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Abstract

On-Stack Replacement (OSR) is a technique for dynami-
cally transferring execution between different versions of a
function at run time. OSR is typically used in virtual ma-
chines to interrupt a long-running function and recompile it
at a higher optimization level, or to replace it with a different
one when a speculative assumption made during its compi-
lation no longer holds.

In this paper we present a framework for OSR that intro-
duces novel ideas and combines features of existing tech-
niques that no previous solution provided simultaneously.
New features include OSR with compensation code to adjust
the program state during a transition and the ability to fire an
OSR from arbitrary locations in the code. Our approach is
platform-independent as the OSR machinery is entirely en-
coded at a compiler’s intermediate representation level.

We implement and evaluate our technique in the LLVM
compiler infrastructure, which is gaining popularity as Just-
In-Time (JIT) compiler in virtual machines for dynamic lan-
guages such as Javascript, MATLAB, Python, and Ruby. As
a case study of our approach, we show how to improve the
state of the art in the optimization of the feval instruction,
a performance-critical construct of the MATLAB language.

Categories and Subject Descriptors D.3 [Processors):
Compilers

Keywords On-stack replacement, just-in-time compilation,
code optimization, deoptimization, LLVM.

1. Introduction

The LLVM compiler infrastructure [11] provides a Just-In-
Time compiler called MCIIT that is currently being used for
generating optimized code at run-time in virtual machines
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for dynamic languages. MCIIT is employed in both indus-
trial and research projects, including Webkit’s Javascript en-
gine, the open-source Python implementation Pyston, the
Rubinius project for Ruby, Julia for high-performance tech-
nical computing, McVM for MATLAB, CXXR for the R
language, Terra for Lua, and the Pure functional program-
ming language. The MCJIT compiler shares the same opti-
mization pipeline with static compilers such as clang, and
it provides dynamic features such as native code loading and
linking, as well as a customizable memory manager.

A piece that is currently missing in MCJIT is a feature
to enable on-the-fly transitions between different versions
of a running program’s function. This feature is commonly
known as On-Stack-Replacement (OSR) and is typically
used in high-performance virtual machines, such as HotSpot
and the Jikes RVM for Java, to interrupt a long-running func-
tion and recompile it at a higher optimization level. OSR can
be a powerful tool for dynamic languages, for which most ef-
fective optimization decisions can typically be made only at
run-time, when critical information such as type and shape
of objects becomes available. In this scenario, OSR becomes
useful also to perform deoptimization, i.e. when the running
code has been speculatively optimized and the assumption
used for the optimization does not hold anymore, the opti-
mized function is interrupted and the execution continues in
a safe version of the code.

Currently VM builders using MCJIT are required to have
a deep knowledge of the internals of LLVM in order to
mimic a transitioning mechanism. In particular, they can rely
on two experimental intrinsics, Stackmap and Patchpoint, to
inspect the details of the compiled code generated by the
back-end and to patch it manually with a sequence of assem-
bly instructions. In particular, a Stackmap records the loca-
tion of live values at a particular instruction address and dur-
ing the compilation it is emitted into the object code within
a designated section; a Patchpoint instead allows to reserve
space at an instruction address for run-time patching and can
be used to implement an inline caching mechanism [14].

Lameed and Hendren propose McOSR [10], a technique
for OSR that stores the live values in a global buffer, recom-
piles the current function, and then loads in it the saved state
when the execution is resumed. McOSR was designed for



the legacy JIT that is no longer included in LLVM since re-
lease 3.6 and has some limitations that we discuss in Sec-
tion 3.

Contributions. In this paper we propose a general-purpose,
target-independent implementation of on-stack replacement.
Specific goals of our approach include:

* The ability for a function reached via OSR to fire an OSR
itself: this would allow switching from a base function
f to an optimized function f’, and later on to a further
optimized version f”, and so on.

* Supporting deoptimization, i.e., transitions from an opti-
mized function to a less optimized function from which
it was derived.

* Supporting transitions at arbitrary function locations.

* Supporting OSR targets either generated at run-time
(e.g., using profiling information) or already known at
compilation time.

* Hiding from the front-end that generates the different
optimized versions of a function all the implementation
details of how on-the-fly transitions between them are
handled at specific OSR points.

We implemented the proposed approach in OSRKit!, a pro-
totype library for LLVM IR manipulation based on MCJIT
with the following design goals:

* Encoding OSR transitions in terms of pure IR code only,
avoiding manipulations at machine-code level.

* Incurring a minimal level of intrusiveness in terms of
both the instrumentation of the code generated by the
front-end and the impact of OSR points on native code
quality.

* Relying on LLVM’s compilation pipeline to generate the
most efficient native code for an instrumented function.

While the general ideas we propose have been prototyped
in LLVM, we believe that they could be applied to other
toolchains as well. To investigate the potential of our ap-
proach, we show how to optimize the feval construct —
a major source of inefficiency in MATLAB execution en-
gines [9, 15]. We present an extension of the MATLAB
McVM runtime [3] based on OSRKit to enable aggressive
specialization mechanisms for feval that were not sup-
ported by extant techniques [9]. An experimental evaluation
of our technique reveals that the OSR machinery injected by
OSRK:it has a small level of intrusiveness and the optimiza-
tions enabled by our approach can yield significant speedups
in practical scenarios.

Structure of the paper. The remainder of this paper is
organized as follows. In Section 2 we present our OSR
technique and in Section 3 we outline its implementation

' OSRKit is available at https://github.com/dcdelia/tinyvm.
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Figure 1. On-stack replacement dynamics: control is trans-
ferred via OSR from a point L of a base function f to a point
L' in a variant f' of f.

in LLVM. Section 4 illustrates our feval case study in
McVM. In Section 5, we present our experimental study
and discuss implications of injecting OSR points in LLVM
IR programs. Related work is discussed in Section 6 and
concluding remarks are given in Section 7.

2. Overview

In this section we provide an overview of our ideas. The
key to platform independence in our work is to express the
entire OSR machinery at intermediate code representation
level, without resorting to machine-level code manipulation
or special intrinsics of the intermediate language such as
Stackmap and Patchpoint in LLVM IR.

Consider the generic OSR scenario shown in Figure 1. A
base function f is executed and it can either terminate nor-
mally (dashed lines), or an OSR event may transfer control
to a variant f', which resumes the execution. The decision
of whether an OSR should be fired at a given point L of
f is based on an OSR condition. A typical example in JIT-
based virtual machines is a profile counter reaching a cer-
tain hotness threshold, which indicates that f is taking longer
than expected and is worth optimizing. Another example is
a guard testing whether f has become unsafe and execution
needs to fall back to a safe version f'. This scenario includes
deoptimization of functions generated with aggressive spec-
ulative optimizations.

Several OSR implementations adjust the stack so that
execution can continue in f' with the current frame [2, 8, 19].
This requires manipulating the program state at machine-
code level and is highly ABI- and compiler-dependent. A
simpler approach, which we follow in this article, consists in
creating a new frame every time an OSR is fired, essentially
regarding an OSR transition as a function call [10, 14].

Our implementation targets two general scenarios: 1) re-
solved OSR: f' is known before executing f as in the de-
optimization example discussed above; 2) open OSR: f' is
generated when the OSR is fired, supporting deferred and
profile-guided compilation strategies. In both cases, f is in-
strumented before its execution to incorporate the OSR ma-
chinery. We call such OSR-instrumented version fgom.

