
available from Schumacher (2021).
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Figure 1. (a) A sample of the Tb measured by the LWIR camera showing the
fire’s flaming zone propagating from the top to the bottom of the image. (b)
The resulting thermal advection velocity calculated using the TIV technique
applied to the full range of the detected Tb values. The black circles represent
locational references for both panels.

2.2 Image Segmentation

Image Segmentation (IS) methodology is a computer vision processing technique
that allows for the identification and placement of pixels into labelled groups
that share similar characteristics. IS was used to track flame parcels (defined
here as clusters of hot temperature anomalies within the flaming zone), study
their kinematic properties and cross-validate the TIV results. The flame parcel
identification and tracking method is based on the watershed image segmenta-
tion process (Najman & Schmitt, 1994). This well-known image segmentation
algorithm has been used to characterise particulate matter in nanomaterial ob-
served by electron microscopy (De Temmerman et al., 2014) and in the analyses
of magnetic resonance brain images (Beare et al., 2013).

To identify the flame parcels and to remove the data that represented smoke
(lower temperature) a temperature-based distribution filter was first applied on
the recorded time-sequenced Tb images. The 90th, 95th and 98th temperature
distribution threshold filters were tested and the 98th percentile threshold was
best suited for tracking and computing thermal velocity advection (Figure 2).
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This threshold filter highlighted the flaming zone area while reducing the noise
incurred from smoke.

Threshold processing was then used to produce a binary image that shows only
the fire front (Figure 2f). Subsequently, watershed segmentation was applied
to the binary image to enable identification of “local maxima” or the non-null
pixels in the binary images (Figures 2g and 2h). It also identified the pixels
farthest away from the null pixels (black in Figures 2f) and it located potential
flame parcels based upon regions defined by local maxima (Figures 2h).

Figure 2. (a) Visible image taken from the elevated platform showing the
approximate field of view of the infrared camera as shown in (b), the white
and black arrows mark the 10m in-fire turbulence tower. An overhead view
from an unmanned aerial vehicle is shown in the supplementary material
video_S1.mp4; (b) Brightness Temperature, Tb, for the entire field of view
and temperature range from the infrared camera, the black and white arrow
marks the 10m in-fire turbulence tower and a black box outlines the Image
Segmentation (IS) analysis area; (c), (d), and (e) show the temperature
distribution after application of IS filtering for the 90th, 95th, and 98th

percentiles respectively. An animation of (c) is provided in supplementary
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material video_S2.mp4; (f) a binary, white/black, processed image of (e); (g)
the distance transform applied on binary segmented image; (h) the resulting
segmented watersheds outlining the detected flame parcels. The temperature
color legend in (b) only applies to (b), (c), (d) and (e).

The IS method allowed for segmenting, identifying and tracking potential flame
parcels across multiple consecutive frames, as well as for computing their tra-
jectory and advection velocity. After a careful consideration of outliers only
potential flame parcels meeting the following assumptions were considered:

1. Flame parcels have to contain a minimum of 5 pixels that are greater
than 750°C, to properly aggregate groups of pixels that do not represent
individual flamelets.

2. To reduce outliers associated with flame flickering in and out of pixels,
flame parcels cannot exceed an advection speed of 30m s-1, and only parcels
moving in both the streamwise and crosswise directions were considered.

Defining flame parcels in this manner allowed for a unique and clear identifier to
be assigned to each parcel that enabled continuous spatial-temporal monitoring.
Tracking individual parcels allowed for new spatial-kinematic information, such
as thermal advection speed, to be derived.

3 Experiments and Methods

3.1. Experimental set-up

Twelve experimental research burns were carried out in Darfield, New Zealand
during March 2018 (Figure 3 shows 11 out of 12 experimental zones). A com-
prehensive in-situ and remote sensing instrumentation package was set up to
measure atmospheric and fire turbulence dynamics. The experimental design
aimed to capture data from across a range of turbulent scales, extending from
equivalent fuel size to several hundred meters into the ABL. Specifically, ob-
servations occurred at the fuel particle size (order of <10cm), flame structure
and heat transfer size (order of 1 to tens of meters), and microscale/mesoscale
size (orders of 10m to 10,000m). A detailed description of the experimental
design and instrument specifications is available from Finney et al. (2018). A
subset of experimental burns, EE1 and EE3 carried out on March 11, 2018, and
observations (Table 1 and Figure 3) were used for these analyses.