In the resolved OSR scenario (see Figure 2), instrumenta-
tion consists of adding a check of the OSR condition and, if
it is satisfied, a tail call that fires the OSR. The called func-
tion is an instrumented version of f’', which we call f'i,. We
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Figure 2. Resolved OSR scenario.

refer to 'y, as the continuation function for an OSR tran-
sition. The assumption is that f'y, produces the same side-
effects and return value that one would obtain by f if no OSR
was performed. Differently from f', f', takes as input all live
variables of f at L, executes an optional compensation code
to fix the computation state (comp_code), and then jumps
to a point L' from which execution can continue. The OSR
practice often makes the conservative assumption that execu-
tion can always continue with the very same program state
as the base function. However, this assumption may reduce
the number of points where OSR transitions can be fired.
Supporting compensation code in our framework adds flexi-
bility, allowing OSR transitions to happen at arbitrary places
in the base function.

base, OSR-instrumented code generation stub
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Figure 3. Open OSR scenario.

The open OSR scenario is similar, with one main difference
(see Figure 3): instead of calling 'y, directly, ffom calls a
stub function fg,,, which first creates f', and then calls it.
Function f'y, is generated by a function gen that takes the
base function f and the OSR point L as input. The reason
for having a stub in the open OSR scenario, rather than di-
rectly instrumenting f with the code generation machinery,
is to minimize the extra code injected into f. Indeed, instru-
mentation may interfere with optimizations, e.g., by increas-
ing register pressure and altering code layout and instruction
cache behavior.

Discussion. Instrumenting functions for OSR at a higher
level than machine code yields several benefits:

1. Platform independence: the OSR instrumentation code is
lowered to native code by the compiler back-end, which
handles the details of the target ABI.

2. Global optimizations: lowering OSR instrumentation
code along with application code can generate faster
code than local binary instrumentation. For instance,
dead code elimination can suppress from f'y, portions
of code that would no longer be needed when jumping to
the landing pad L', producing smaller code and enabling
better register allocation and instruction scheduling.

int isord(long* v, long n, int (*c)(void*,void*)) {
for (long i=1; i<n; i++)
if (c(v+i-1,v+i)>0) return 0;
return 1;

}

Figure 4. Example for OSR instrumentation in LLVM.

3. Debugging and Profiling: preserving ABI conventions in
the native code versions of ffom, fstub, and f'y, helps de-
buggers and profilers to more precisely locate the current
execution context and collect more informative data.

4. Abstraction: being entirely encoded using high-level lan-
guage constructs (assignments, conditionals, function
calls), the approach is amenable to a clean instrumenta-
tion API that abstracts the OSR implementation details,
allowing a front-end to focus on where to insert OSR
points independently of the final target architecture.

A natural question is whether encoding OSR at a higher
level of abstraction can result in poorer performance than
binary code approaches. We address this issue in Section 3,
where we analyze the OSR machine code generated for an
x86-64 target, and in Section 5, where OSR performance is
measured on classic benchmarks.

3. OSRin LLVM

In this section we discuss one possible embodiment of the
OSR approach of Section 2 in LLVM. Our discussion is
based on a simple running example that illustrates a profile-
driven optimization scenario. We start from a simple base
function (isord) that checks whether an array of numbers
is ordered according to some criterion specified by a com-
parator (see Figure 4). Our goal is to instrument isord so
that, whenever the number of loop iterations exceeds a cer-
tain threshold, control is dynamically diverted to a faster ver-
sion generated on the fly by inlining the comparator.

The IR code shown in this section? has been generated
with clang and instrumented with OSRKit, a library we
prototyped to help VM builders deploy OSR in LLVM. OS-
RKit provides a number of useful abstractions that include
open and resolved OSR instrumentation of IR base functions
without breaking the SSA (Static Single Assignment) form,
liveness analysis, generation of OSR continuation functions,
and mapping of LLVM values between different versions of
a program along with compensation code generation®.

OSR Instrumentation in IR. To defer the compilation of
the continuation function until the comparator is known at
run time, we used OSRKit to instrument isord with an open
OSR point at the beginning of the loop body, as shown in

2 Virtual register names and labels in the LLVM-produced IR code shown
in this paper have been refactored to make the code more readable.

3 An accompanying artifact will allow the interested reader to get ac-
quainted with OSRKit and repeat the sample scenario described in this
section.



define i32 @isordfrom(

i64* %v, i64 %n, i32 (i8*, 1i8%*)* nocapture %c) {
entry:

%t0 = icmp sgt i64 %n, 1

br il %t0, label %loop.body, label %exit

loop.header:
%tl = icmp slt i64 %il, %n
br il %tl, label %loop.body, label %exit

loop.body:
%i = phi i64 [%il, %loop.header], [1,%entry]
%p.osr = phi i64 [%p.osrl, %loop.header],
[1000, %entry]
%p.osrl = add nsw i64 %p.osr, -1
%osr.cond = icmp eq i64 %p.osr, O
br il %osr.cond, label %osr,
label %loop.body.cont
loop.body.cont:
%t2 = getelementptr inbounds i64* %v, i64 %i
%t3 = add nsw i64 %i, -1
%t4 = getelementptr inbounds i64* %v, i64 %t3
%t5 = bitcast i64* %t4 to i8*
%t6 = bitcast i64* %t2 to i8%*
%t7 = tail call i32 %c(i8* %t5, i8* %t6)
%t8 = icmp sgt i32 %t7, 0
%il = add nuw nsw 164 %i, 1
br il %t8, label %exit, label %loop.header

exit:
%res = phi i32 [1, %entry], [1l, %loop.header]
[0, %$loop.body.cont],
ret i32 S%res

osr:
%val = bitcast i32 (i8*, i8*)* %c to i8*
%osr.res = call i32 @isordstub(i8* %val,
i64* %v, i64 3%n, i32 (i8*, i8*)* 2%c, i64 2i)
ret i32 %osr.res

}

Figure 5. LLVM IR version of base function isord (Fig-
ure 4) instrumented for open OSR. The OSR is fired at the
beginning of the loop body after 1000 iterations. Additions
resulting from the instrumentation are in grey.

Figure 5. Portions added to the original code by OSR in-
strumentation are highlighted in grey. New instructions are
placed at the beginning of the loop body to increment a hot-
ness counter p.osr and jump to an OSR-firing block if the
counter reaches the threshold (1000 iterations in this exam-
ple). The OSR block contains a tail call to the target gener-
ation stub, which receives as parameters the four live vari-
ables at the OSR point (v, n, c, i). OSRKit allows the stub
to receive the run-time value val of an IR object that can be
used to produce the continuation function — in our example,
the pointer to the comparator function to be inlined. The stub
(see Figure 6) calls a code generator that: 1) builds an opti-
mized version of isord by inlining the comparator, and 2)
uses it to create the continuation function isordto shown in
Figure 7. The stub passes to the code generator four param-
eters: 1) a pointer to the isord IR code, 2) a pointer to the
basic block in isord from which the OSR is fired, 3) a user-
defined object to support code generation in MCJIT, and 4)
the stub’s val parameter (the first three are hard-wired by

define 132 @isordstub(
i8* gval, i64* %v_osr, i64 %n_osr,
i32 (i8*, i8*)* nocapture %c_osr, i64 %i_osr) {
entry:
gcont.func = call
; generator returns ptr to isordto
i32 (i64*, 164, 132 (i8%, iB8*)%, i64)*
(i8*, i8*, i8%, i8*)* inttoptr

; generator function address is 4357824
(164 4357824 to
i32 (i64%*, i64, i32 (i8%, i8*)*, i64)*
(i8*, i8*, i8%, 1i8%)*)

; hard-coded parameters passed to generator:

; 46993664 addr of isord IR function

; 46995056 = addr of basic block at loop.body
; 47005408 = addr of code generation env

(i8* inttoptr (i64 46993664 to i8%*),

i8* inttoptr (i64 46995056 to i8*),

i8* inttoptr (164 47005408 to i8%*), i8* %val)

gosr.res = call i32 %cont.func(i64* %v_osr,
i64 %n_osr, i32 (i8*, i8%*)* %c_osr, i64 %i_osr)
ret i32 %osr.res

}

Figure 6. IR stub that generates the continuation function
when an open OSR is fired by isordfrom (Figure 5).

OSRKit). The stub terminates with a tail call to isordto.
To generate the continuation function from the optimized
version created by the inliner, OSRKit replaces the func-
tion entry point, removes dead code, replaces live variables
with the function parameters, and fixes ¢-nodes accordingly.
Additions resulting from the IR instrumentation are in grey,
while removals are struck-through.

x86-64 Lowering. Figure 8 shows the x86-64 code gener-
ated by the LLVM back-end for isordfrom and isordto.
For the sake of comparison with the native code that would
be generated for the original non-OSR versions, additions
resulting from the IR instrumentation are in grey, while re-
movals are struck-through. Notice that the OSR intrusive-
ness in isordfrom is minimal, consisting of just two assem-
bly instructions with register and immediate operands. As a
result of induction variable canonicalization in the LLVM
back-end, loop index i and hotness counter p . osr are fused
in register %r12. We also note that tail call optimization is
applied in the OSR-firing block, resulting in no stack growth
during an OSR. The continuation function isordto is iden-
tical to the specialized version of isord with inlined com-
parator, except that the loop index is passed as a parameter in
%rdx and no preamble is needed since OSR jumps directly
in the loop body.

Comparison with McOSR. MCcOSR [10] is a library for in-
serting open OSR points in the legacy LLVM JIT, encoding
the OSR machinery entirely in IR as OSRKit does. When an
OSR s fired, live variables are stored into a pool of globals
allocated by the library. McOSR then invokes a user-defined
method to transform f into f' and calls f with empty param-



define i32 @isordto(
i64* nocapture readonly %v_osr,
i64 %n_osr, i32 (i8*, i8*)* %c_osr, i64 %i_osr) {

osr.entry: ; no compensation code needed...
br label %loop.body

loop.header:
$t2 = icmp slt i64 %il, %n_osr
br il %t2, label %loop.body, label %exit

loop.body:

%1 = phi i64 [ %il, %loop.header ],
+—3—%entey 1
[ %i_osr, %osr.entry ]

%t3 = add nsw i64 %i, -1

%t4 = getelementptr inbounds i64* $v_osr, i64 %t3

$t5 = load i64* %t4, align 8, !tbaa !1

$t6 = getelementptr inbounds i64* %v_osr, i64 %i

%t7 = load i64* %t6, align 8, !tbaa !1

$t8 = icmp sgt i64 %t5, %t7

$il = add nuw nsw 164 %i, 1

br il %t8, label %exit, label %loop.header

exit:
$res = phi i32 {—3i;=%entry—I+
[ 0, $loop.body ],
[ 1, %loop.header ]
ret 132 %res

}

Figure 7. Faster variant of isord (Figure 4) in LLVM IR
with comparator inlining, instrumented as OSR continuation
function. Instrumentation additions are in grey. The original
function entry block is unreachable after instrumentation and
is eliminated (struck-through code fragments).

eters. The new entrypoint of f checks a global flag to dis-
criminate if it is being invoked in an OSR transition or as a
regular call: in the first case, the state is restored from the
pool of global variables before jumping to the OSR landing
pad. As the new entrypoint can disrupt LLVM optimizations
and lead to poorer performance on subsequent invocations
of f, McOSR promptly recompiles f after an OSR. However,
lessons from the Jikes RVM [6] suggest that generating a
dedicated function to resume the execution (as OSRKit does
with f'y,) is likely to yield better performance. OSRKit im-
proves upon McOSR in a number of aspects, including: 1)
support for multiple versions of a function active in memory
at the same time; 2) support for resolved OSR and compen-
sation code; 3) insertion of OSR points at arbitrary locations
(e.g., at function calls), and not only at loop headers; 4) com-
patibility with the new MCJIT’s design (e.g., a JIT-ted func-
tion or module cannot be updated); 5) simpler design that
does not require pools of globals to transfer live variables.

4. Optimizing feval in McVM

In this section we show how OSRKit can be used in a pro-
duction VM to implement aggressive optimizations for dy-

isordfrom: popg %rl2

pushg %rl5 popg %rl4
pushqg %rl4 popq %rl5
pushg %ril2 retq
pushg %rbx .LBBO_7: # %osr
pushg %rax movq %rl4, %rdi # c
movqg %rdx, %rlé4 #c movq %rbx, %rsi # v
movqg %rsi, %rl5 #n movq %rl5, %rdx # n
movqg %rdi, %rbx #v movq %rl4, %rcx # c
movl $1, %rl2d #i movq %rl2, 3r8 # i
cmpg $1, %rl5 addq $8, %rsp
jle .LBBO_1 popq %rbx

.LBB0_4: # %loop.body popq %rl2
cmpg $1001, %rl2 popq %rlé
je .LBBO_7 popq 3%rl5

movq %rbx, %rdi
leaq 8(%rbx), %rbx

jmp isordstub

movq %rbx, %rsi isordto:

callg *%rl4 -movli—$1, S%edx
movl %eax, %ecx —empg—$1, %rsi
xorl %eax, %eax ~jle -LBBO 1

testl %ecx, %ecx .LBBO_4: # %Ioop.body

jg .LBBO_6 movg -8(%rdi,%rdx,8),%rcx
incq %ril2 xorl %eax, %eax

cmpq %$rl5, %rl2 cmpg (%rdi,%rdx,8),%rcx
j1 .LBBO_4 jg .LBBO_5

movl $1, %eax

jmp .LBBO_6
.LBBO_1:

movl $1, %eax —
.LBBO_6: # %exit movl $1, %eax

addg $8, %rsp .LBB0_5: # %exit

popg %$rbx retq

incqg %rdx

cmpg %rsi, %$rdx

jl .LBBO_4
“EBBO—1+

Figure 8. OSR-instrumented functions isordfrom (base)
and isordto (faster continuation) after IR-to-x86-64 lower-
ing in LLVM. Additions resulting from the IR instrumenta-
tion are in grey, while removals are struck-through.

namic languages. We focus on MATLAB’s feval construct,
a widely used built-in higher-order function that applies the
function passed as first parameter to the remaining argu-
ments (e.g., feval(g,x,y) computes g(x,y)). This fea-
ture is used in many classes of numerical computations that
benefit from having functions as parameters.

A previous study by Lameed and Hendren [9] shows that
the overhead of an feval call is significantly higher than a
direct call, especially in JIT-based execution environments
such as McVM [3] and the proprietary MATLAB JIT accel-
erator by Mathworks. In fact, the presence of an feval in-
struction can disrupt the results of intra- and inter-procedural
level for type and array shape inference analyses, which are
key factors for efficient code generation. Furthermore, since
feval invocations typically require a fallback to an inter-
preter, parameters passed to an feval are typically boxed to
make them more generic.

Our case study presents a novel technique for optimizing
feval in the McVM virtual machine, a complex research
project developed at McGill University. McVM is publicly
available [21] and includes: a front-end for lowering MAT-
LAB programs to an intermediate representation called IIR
that captures the high-level features of the language; an in-
terpreter for running MATLAB functions and scripts in IIR



format; a manager component to perform analyses on IIR;
a JIT compiler based on LLVM for generating native code
for a function, lowering McVM IIR to LLVM IR; a set of
helper components to perform fast vector and matrix opera-
tions using optimized libraries such as ATLAS, BLAS and
LAPACK. McVM implements a function versioning mech-
anism based on type specialization, which is the main driver
for generating efficient code [3].

4.1 Current Approaches

Lameed and Hendren [9] proposed two dynamic techniques
for optimizing feval instructions in McVM: JIT-based and
OSR-based specialization. Both attempt to optimize a func-
tion f that contains instructions of the form feval(g,...),
leveraging information about g and the type of its arguments
observed at run-time. The optimization produces a special-
ized version f’ where feval(g,x,y, z, ...) instructions are
replaced with direct calls of the form g(z,y, z, ...).