Infrared image measurements were acquired using a Telops cooled FAST-IR
L200 LWIR camera capable of 234 fps in full 640x512 pixels and 17200 fps in
sub-windows. The camera was operated in the longwave band between 7.7�m
to 9.3�m with a 50mm narrow angle lens to reduce lens distortion effects and
resolve smaller features and was factory calibrated for an extended temperature
range up to 1500°C). The effective pixel resolution of approximately 5 cm was
calculated by counting pixels of known targets such as the meteorological tower
and flame height measuring poles visible in the camera’s field of view.

The camera was located 20 m above ground level and had a full view of the
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fire’s flaming zone and was set to acquire at 60 fps to best match the acquisition
rates of the in-situ thermocouples, which collected data at 50 Hz, and wind
sonic anemometers, which subsampled data to 20Hz. To further reduce any
lens distortion effects, we have limited our analyses to a central window of 8m
by 12m (Figure 2b). The sonic anemometers (K-type and Vx-type, ATI, Boulder
Colorado) were mounted on a 10m in-fire tower located at the center of each
burn plot at 1.6m, 5m, and 10m above ground level (AGL). A horizontal array
of thermocouples (custom made, Missoula Fire lab, Missoula Montana) were
positioned on the fuel bed and perpendicular to the fire-front.

Figure 3. Experimental burn layout. (a) Picture from an unmanned aerial
vehicle showing the fire front progression (the thick yellow line is for reference
in (e); (b) The infrared camera (shown in the white casing) is located on a 20m
high elevated platform and marked with a dashed white circle in (a); (c) the
10m in-fire sonic anemometer tower inside the dashed white rectangle of (a) with
three sonic anemometers installed on cross arms along with a vertical array of
20 thermocouples; (d) a section of the horizontal fuel-level thermocouple array
showing 16 thermocouples at 15 cm spacing inside the dashed oval; (e) layout
of all experimental burn plots, including the two cases EE1 and EE3, carried
out in the NZ-Fire experiment with their dimensions and fuel types. The wind
barb at the bottom right of the panel shows the mean wind speed and direction
during EE1 and EE3 experiment. The yellow thick lines are inserted in (a) and
(e) for reader orientation reference.
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Table 1. Experimental conditions and observational system details. General
meteorological conditions recorded at the site from 10m Above Ground Level
(AGL) from a standard AWS at the site.

Exp. Air temperature [°C], relative humidity [%] Wind speed [ms-1] and direction [°] for 10min average at 10m AGL Ignition time (LST) fire duration [min] Mean fuel height h, and mean flame height hf [m] Mean stalk (and litter) moisture content [%] Mean stalk and litter fuel load [kg m-2]
EE1 15, 70 6.5, 35 09:35, 2.1 0.27, 1 17(39) 0.25, 0.13
EE3 19, 62 8.8, 47 13:03, 1.1 0.25, 2 12(12) 0.22, 0.15

Table 2. Observational systems used in the experiments and corresponding
measurement parameters and specifications.

Observational
System

Instrument Accuracy,
range
(sensitivity,
resolution)

Measured
variable

Installation
details

Time
sequential
Long Wave
Infrared
(LWIR)
imaging

Telops L200
50mm lens
7.7µm to
9.3µm

± 1°C, 100
to 1500°C
(0.022°C,
~5cm/px)

Brightness
temperature
(Tb) 60fps,
640x512 px

On elevated
platform,
20m AGL.
Oblique field
of view of the
fire line and
flaming zone

In-fire wind
turbulence
tower

Applied
Technologies,
Inc. 3-
dimensional
ultrasonic
anemometer
– SATI/3(K)
series,
Campbell
Scientific
CR6
datalogger