The two approaches differ in the points where code spe-
cialization is performed. In JIT-based specialization, f’ is
generated when f is called. In contrast, the OSR-based
method interrupts f as it executes, generates a specialized
version f’, and resumes from it.

Another technical difference, which has substantial per-
formance implications, is the representation level at which
optimization occurs in the two approaches. When a function
f is first compiled from MATLAB to IIR, and then from IIR
to IR, the functions it calls via feval are unknown and the
type inference engine is unable to infer the types of their
returned values. Hence, these values must be kept boxed
in heap-allocated objects and handled with slow generic in-
structions in the IR representation of f (suitable for handling
different types). The JIT method works on the IIR represen-
tation of f and can resort to the full power of type analysis to
infer the types of the returned values of g, turning the slow
generic instructions of f into fast type-specialized instruc-
tions in f’. On the other hand, OSR-based specialization op-
erates on the IR representation of f, which prevents the op-
timizer from exploiting type inference. As a consequence,
for f’ to be sound, the direct call to g must be guarded by
a condition that checks if the type of its parameters remain
the same as observed at the time when f was interrupted. If
the guard fails, or the feval target g changes, the code falls
back to executing the original feval instruction.

JIT-based specialization is less general than OSR-based
specialization, as it only works if the feval argument g is
one of the parameters of f, but is substantially faster due to
the benefits of type inference.

4.2 A New Approach

In this section, we present a new approach that combines the
flexibility of OSR-based specialization with the efficiency of
the JIT-based method, answering an open question raised by
Lameed and Hendren [9]. The key idea is to lift the f-to-
/' optimization performed by the OSR-based specialization

from IR to IIR level. This makes it possible to perform type
inference in f/, generating a much more efficient code. The
main technical challenge of this idea is that the program’s
state in f at the OSR point may be incompatible with the
state of f/ from which execution continues. Indeed, some
variables may be boxed in f and unboxed in f’. Hence, com-
pensation code is needed to adjust the state by performing
live variable unboxing during the OSR.

Implementation in McVM. We implemented our approach
in McVM?*, extending it with four main components:

1. An analysis pass to identify optimization opportunities
for feval instructions in the IIR of a function.
2. An extension for the IIR compiler to track the variable
map between IIR and IR objects at feval sites.
3. An OSR inserter based on OSRKit to inject open OSR
points in the IR for IIR locations annotated during the
analysis pass.
4. An feval optimizer triggered at OSR points, which uses:
(a) a profile-driven IIR generator to replace feval calls
with direct calls;

(b) a helper component to lower the optimized IIR func-
tion to IR and construct a state mapping;

(c) a code caching mechanism to handle the compilation
of the continuation functions.

We remark that our implementation heavily depends on OS-
RKit’s ability to handle compensation code.

Optimizer. The optimizer is called as gen function in the
open OSR stub (see Figure 3) created by the OSR inserter. It
receives the IR version f IR of function f, the basic block of
f TR where the OSR was fired, and the native code address
of the feval target function g. As a first step, the optimizer
looks up the IR code of g by its address and checks whether
a previously compiled version of f specialized with g was
previously cached. If not, a new function ({;{tR is generated
by cloning the IIR representation f//% of f and by replacing
all feval calls to g in ({Z{tR with direct calls.

As a next step, the optimizer asks the IIR compiler to
lower fIIF to fII. During the process, the compiler stores
the variable map between IIR and IR objects at the direct call
replacing the feval instruction that triggered the OSR.

Using this map and the one stored during the lowering
of f11E the optimizer constructs a state mapping between
SH and fLI. In particular, for each value in fZ[ live at the
continuation block we determine whether we can assign to it
a live value passed at the OSR point, or a compensation code
is required to set its value.

Notice that, since the type inference engine yields more
accurate results for fZIF compared to f/7%, the IIR com-
piler can in turn generate efficient specialized IR code for
representing and manipulating IIR variables, and compensa-

4 As a by-product of our project, we ported the MATLAB McVM virtual
machine from the LLVM legacy JIT to the new MCIJIT toolkit.



tion code is typically required to unbox or downcast some of
the live values passed at the OSR point.

Once a state mapping has been constructed, the optimizer
asks OSRKit to generate the continuation function for the
OSR transition and then executes it.

Discussion. The ideas presented in this section advance
the state of the art of feval optimization in MATLAB run-
times. Similarly to OSR-based specialization, we do not
place restrictions on the functions that can be optimized. On
the other hand, we work at IIR (rather than IR) level as in
JIT-based specialization, which allows us to perform type
inference on the code with direct calls. Working at IIR level
eliminates the two main sources of inefficiency of OSR-
based specialization: 1) we can replace generic instructions
with specialized instructions, and 2) the types of g’s argu-
ments do not need to be cached or guarded as they are stati-
cally inferred. These observations are confirmed in practice
by experiments on benchmarks from the MATLAB commu-
nity, as we will show in Section 5.2.

5. Experimental Evaluation

In this section we present a preliminar experimental study of
OSRKit aimed at addressing the following questions:

Q1 How much does a never-firing OSR point impact code
quality? What kind of slowdown should we expect?

Q2 What is the run-time overhead of an OSR transition, for
instance to a clone of the running function?

Q3 What is the overhead of OSRKit for inserting OSR
points and creating a stub or a continuation function?

Q4 What kind of benefits can we expect by using OSR in a
production environment based on LLVM?

5.1 Benchmarks and Setup

We address questions Q1-Q3 by analyzing the performance
of OSRKit on a selection of the shootout benchmarks [7]
running in a proof-of-concept virtual machine we developed
in LLVM. In particular, we focus on single-threaded bench-
marks that do not rely on external libraries to perform their
core computations. Benchmarks and their description are re-
ported in Table 1; four of them (b-trees, mbrot, n-body

‘ Benchmark ‘ Description ‘

b-trees Adaptation of a GC bench for binary trees

fannkuch Fannkuch benchmark on permutations
fasta Generation of DNA sequences
fasta-redux | Generation of DNA sequences (with lookup table)

mbrot Mandelbrot set generation

n-body N-body simulation of Jovian planets
rev-comp Reverse-complement of DNA sequences
sp-norm Eigenvalue calculation with power method

Table 1. Description of the shootout benchmarks.

and sp-norm) are evaluated against two workloads of differ-
ent size.

We generate the IR modules for our experiments with clang
starting from the C version of the shootout suite. To cover
scenarios where OSR machinery is inserted in programs
with different optimization levels, we consider two versions:
1) unoptimized, where the only LLVM optimization we per-
form is mem2reg to promote stack references to registers and
construct the SSA form; 2) optimized, where we apply opt
-01 to the unoptimized version.

For question Q4, we analyze the impact of the opti-
mization technique presented in Section 4.2 on the run-
ning time of a few numeric benchmarks, namely odeEuler,
odeMidpt, odeRK4, and sim_anl. The first three bench-
marks [16] solve an ordinary differential equation for heat
treating simulation using the Euler, midpoint, and Range-
Kutta method, respectively; the last benchmark minimizes
the six-hump camelback function with the method of simu-
lated annealing’.

All the experiments were performed on an octa-core 2.3
Ghz Intel Xeon E5-4610 v2 with 256+256KB of L1 cache,
2MB of L2 cache, 16MB of shared L3 cache and 128 GB
of DDR3 main memory, running Debian Wheezy 7, Linux
kernel 3.2.0, LLVM 3.6.2, 64 bit.

For each benchmark we analyze CPU time performing
10 trials preceded by an initial warm-up iteration; reported
confidence intervals are stated at 95% confidence level.

5.2 Results

Q1I: Impact on Code Quality. In order to measure how
much a never-firing OSR point might impact code quality,
we analyzed the source-code structure of each benchmark
and profiled its run-time behavior to identify performance-
critical sections for OSR point insertion. The distinction be-
tween open and resolved OSR points is nearly irrelevant in
this context: we choose to focus on open OSR points, pass-
ing null as the val argument for the stub (see Section 3).
For iterative benchmarks, we insert an OSR point in the
body of their hottest loops. We classify a loop as hottest
when its body is executed for a very high cumulative number
of iterations (e.g., from millions up to billions) and it either
calls the method with the highest self time in the program,
or it performs the most computational-intensive operations
for the program in its own body. These loops are natural
candidates for OSR point insertion: for instance, the Jikes
RVM inserts yield points on backward branches to trigger
method recompilation through OSR or thread preemption
for garbage collection. In the shootout benchmarks, the
number of such loops is typically 1 (2 for spectral-norm).
For recursive benchmarks, we insert an OSR point in the
body of the method that accounts for the largest self execu-
tion time in the program. Such an OSR point might be useful

Shttp://www.mathworks.com/matlabcentral/fileexchange/
33109-simulated-annealing-optimization
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Unoptimized version Optimized code

Benchmark Fired OSR transitions | Live values | Avg time (ns) [ Overhead (%) | Live values | Avg time (ns) [ Overhead (%)
b-trees 605377887 2 1.731 3.96 3 0.974 2.29
b-trees-large 2689946975 2 1.749 3.90 3 1.423 3.30
fannkuch 399168 000 0 1.793 1.73 0 0.621 0.59
fasta 400000000 2 2.335 7.39 2 2.699 8.23
fasta-redux 400000000 4 2.306 20.13 4 2.269 19.69
mbrot 256 000 000 15 5.016 2.40 15 3.628 1.75
mbrot-large 1024 000 000 15 5.268 2.53 15 4.637 2.25
n-body 50000 000 3 2.952 1.65 3 6.929 3.59
n-body-large 500 000 000 3 2.953 1.64 3 6.953 3.60
rev-comp 6172843 8 -10.158 -1.10 8 8.267 0.92
Sp-norm 1210000 000 2 0.772 14.76 2 -0.030 -0.57
sp-norm-large 19360 000 000 2 0.778 14.89 2 -0.003 -0.07

Table 2. Cost of OSR transitions to the same function. Overhead is assessed w.r.t. running time of the never-firing version.
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Figure 9. Q1: Impact on running time of never-firing OSR
points inserted inside hot code portions (unoptimized code).
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Figure 10. Q1: Impact on running time of never-firing OSR
points inserted inside hot code portions (optimized code).

to trigger recompilation of the code at a higher degree of op-
timization, enabling for instance multiple levels of inlining
for non-tail-recursive functions. The only analyzed bench-
mark showing a recursive pattern is b-trees.

Results for the unoptimized and optimized versions of the
benchmarks are reported in Figure 9 and Figure 10, respec-
tively. For both scenarios we observe that the overhead is
very small, i.e. less than 1% for most benchmarks and less
than 2% in the worst case. For some benchmarks, code might
run slightly faster after OSR point insertion due to instruc-

tion cache effects. The number of times the OSR condition
is checked for each benchmark is reported in Table 2.

Q2: Overhead of OSR Transitions. Table 2 reports esti-
mates of the average cost of performing an OSR transition
to a clone of the running function. For each benchmark we
compute the time difference between the scenarios in which
an always-firing and a never-firing resolved OSR point is in-
serted in the code, respectively; we then normalize this dif-
ference against the number of fired OSR transitions.

Hot code portions for OSR point insertion have been
identified as in Q1. Depending on the characteristics of the
hot loop, we either transform its body into a separate func-
tion and instrument its entrypoint, or, when the loop calls a
method with a high self time, we insert an OSR point at the
beginning of that method.

Normalized differences reported in the table represent a
reasonable estimate of the average cost of firing an OSR
transition. Reported numbers are in the order of nanosec-
onds, and might be negative due to instruction cache effects.

03: OSR Machinery Generation. We now discuss the
overhead of the OSRKit library for inserting OSR machinery
in the IR of a function. Table 3 reports for each benchmark
the number of IR instructions in the instrumented function
and the time spent in the IR manipulation. Locations for
OSR points are chosen as in Q1, and the target function is a
clone of the source function.

For open OSR points, we report the time spent in insert-
ing the OSR point in the function and in generating the stub;
both operations do not depend on the size of the function.
For resolved OSR points, we report the time spent in insert-
ing the OSR point and in generating the f'y, function.

Not surprisingly, constructing a continuation function
takes longer than the other operations (i.e., up to 1 ms vs.
20-40 us), as it involves cloning and manipulating the body
of the target function and thus depends on its size: Table 3
thus comes with an additional column in which time is nor-
malized against the number of IR instructions in the target.



Open OSR (us) Resolved OSR (..s)

Insert | Gen. | Insert Generate f'to

[ Benchmark | [IR[ | point | stub | point | Total [ Avg/inst
b-trees 13 15.40 | 28.32 | 14.31 | 76.13 5.86

fannkuch 50 | 14.16 | 18.66 | 12.84 | 208.03 4.16

fasta 38 | 12.93 | 27.07 | 13.01 | 250.39 6.59
fasta-redux 55 13.79 | 2344 | 9.32 | 258.36 4.70
mbrot 77 | 1596 | 27.39 | 15.30 | 384.61 4.99

n-body 19 | 1431 | 19.73 | 11.58 | 88.73 4.67
rev-comp 145 | 16.31 | 39.99 | 13.90 | 810.84 5.59
Sp-norm 28 | 1531 | 27.50 | 12.41 | 154.54 5.52

Table 3. Q3: OSR machinery insertion in optimized code.
Time measurements are expressed in microseconds. Results
for unoptimized code are very similar and thus not reported.

Discussion. Experimental results presented in this section
suggest that inserting an OSR point is unlikely to degrade
the quality of generated code (Q1). The time required to fire
an OSR transition is negligible (i.e., order of nanoseconds,
Q?2), while the cost of OSR-point insertion and of generating
a continuation function is likely to be dominated by the cost
of its compilation (Q3). For a front-end, the choice whether
to insert an OSR point into a function for dynamic optimiza-
tion merely depends on the trade-off between the expected
benefits in terms of execution time and the overheads from
generating and JIT-compiling an optimized version of the
function; compared to these two operations, the cost of OSR-
related operations is negligible.

Base Optimized | Optimized Direct

Benchmark | (cached) JIm (cached) (by hand)
odeEuler 1.046 2.796 2.800 2.828
odeMidpt 1.014 2.645 2.660 2.685
odeRK4 1.005 2.490 2.582 2.647
sim_anl 1.009 1.564 1.606 1.612

Table 4. Q4: Speedup comparison for feval optimization.

Q4: Optimizing feval in MATLAB. We report the speed-
ups enabled by our technique in Table 4, using the running
times for McVM’s feval default dispatcher as baseline. As
the dispatcher typically JIT-compiles the invoked function,
we also analyzed running times when the dispatcher calls a
previously compiled function. In the last column, we show
speed-ups from a modified version of the benchmarks in
which each feval call is replaced by hand with a direct call
to the function in use for the specific benchmark.
Unfortunately, we are unable to compute direct perfor-
mance metrics for the solution by Lameed and Hendren
since its source code has not been released. Figures in their
paper [9] show that for the very same MATLAB programs
the speed-up of the OSR-based approach is on average
within 30.1% of the speed-up of hand-coded optimization
(ranging from 9.2% to 73.9%); for the JIT-based approach,
the average grows to 84.7% (ranging from 75.7% to 96.5%).