K-probe -
150 mm
vertical and
horizontal
measurement
path length.
Sample
frequency
20Hz

U (+ve
towards
east), V (+ve
towards
north), W
(+ve
vertically
upwards)
[ms-1]

1.6m (6h,
6.4h), 5m
(18.9h, 20h),
and 10m
(37.7h, 40h)
AGL and per-
pendicular to
fire line

Horizontal
thermocouple
array

Type K
thermocouple

± 2°C, -200
to 1260°C
(41�V/°C,
0.1°C)

Air/gas
temperature
[°C]

thermocouples
at 15cm
spacing, per-
pendicular to
fire line, and
at fuel height
level

3.2. Research burns conditions
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Special attention was given to produce a steady state fire line with negligible
edge-effects at the center of the burn. Evidence of negligible edge-effects at the
centre of the fire-front is a fire-front that appears nearly as a straight line (i.e.,
Figure 2a). To obtain this straight line careful consideration was given to the
size of the burn plot and ignition method of the fire to counteract the natural
tendency for elliptical propagation. The in-situ ground instrumentation were
located at the centre of the fire line to mitigate influence of the edges on the
data.

All research burns were carried out on flat terrain and burns EE1 and EE3
occurred in wheat stubble with canopy height and fuel moisture contents and
loadings as described in Table 1. Although their fuel types were similar, the time
of ignition, morning (EE1) and afternoon (EE3) led to different meteorological
conditions and stalk and litter fuel moisture contents. The average fire spread
rates reflect these differences with EE1 spreading at 0.68m s-1 under lighter
wind speeds and elevated fuel moisture contents and EE3 spreading at 1.08m
s-1. These average spread rates were estimated based on aerial video footage.
Fire spread rate was also calculated from the horizontal thermocouple arrays
using cross-lagged correlations of air temperature from the 32 thermocouples
(see Table 1). The values are similar at 0.8m s-1 for EE1 and 1.5m s-1 for EE3
(Finney et al., 2018). The prevailing wind direction was from the northeast
sector for all experimental burns and referenced by the wind barb (for reference
in Figure 3e).

3.3. Data processing

3.3.1 Infrared image stabilization

Video stabilization of the acquired infrared images was carried out first, which
eliminated the impact of wind-induced oscillations on the camera while on the
elevated platform. The stabilization was applied using the motion tracking func-
tions of the open source software Blender (Community, 2018; Hess, 2013). Low
emissivity stationary targets for video stabilization were used from image to
image to stabilise the video. The stationary targets included the 10m in-fire
turbulence tower made of steel and visible in low magnitude Tb and in-fire
camera boxes wrapped in highly reflective heat shielding. Both increased in
LWIR visibility as the fire front travelled through the instrumentation and were
therefore visible in the camera video with and without fire. The Blender stabi-
lization algorithm requires color value pixels. Therefore, to stabilize the infrared
footage we converted the unstable infrared video to RGB color. Then the RGB
color video was stabilized and subsequently returned into Tb 3-dimensional data
cubes (x,y, time) using a vector quantization method with the color values in a
look-up table. This method was subsequently improved using a random forest
machine-learning model (Schumacher et al., 2019) to increase the accuracy of
Tb retrieved from color value pixels.

3.3.2 Sonic anemometer data treatment

Time series data from the sonic anemometers were processed to remove unreal-
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istic spikes using the de-spiking routine proposed by Vickers and Mahrt (1997).
Data spikes during the research burn that were larger than 3.6 times the stan-
dard deviation within a 1 minute moving average window were replaced by
linearly interpolated values. We chose ± 3.6 standard deviations due to the
lower intensity nature of our burns, based on Seto et al. (2014), Clark et al.
(1999) and Coen et al. (2004). The data were then checked for any sensor tilt
effects by tilt correcting using the planar fit method (Wilczak et al., 2001). The
root mean square deviations before and after the corrections were calculated for
the duration of the burn, and were only 0.3m s-1 for vertical velocity and 0.7m
s-1 for horizontal wind speed. The calculated spectra before and after the tilt
correction were not affected by this correction process.

4 Results

4.1. General observation of the fire front characteristics

A visual inspection of the image-time sequence of EE1 and EE3 fire fronts along
with the fuel-level thermocouple readings for both experiments shows a deeper
flaming zone for EE3 (Figure 4). Quantitatively, the flaming zone depth is rep-
resented by the variability in the 50 Hz and 1-min average temperature (Figures
4b and 4d). Both meteorological and fuel moisture conditions contributed to
EE3’s greater flaming depth with drier fuel conditions and higher wind speeds
as compared to EE1 (Table 1). Flame height, measured using calibrated in-fire
poles painted black and white at 0.5m intervals, was approximately 1m AGL
(3.8h, EE1) and 2m AGL (8h, EE3), where h is the mean fuel height.
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Figure 4. Fire front passage as viewed by an in-fire camera for (a) EE1 and
(c) EE3 relative to the horizontal thermocouple array, which is marked at its
endpoints by the black solid and dotted arrows. The four picture insets in (a)
and (c) show a 3s time lapse set of images on the horizontal thermocouple array
that measured temperature (b) and (d) as the fire front passed through, shown
as a time series from the first thermocouple. Blue and red lines show the 50Hz
and 1s average data respectively.

4.2. Evaluation of the spatiotemporal suitability of high-speed LWIR for in-fire
temperature observations

Comparing LWIR images with a time-series from a single pixel (sampled at
60fps) of the Tb demonstrates the wealth of data this method collects (Figure 5).
Time series from a single pixel matched with the LWIR images shows influence
of smoke/hot combustible gases crossing the pixel, followed by the fire front
passage through the pixel and then a linear cooling as slow infrared energy was
release from the hot ground.
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Figure 5. Brightness temperature (Tb) point and image series from EE3 as the
fire front was crossing the in-fire wind turbulence tower: (a) time series of Tb
taken from the white dot location marked in (b). The annotated arrows point
to the periods represented in the Tb images in (b) while the red box represent
the flaming zone period; (b) Tb images taken by the infrared camera.

The data from the horizontal in-situ fuel-level thermocouple (TC) array was
used to validate the Tb data. The objective of this comparison was to evalu-
ate the suitability of the LWIR camera’s pixel resolution in terms of resolving
brightness temperature changes across the thermocouple array. In both EE1
and EE3, 32-pixel locations from the time-sequenced Tb images that aligned
with the thermocouple locations were extracted for analyses. Autocorrelations
between thermocouples were used to build a curve for comparison against auto-
correlations between pixels (Tb) for the same spatial location (Figure 6). These
curves demonstrate the lag time of exposure to the fire front between 8 horizon-
tal distances that ranged from 0.15m (T1 to T2) to 1.05m (T1 to T8).

This analysis was done to verify that the sampling rate and spatial resolution
of the LWIR camera was able to detect the temperature changes as observed
by the TC array. Both systems show similar lag periods (Figure 6b and 6c)
verifying the capability of the LWIR camera to sense the thermal and dynamic
shifts due to fire front passage.
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Figure 6. Cross correlations between the temperature measurements of the
horizontal thermocouple array and the nearby Tb pixels. (a) Temporal stan-
dard deviation of each pixel in the infrared image with an enlarged view of the
thermocouple array viewed in infrared. TC1 to TC32 represent the thermocou-
ple temperature measurements and TbC1 to TbC32 represent the equivalent
Tb measurements (virtually represented by balck dots); (b) and (c) cross corre-
lations between TC and Tb for the first 8 thermocouple measurements of the
EE3 case.

4.3 Comparison of two methods for computing mean advection speed

The TIV and IS were two different methods used to compute the mean advection
speed of the hot parcels of air within and near the flaming zone. The results
from both methods show similar trends and magnitudes (Figures 7a and 7b).
The comparison period covers the fire front passage through the analysis area,
as shown in Figure 2b, and the advection speeds were spatially averaged at
each image sequence. Both independent methodologies consistently produced a
similar mean advection speed throughout the fire front passage for both research
burns. This cross evaluation gives confidence in the LWIR technique for use in
computing mean advection speeds near and within the fire front. The IS is an
independent method with different spatiotemporal filters and scales as compared
to the TIV. TIV is the preferred method for observing in-situ turbulence because
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it preserves the high frequency temporal fluctuations of the signal.