Our optimization technique yields speed-ups that are very
close to the upper bound given from by-hand optimization;
in the worst case (odeRK4 benchmark), we observe a 94.1%
when the optimized code is generated on the fly, which be-
comes 97.5% when a cached version is available. Compared
to their OSR-based approach, the compensation entry block
is a key driver of improved performance, as the benefits
from a better type-specialized whole function body outweigh
those from performing a direct call using boxed arguments
and return values in place of the original feval.

6. Related Work

Early Approaches. OSR has been pioneered in the SELF
programming language implementations [8] to enable source-
level debugging of optimized code, which requires deopti-
mizing the code back to the original version. To reconstruct
the source-level state, the compiler generates scope descrip-
tors recording locations or values of arguments and locals.
Execution can be interrupted only at certain interrupt points
where its state is guaranteed to be consistent (i.e., method
prologues and backward branches in loops), allowing opti-
mizations between interrupt points. SELF also implements
a deferred compilation mechanism [2] for branches that are
unlikely to occur at run-time.

Java Virtual Machines. The success of the Java language
has drawn more attention to the design and implementation
of OSR techniques, as bytecode interpreters began to work
along with JIT compilers. In the high-performance HotSpot
Server JVM [12] performance-critical methods are identified
using method-entry and backward-branches counters; when
the OSR threshold is reached, the runtime transfers the exe-
cution from the interpreter frame to an OSR frame and thus
to compiled code. Deoptimization is performed when class
loading invalidates inlining or other optimization decisions:
execution is rolled forward to a safe point, at which the na-
tive frame is converted into an interpreter frame.

The Jikes RVM uses an OSR mechanism [6] that extracts
a scope descriptor from a thread suspended at a method’s
entrypoint or backward branch, creates specialized code to
setup the stack frame for the optimized compiled code and
resumes the execution at the desired program counter. OSR
is used as part of a profile-driven deferred compilation mech-
anism. A more general solution is proposed in [18], with the
OSR implementation decoupled from program code to ease
more aggressive specializations triggered by events external
to the executing code (e.g., class loading). Execution state
information is maintained in a variable map that is incre-
mentally updated across a set of compiler optimizations.

In the Graal VM, which is centered on the principle of
speculative optimizations, the execution falls back to the
interpreter during deoptimization, while a runtime function
restores the stack frames in the interpreter using the metadata
associated with the deoptimization point [4, 5, 22].



Prospect. Prospect [20] is an LLVM-based framework for
parallelizing a sequential application. The IR is instrumented
through two LLVM passes to enable switching at run-time
between a slow and a fast variant of the code, which are
both compiled statically. Helper methods are used to save
and eventually restore registers, while stack-local variables
are put on a separate alloca stack rather than on the stack
frame so that the two variants result into similar and thus
interchangeable stack layouts.

Other Related Work. In tracing JIT compilers deoptimiza-
tion techniques are used to safely leave an optimized trace
when a guard fails. SPUR [1] is a trace-based JIT compiler
for Microsoft’s Common Intermediate Language (CIL) with
three levels of JIT-ting plus a transfer-tail JIT used to bridge
the execution from an instruction in a block generated at the
second or third level to a safe point for deoptimization to the
first JIT level. In RPython, guards are implemented as a con-
ditional jump to a trampoline that analyzes resume informa-
tion for the guard and executes compensation code to leave
the trace; resume data is compactly encoded by sharing parts
of the data structure between subsequent guards [17]. A sim-
ilar approach is used in LuaJIT, where sparse snapshots are
taken to enable state restoration when leaving a trace [13].

7. Conclusions

In this paper, we have presented an OSR framework that in-
troduces novel ideas and combines features of extant tech-
niques that no previous solution provided simultaneously.
Relevant aspects include platform independence [10], gen-
eration of highly optimized continuation functions [6], and
performing deoptimization without the need for an inter-
preter [1]. Two novel features we propose are OSR with
compensation code, which allows extending the range of
points where OSR transitions can be fired, and the ability
to inject OSR points at arbitrary locations. Using these fea-
tures, we have shown how to improve the state of the art of
feval optimization in MATLAB virtual machines. We have
also investigated the feasibility of our approach in LLVM,
showing that it is efficient in practice.
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A. Artifact Description
A.1 Abstract

OSRKit is a library that enables On-Stack Replacement
(OSR) at arbitrary places in LLVM IR code. The artifact
is designed to explore how OSRKit can instrument IR code
to support OSR transitions in the LLVM MCIJIT runtime
environment. A running example is presented based on the
isord case study discussed in Section 3. We also support
repeating all the experiments presented in Section 5. The
artifact includes an interactive VM called TinyVM for load-
ing, inspecting, instrumenting, and executing IR code. The
package is a preconfigured Oracle VirtualBox VM.

A.2 Description

The main component of the artifact is an interactive VM
called TinyVM built on top of the LLVM MCIIT runtime en-
vironment and the OSRKit library. The VM provides an in-
teractive environment for IR manipulation, JIT-compilation,
and execution of functions either generated at run-time or
loaded from disk: for instance, it allows the user to insert
OSR points in loaded functions, run optimization passes on
them, display their CFGs, and repeatedly invoke a function
for a specified amount of times. TinyVM supports dynamic
library loading and linking, and includes a helper component
for MCIJIT that simplifies tasks such as handling multiple IR
modules, symbol resolution in presence of multiple versions
of a function, and tracking machine-level generated code and
data objects.

TinyVM is located in /home/osrkit/Desktop/tinyvm/
and runs a case-insensitive command-line interpreter:

osrkit@osrkit-AE:~/Desktop/tinyvm$ tinyvm

Welcome! Enter ’HELP’ to show the list of commands.
TinyVM>

Use HELP to print basic documentation on how to use the
shell. Usage scenarios are discussed in Appendix A.S.

A.2.1 Check-list (artifact meta information)

* Program: shootout C benchmarks (included, Sep 2015).

* Compilation: LLVM 3.6.2 (release build).

* Run-time environment: Linux (version 3.x), no root password
required.

* Hardware: x86-64 CPU.

* Run-time state: Cache-sensitive (performance measurements
only).

* Output: Measurements are output to console.

* Experiment workflow: Invoke scripts and perform a few man-
ual steps.
* Publicly available? Yes.

A.2.2 How Delivered

The artifact ships as an Oracle VirtualBox 5 Appliance avail-

able athttp://www.dis.uniromal.it/~demetres/artifacts/

cgo2016/. The latest version of the code is available at
https://github.com/dcdelia/tinyvm.

A.2.3 Hardware Dependencies

An x86-64 platform is required.

A.2.4 Software Dependencies
The artifact was tested in Oracle VirtualBox 5.0.10.

A.3 Installation

To install the artifact, just import the appliance in Oracle
VirtualBox, which installs Linux LXLE. Open the README
file on the Desktop folder for further info on the artifact and
the Linux distribution.

A.4 Experiment Workflow

We propose three usage sessions. In the first session, we
show how to generate and instrument an LLVM IR code
based on the isord example presented in Section 3. The
second session focuses on how to run the scripts used to
generate the performance tables of Section 5 related to ques-
tions Q1, Q2, and Q3. The third session addresses question
Q4, using third-party software (the MATLAB McVM run-
time [21]) that we ported to LLVM 3.6+ and extended with
the feval optimization technique discussed in Section 4.2.

A.5 Evaluation and Expected Result
A.5.1 Session 1: OSR instrumentation in OSRKit

TinyVM implements a code generator for open OSR points
that can dynamically inline function calls to targets that can-
not be statically determined. In the example from Figure 4,
a comparator function c is passed as argument to function
isord, which checks whether an array v of numbers is or-
dered according to the criterion encoded in c.