The mean advection speeds of flaming zone from the TIV method for EE1 and
EE3 were 3.7m s-1 and 5.3m s-1, respectively. The difference (EE1 lower than
EE3) likely relates to both the differences in the overlying wind speeds, 6.5m
s-1 and 8.8ms -1 at 10m AGL for EE1 and EE3, respectively.

Figure 7. Advection speeds of the flaming zone (temporal standard deviation)
calculated with two different methods and for the (a) EE1 and (b) EE3 experi-
mental cases. The methods are the Thermal Image Velocimetry (TIV, thin blue
line) and Image Segmentation (IS, red line). The mean and standard deviation
(std) are from the TIV method.

4.3 Comparison of TIV-based wind speed distribution and turbulence spectra

The wind speed measured at 10m AGL was higher than both the wind speed
measured at 1.6m and the TIV spatially averaged advection speed for EE3
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(Figure 8a). To aid with visual inspection a shift of the 1.6m wind speed values
to match the peak of the distribution of TIV advection speeds (see dotted blue
line in Figure 8a) reveals that the shape of the TIV advection speed distribution
matches the distribution of the computed vector wind speed from the 1.6m sonic,
although peaks differ.

To identify and compare the frequency information of the TIV derived advection
speeds with the overlying wind turbulence, we applied a Fast Fourier Transform
(FFT) decomposition using the p-Welch method (Welch, 1967) on both TIV and
the 1.6m and 10m sonic datasets (Figure 8b). The speed perturbations were
derived from a mean window of 2-seconds and the data used for the FFT was
at 20Hz for the tower-based wind speeds and 60Hz for the TIV-based advection
speeds. The results show matching spectral peaks at around 0.6Hz and similar
high frequency slopes up to 10Hz with all data following the expected turbulent
inertial subrange empirical -5/3rd slope (Stull, 2012).
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Figure 8. (a) Number distribution of the total TIV advection speed values for
EE3 (TIV avg(xy) for spatially averaged advection speed within the sampled
region at each time step). Wind speed was computed from the data recorded
by the sonics located at 1.6m and 10m AGL and not from the AWS data used
in Table 1 for general meteorological conditions. For visual inspection of the
profile, the dotted blue line represents the adjusted distribution of WS 1.6m
by shifting the blue line to the left to match the peak with the TIV avg(xy)
distribution. (b) The Power Spectral Density (PSD) derived by applying the
Fast Fourier Transform (FFT) on the calculated perturbation fields of the TIV
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advection speed and the wind speed measured at the two sonic anemometer
height levels. The TIV power adjusted line was derived by applying a power
multiplier to the red curve for better visual comparison of the three profiles. The
black line is the reference for the inertial subrange slope for turbulence spectra
(f -5/3).

5 Discussion and Conclusion

We have presented the application of a novel measurement and analysis tech-
nique using high speed infrared image acquisition and thermal image turbulent
velocimetry. We have also shown a cross evaluation between the Thermal Image
Velocimetry (TIV) and Image Segmentation (IS) methods. The TIV was used
to derive the advection speed of thermal anomalies within the flaming zone,
while the IS method was used to derive flaming parcel advection speeds that
represented clusters of thermal anomalies from within the flaming zone. Both
methods resulted in similar values despite their different approaches. The TIV
method is preferable to the IS due to its ability for resolving the temporal and
spatial turbulence scales. Previous research burns that used tower based sonic
anemometer measurements for wind driven low intensity grass fires discussed the
potential role of overlying turbulent wind velocity on fire behaviour (Clements
et al., 2016; Ottmar et al., 2016). With thermal image turbulent velocimetry, it
is now possible to characterize the spatial turbulence heterogeneity associated
with atmospheric-surface interactions.