To interactively reproduce the experiment presented in
Section 3, we provide under the folder tinyvm/isord a C
module inline.c with an LLVM IR counterpart inline.11
(generated with clang -S -emit-1lvm -01 inline.c).

We can load the IR module in TinyVVM and show the code
generated for method isord with:

osrkit@osrkit-AE:~/Desktop/tinyvm$ tinyvm

Welcome! Enter ’HELP’ to show the list of commands.
TinyVM> LOAD_IR isord/inline.ll

[LOAD] Opening "isord/inline.ll" as IR source file...
TinyVM> DUMP isord
[...]

Displayed virtual register names and basic block labels will
often differ from those reported in Figure 5, which have been
refactored for the sake of readability. In particular, the loop
body of isord will look like:

.1r.ph: ; preds = %2, %0
%i.01 = phi i64 [ %10, %2 1, [ 1, %0 ]
%4 = getelementptr inbounds i64x %v, i64 %i.01
%.sum = add nsw i64 %i.01, -1
%5 = getelementptr inbounds i64x* %v, i64 %.sum
%6 = bitcast i64* %5 to i8%
%7 = bitcast i64* %4 to i8%


http://www.dis.uniroma1.it/~demetres/artifacts/cgo2016/
http://www.dis.uniroma1.it/~demetres/artifacts/cgo2016/
https://github.com/dcdelia/tinyvm

W =
[...]

tail call i32 %c(i8x %6, i8* %7) #3

A ¢-node %i.01 is used to represent the index of the for
loop from the C code, and is set to %10 when reached from
the loop header (basic block %2) after a loop iteration. In
fact, as a result of -01 optimizations, when n>1 execution
jumps from the function entrypoint %0 directly into the loop
body, initializing the ¢-node with 1. Comparator c is invoked
with a tail call, storing its return value into virtual register %8.

OSR points can be inserted with the INSERT_OSR com-
mand, which allows several combinations of features (see
HELP for an exhaustive list). In this session we will mod-
ify isord so that when the loop body is entered for the first
time, an OSR is fired right away:

TinyVM> INSERT_OSR 100 ALWAYS OPEN UPDATE IN isord
AT %4 DYN_INLINE %c

TinyVM will UPDATE the function in the following way:
an ALWAYS-true OSR condition is checked before execut-
ing instruction %4 to fire an OPEN OSR transition to the
DYN_INLINE code generator, which will inline any indirect
function call to the function pointer %c. We choose %4 as
location for the OSR as it is the first non-¢ instruction in
the loop body; we also hint the LLVM back-end through IR
profiling metadata that firing an OSR is 100%-likely.
The IR will now look like:

TinyVM> DUMP isord

.1r.ph: ; preds = %2, %0
%1.01 = phi i64 [ %10, %2 1, [ 1, %0 1]
%alwaysOSR = fcmp true double 0.000000e+00,

0.000000e+00
br il %alwaysOSR, label %0SR_fire,
label %0SR_split, !prof !1

OSR_split: ; preds = J.lr.ph
%4 = getelementptr inbounds i64* %v, i64 %i.01
%.sum = add nsw i64 %i.01, -1
[...]

OSR_fire: ; preds = %.lr.ph
%0SRCast = bitcast 132 (i8%*, i8*)* Y%c to i8*
%0SRRet = call i32 @isord_stub(i8* %0SRCast,
i64* Yv, i64 Yn,
i32 (i8%, i8x)* Yc,
i64 %i.01)

ret i32 J0SRRet

OSRK:it has split the %. 1r . ph block for the OSR condition,
also adding an OSR_fire block to transfer the execution
state to isord_stub and eventually return the 0SRRet value.

We can now let isord run on an array dynamically ini-
tialized from the driver method, which takes as argument
the array length to use. The method will also populate it with
elements ordered for the comparator in use (see inline.c).

For instance, we can ask driver to set up an array of 100000
elements and run isord on it:

TinyVM> driver (100000)
Time spent in creating continuation function:
0.000252396 seconds

Address of invoked function: 140652750196768

Function being inlined: cmp

Elapsed CPU time: O m O s 3 ms 417 us 157 ns
(that is: 0.003417157 seconds)

Evaluated to: 1

The method returns 1 as result, indicating that the vector
is sorted. Compared to Figure 7, the IR code generated for
the OSR continuation function isordto (DUMP isordto)
is slightly different, as the MCJIT compiler detects that
additional optimizations (e.g., loop strength reduction) are
possible and performs them right away®. We expect code
generated for isord_stub to be identical up to renaming
to the IR reported in Figure 6.

To show native code generated by the MCJIT back-end,
we can run TinyVM in a debugger with gdb tinyvm and
leverage the debugging interface of MCIIT. For instance,
once driver has been invoked, we can switch to the de-
bugger with CTRL-Z and display the x86-64 code for any
JIT-compiled method with:

(gdb) disas isordto
Dump of assembler code for function isordto:
[Base address: 0x00007ffff7££2000]

<+0>: mov -0x8(%rdi,%rcx,8),%edx
<+4>: sub (hrdi,%rcx,8),%edx

<+7>: xor Yeax, heax

<+9>: test %hedx, hedx

<+11>: jg 0x7ff££7££201a <isordto+26>
<+13>: inc Yrex

<+16>: mov $0x1,%eax

<+21>: cmp %rsi,frex

<+24>: jl Ox7f£££7££2000 <isordto>
<+26>: retq

To return to TinyVM, we can use the signal 0 command
in gdb (the prompt is not re-printed, but the shell is alive).

A.5.2 Session 2: Performance Figures

The experiments can be repeated by executing scripts on a
selection of the shootout benchmarks [7]. Each benchmark
was compiled to LLVM IR using clang as described in
Section 5.1. For each benchmark X, tinyvm/shootout/X/
contains the unoptimized and optimized (-01) IR code, each
in two versions:

* bench and bench-01: IR code of the benchmark;

* finalAlwaysFire and finalAlwaysFire-01: IR code
of the benchmark preprocessed by slicing the hottest loop
into a separate function when needed (see Section 5.2).

6 Notice that, lowering to native code an IR function in MCJIT (which
happens in TinyVM when first executing it) may alter its IR representation.



Each experiment runs a warm-up phase followed by 10 iden-
tical trials. We manually collected the figures from the con-
sole output and analyzed them, computing confidence inter-
vals. We show how to run the code using n-body as an ex-
ample’. Times reported in this section have been measured
in VirtualBox on an Intel Core 17-4980HQ CPU @ 2.80GHz,
a different setup than the one discussed in Section 5.1.

Question Q1. The purpose of the experiment is assess-
ing the impact on code quality due to the presence of
OSR points. The first step consists in generating figures
for the baseline (uninstrumented) benchmark version. Go
to /home/osrkit/Desktop/tinyvm and type:

$ tinyvm shootout/scripts/bench/n-body

The script is as follows:

LOAD_IR shootout/n-body/bench.1l
bench (50000000)
REPEAT 10 bench(50000000)

which loads the IR code, performs a warm-up execution
of the benchmark, and then 10 repetitions. The experiment
duration was ~ 1m, with a time per trial of ~ 5.725s.

The benchmark with the hottest loop instrumented with a
never-firing OSR point can be run with:

$ tinyvm shootout/scripts/codeQuality/n-body
The script is as follows:

LOAD_IR shootout/n-body/bench.11l

INSERT_OSR 5 NEVER OPEN UPDATE IN bench AT %8 CLONE
bench (50000000)

REPEAT 10 bench(50000000)

Note that the second line inserts a never-firing open OSR
point at basic block %8 labeled with <1abel>: 8 in function
bench of file shootout/n-body/bench.11, using branch
weight of 5% as a hint for the LLVM native code generation
back-end that OSR firing is very unlikely.