The nature of the frame-to-frame calculations of the TIV allowed for resolving
turbulent perturbations at the camera’s acquisition frame rate speed of 60 fps.
The mean TIV-derived advection speeds from within the flaming zone for EE3
was less than the overlying wind speeds measured at 1.6m AGL (Figure 8a).
The number distribution profile between the observed 1.6m wind speeds and
TIV values was similar. We note that independently measured flame heights
were placed between 1m and 2m for these burns placing the 1.6m sonic in or
near the flaming zone. The difference between the TIV-derived advection speed
and the 1.6m wind speed may be due to the observed LWIR closer to the surface.

Results from thermal image turbulent velocimetry should be analysed with care
as the radiometric emission received by the camera sensors could involve mul-
tiple combustion sources from gases, fuel, ground and flames. Electromagnetic
radiation is emitted by any substance that has a temperature above absolute
zero, therefore the measurement of the brightness temperature of the flaming
zone can be problematic as the fire chemical process discharges gases with re-
active chemical species and smoke with different emissivity signatures spanning
the long wave spectrum in use. The path between the emitting flame and the
camera sensors has to be clear of any other emitting substances, which is hard
to achieve in a field experiment. As a result, it is essential to describe the limita-
tion of the measurement method of brightness temperature (Tb) and understand
what dimensional components of the flaming zone we are measuring.

Emission of burning solid fuel and hot gases from the flame cannot be distin-
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guished in the imagery, and the latter’s grey body emissivity varies from 0.1 to
0.9 depending on combustion characteristics as flame depth and gas composition
(Boulet et al., 2011; Johnston et al., 2014). Parent et al. (2010) carried out lab-
oratory experiments of burning vegetation and recorded multispectral radiation
intensity using filters installed on a LWIR camera and a spectrometer. It was
found that the source of electromagnetic radiation can vary from the burning
vegetation levels where soot emission is predominant following the Plank’s law,
through the flame lower heights where H2O vapor is dominant at ~7.8 microns,
to flame mid to high levels where CO2 is dominant at ~4.4 microns. Parent et
al. (2010) concluded that the grey body emissivity varies between 0.8 close to
the burning vegetation to around 0.3 for the flame. The LWIR camera used for
this study has a broadband infrared spectrum between 7.7 to 9.3 microns and
therefore we estimate that the highest radiation intensity values, and thus the
Tb pixel values, are more likely to originate from the emitted radiation from
soot particles and H2O vapor near the combusting fuels.

Further limitations can be attributed to the field of view, which was oblique for
these experiments. Due to the oblique field of view, and the estimated velocime-
try at the near-fuel levels, we cannot confidently suggest that the thermal image
velocity results represent the true velocities parallel and perpendicular to the
advancing fire line. The results are more likely to represent a spatial integral
velocity scale of the 3-dimensional flame parcel targets.

The presented measurement and analysis technique is useful for analysing co-
herent flame parcel motion in field-scale fires that might be responsible for non-
steady fuel heating. This phenomena was previously observed in controlled
laboratory studies (Finney et al., 2015) and Tang et al. (2019) suggested that
intermittent fuel heating frequency in wind driven fires is proportional to the
ratio of Froude number (wind momentum allowing flame forward pulsation)
and fire’s heat release (allowing flame upward pulsation). Observations of forest
crown fires suggest that coherent ambient wind gusts, possibly resulting from
the interaction of the fire buoyancy and ambient atmospheric turbulence, can
induce a variance in fire spread rate in the order of tens of seconds and tens
of meters (Stocks et al., 2004; Taylor et al., 2004). As a result, it is crucial to
be able to measure atmospheric-flame-fuel interactions in a spatially resolved
manner. High speed infrared cameras coupled with a thermal image velocity
algorithm can provide a useful tool for meeting this objective.

This work presented the first verification of the application of time-sequential
thermography for studying fire-atmospheric turbulence interactions at a field-
scale. In particular, the technique can be used to find and track the coherent
flame parcel motions responsible for fuel convective heating and for relating the
non-steady speed of flame parcels within the flaming zone to the turbulence
perturbations in the overlying atmosphere. The TIV algorithm is available as
an open-source toolkit (Schumacher, 2021).
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