The experiment duration was ~ 1m with a time per trial
of = 5.673s. The ratio 5.673/5.725 = 0.990 for n-body is
slightly smaller than the one reported in Figure 9 on the Intel
Xeon platform. The experiment for building Figure 10 uses
scripts in bench-01 and codeQuality-01.

Question Q2. This experiment assesses the run-time over-
head of an OSR transition by measuring the duration of an
always-firing OSR execution and of a never-firing OSR exe-
cution, and reporting the difference averaged over the num-
ber of fired OSRs (Table 2). The always-firing OSR execu-
tion for n-body (unoptimized) is as follows:

$ tinyvm shootout/scripts/finalAlwaysFire/n-body

which runs:

LOAD_IR shootout/n-body/finalAlwaysFire.1ll
INSERT_OSR 95 ALWAYS SLVD UPDATE IN advance AT

7 For rev-comp, first run bootstrap. sh in tinyvm/shootout/

%hentry TO advance AT %entry AS advance_OSR
bench (50000000)
REPEAT 10 bench(50000000)

The second line inserts an always-firing resolved OSR point
at the beginning of basic block %entry in function advance
of file shootout/n-body/finalAlwaysFire.1l, generating a
continuation function called advance_0SR. A branch weight
of 95% is given as a hint to the LLVM native code generation
back-end that OSR firing is a high-probability event. The

time per trial was ~ 5.876s.
The never-firing OSR execution used as baseline is as
follows:

$ tinyvm shootout/scripts/finalAlwaysFire/
baseline/n-body

with a time per trial of ~ 5.669s. The average time per
OSR transition is therefore (5.876 — 5.669)/50000000 =
4.14 - 10~%s. Compare this with the result of Table 2.

Question Q3. The third experiment measures the overhead
of OSRKit for inserting OSR points and creating a stub or a
continuation function. To perform one trial for the open OSR
experiment of Table 3, run:

$ tinyvm shootout/scripts/instrTime/open/n-body
which yielded:

Time spent in stub generation: 0.000012835 sec
Time spent in OSR point insertion: 0.000013219 sec

One trial for the resolved OSR experiment can be run as
follows:

$ tinyvm shootout/scripts/instrTime/final/n-body
obtaining, e.g.:

Time spent in creating cont. func.: 0.000075849 sec
Time spent in OSR point insert.: 0.000009409 sec

Notice that in a virtualized environment there may be signif-
icant fluctuations in the reported times across different trials,
as we rely on a high-resolution timer for measurements®.

A.5.3 Session 3: feval optimization in McVM

McVM is a virtual machine for MATLAB developed at
McGill University. As a by-product of our project, we ported
it from the LLVM legacy JIT to MCIJIT, and later extended
it with a new specialization mechanism for feval calls.
The source code for this version along with the MATLAB
benchmarks listed in Section 5.1 are publicly available at
https://github.com/dcdelia/mcvm.

Experiments reported in Table 4 (Question Q4) can be
repeated using a number of scripts provided along with a
McVM build in /home/osrkit/Desktop/mcvm/.

For each benchmark X, benchmarks/scripts/ contains
three MATLAB scripts to use as input for mcvm:

* base/X: single run of original code (i.e., feval-based);

8http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503740/.
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* direct/X: single run of code optimized by hand (i.e.,
with direct calls);

* many/X: multiple runs of original code (for code caching).

We manually collected figures from the console output and
computed speedups for the different settings. We show how
to run the code using odeRK4 as an example. The platform
used to obtain reported numbers is the same as in session 2.

To determine a baseline for speedup computation, we
let mcvm perform a single run of the original code with no
feval optimization. Note that we can selectively enable or
disable feval optimization using the -jit_feval_opt flag:

$ cd ~/Desktop/mcvm
$ ./mcvm -jit_feval_opt false <
benchmarks/scripts/base/odeRK4
KKK KKK KKK KK KKK KKK K KKK ok K
McVM - The McLab Virtual Machine v1.0
Visit http://www.sable.mcgill.ca for more info.
oK KKK KKK KK KRR KKK KKK KKK K KKK ok K

>: >: Compiling function: "testSH"

Compiling function: "odeRK4"
Compiling function: "testSHfun"
Compiling function: "rhsSteelHeat"
Compiling function: "testSHfun"
Compiling function: "rhsSteelHeat"

[TOC] Elapsed time: 20.141959 seconds
t y_RK4
0.0000 1.000000

20.0000 227.364633

To measure the performance of McVM code caching mech-
anism, we let the benchmark run multiple times in the same
instance of the VM:

$ ./mcvm -jit_feval_opt false <
benchmarks/scripts/many/odeRK4

The experiment duration on our platform was ~ 2m, with
an average time per trial of &~ 19.836s (manually computed
by averaging the elapsed time figures from the console, after
discarding the warm-up run). The resulting speedup for the
base code caching mechanism was thus 20.142/19.836 =
1.015x, slightly different than the one reported in column
Base of Table 4 for the Intel Xeon platform, for which we
repeated each experiment 10 times.

We can now set an upper bound for speedups by measur-
ing the running time when the code has been optimized by
hand inserting direct calls in place of feval instructions:

$ ./mcvm < benchmarks/scripts/direct/odeRK4
[...]
>: >: Compiling function: "testSH_direct"
Compiling function: "odeRK4_testSHfun"
Compiling function: "testSHfun"
Compiling function: "rhsSteelHeat"
[TOC] Elapsed time: 7.977169 seconds
t y_RK4

0.0000 1.000000

20.0000 227.364633

In this scenario McVM can compile the whole program
ahead of time, as rhsSteelHeat is not invoked through an
feval instruction anymore. A comparison of the running
times suggests a rough 20.142/7.977 = 2.525x speedup for
by-hand optimization w.r.t. the baseline version (compare to
column Direct in Table 4).

We can now try to assess the speedup from our feval
optimization technique on odeRK4:

$ cd ~/Desktop/mcvm
$ ./mcvm -jit_feval_opt true <
benchmarks/scripts/base/odeRK4
[...]
> >
Compiling
Compiling
Compiling

Compiling function: "testSH"
function: "odeRK4"
and tracking a feval
and tracking a feval
Compiling and tracking a feval instruction...
Compiling and tracking a feval instruction...
Function contains annotated feval instructions!
Compiling function: "testSHfun"
Compiling function: "rhsSteelHeat"
Type conversion required for variable y
Type conversion required for variable $t10
[TOC] Elapsed time: 8.450570 seconds
t y_RK4

0.0000 1.000000

20.0000 227.364633

instruction...
instruction...

The execution time ratio between the base version and the
optimized code that we JIT-compile is thus 20.142/8.451 =
2.383 (compare to column Opt. JIT in Table 4). Notice that
compensation code is generated to perform unboxing of IIR
variables y and $t10 (“Type conversion required...”) so that
execution can correctly resume from the optimized code.

We can finally evaluate the speedup enabled by our code
caching mechanism (Section 4.2) for the compilation of con-
tinuation functions by running:

$ ./mcvm -jit_feval_opt true <
benchmarks/scripts/many/odeRK4

The experiment duration was ~ 1m, with a time per trial
of ~ 11.817s (discarding the warm-up run). The resulting
speedup w.r.t. is thus 20.142/8.006 = 2.516x (compare to
column Opt. cached in Table 4).

A.6 Notes

We encourage the reader to experiment with TinyVM, creat-
ing IR programs with clang -S -emit-11lvm -01, instru-
menting them with OSR points, and exploring the generated
code. Please bear in mind that TinyVM is a prototype imple-
mentation that does not support exercising all the features for
VM builders provided by OSRKit. For instance, while OS-
RKit is fully flexible, TinyVM only supports always-firing
and never-firing OSR points. Also, unexpected results may
arise: we will be glad to hear about your experience and
grateful to receive any bug reports.
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