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Abstract13

Streamflow prediction is a long-standing hydrologic problem. Development of mod-14

els for streamflow prediction often requires incorporation of catchment physical descrip-15

tors to characterize the associated complex hydrological processes. Across different scales16

of catchments, these physical descriptors also allow models to extrapolate hydrologic in-17

formation from one catchment to others, a process referred to as “regionalization”. Re-18

cently, in gauged basin scenario, deep learning models have been shown to achieve state19

of the art regionalization performance by building a global hydrologic model. These mod-20

els predict streamflow given catchment physical descriptors and weather forcing data.21

However, these physical descriptors are by their nature uncertain, sometimes incomplete,22

or even unavailable in certain cases, which limits the applicability of this approach. In23

this paper, we show that by assigning a vector of random values as a surrogate for catch-24

ment physical descriptors, we can achieve robust regionalization performance under gauged25

prediction scenario. Our results show that the deep learning model using our proposed26

random vector approach achieves a comparable and even marginally better predictive27

performance than the model using actual physical descriptors. The random vector ap-28

proach yields robust performance under different data sparsity scenarios and deep learn-29

ing model selections. Furthermore, our proposed random vector approach provides higher30

performance for regional modeling when physical descriptors are uncertain, or insuffi-31

cient.32

1 Introduction33

In hydrology, streamflow prediction is essential for the forecast of water supply, floods,34

and droughts. It is a challenging task because of interacting hydrological processes (Beven,35

1989, 1987; Freeze & Harlan, 1969; Freeze, 1974), spatial-varying parameter uncertain-36

ties (Keith Beven & Andrew Binley, 1992), and limited observations (Blöschl & Sivapalan,37

1995). These challenges have motivated the advancement of hydrologic models from sim-38

ple to complex. Encompassing more underlying hydrological processes, a complex hy-39

drologic model includes more hydrologic parameters and detailed catchment physical de-40

scriptors to address the complexities (Beven, 2001, 2002) and associated scaling issues41

(McDonnell et al., 2007). But parameterizing such a complex hydrologic model for any42

individual catchment will become difficult when hydrologic data are unavailable. Thus,43

regionalization, which is defined as “how to extrapolate hydrologic information from one44

area to another?” (Blöschl & Sivapalan, 1995), specifies a research topic of modeling catch-45

ment runoff prediction using hydrologic information from multiple catchments, which46

will be given a brief background review in section 2.47
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Regionalization heavily relies on physical descriptors, such as, soil porosity, catch-48

ment elevation, etc. These physical descriptors account for hydrologic complexities and49

regional differences and are thus intensively used in regionalized hydrologic models, ei-50

ther process-based or data-driven.51

Recently, Kratzert et al. (2019a) have presented a regionalized data-driven hydro-52

logic model that greatly outperforms local process models. Specifically, they trained a53

single deep learning model (LSTM) for 531 basins in the US CAMELS (Catchment At-54

tributes and Meteorology for Large Sample studies) dataset (Addor et al., 2017) and show55

that it is able to greatly outperform the well-established process-based models (e.g., SAC-56

SMA (Burnash, 1995), VIC (Liang et al., 1994), etc) that have been individually param-57

eterized for each basin, and thus offer a better route to regionalization (Kratzert et al.,58

2019a).59

Building such a model requires streamflow observation and weather forcings for many60

basins with diverse physical descriptors. It also relies upon the fact that all relevant basin61

physical descriptors are available and of high quality. Performance of such models may62

suffer if some of the descriptors are missing or are incorrect/uncertain. Our paper presents63

an approach where it is possible to build a data driven regionalized model even in the64

absence of any basin specific physical descriptors. It is able to use the weather forcing65

and streamflow data from a set of basins to build a global model without having any in-66

formation about the physical descriptors of individual basins (For the background in-67

formation of the global model, please see session 2). However the structure of this model68

is identical to the one used by Kratzert et al., as it only replaces the individual catch-69

ment physical descriptors by random vectors that simply provide a unique identity to70

each basin. Our results show that this approach provides at least as good global mod-71

els as the ones produced using the knowledge of all available physical descriptors. But72

the performance is much better relative to the scenario where some of physical descrip-73

tors are missing and/or are incorrect/uncertain.74

We note that the random vector and physical descriptor approaches are not in con-75

flict and in fact give comparable results. In fact, for ungauged basins, Kratzert et al.’s76

model can be used (Kratzert et al., 2019b) and shows that physical descriptors serve as77

a bridge between gauged basins and ungauged basins. In our approach, the random vec-78

tors do not connect gauged basins and ungauged basins due to the lack of streamflow79

observation for the ungauged basins.80

The paper is organized as follows. Section 2 introduces relevant background infor-81

mation, in particular the regionalization. Section 3 explains the details of the random82

vector method as well as the deep learning architecture involved. This section also ex-83

plains the dataset and the set up of the experiment. The experiment includes an exhaus-84

tive analysis on the applicability of our proposed random vector methods under various85

data scarce situations and modeling structures. Section 4 lists our benchmarking results86

and the exhaustive analysis of the random vector applicability. Section 5 highlights sci-87

entific implications from our results and suggests a few future directions. Section 6 sum-88

marizes the scientific conclusions.89

2 Background90

Performing hydrologic prediction from multiple catchments, regionalization is closely91

related to the problem addressed in “prediction in ungauged basins” (PUB) (Sivapalan92

et al., 2003), and most literature uses“PUB” and “regionalization” interchangeably (Pagliero93

et al., 2019; de Lavenne et al., 2019; Choubin et al., 2019; Ecrepont et al., 2019; Zamoum94

& Souag-Gamane, 2019; Prieto et al., 2019; Guo et al., 2021; Alipour & Kibler, 2018).95

An underlying assumption behind regionalization is that similar basins have similar hy-96

drologic behaviors. This implies that differences/similarities across catchments can be97
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classified into physical descriptors such as, climatology, geology, geomorphlogy, etc, with98

the assumption that incorporating these descriptors will improve streamflow prediction.99

In other words, hydrological behaviors as predicted from models for different catchments100

shall be based on similarities with regional information that is characterized by catch-101

ment physical descriptors. These approaches have been given a comprehensive review102

in particular for PUB (Guo et al., 2021; Samaniego et al., 2017; Beck et al., 2016) and103

can be grouped into model-dependent (process-driven) and model-independent (data-104

driven) methods, where ’model’ denotes process-based models (Prieto et al., 2019).105

Model-dependent methods give hydrologic predictions from process-based models.106

Information from the existing process-based hydrologic model is transferred to ungauged107

catchments based on certain criteria that link gauged to ungauged catchments. In prac-108

tice, since those existing hydrologic models are calibrated to a specific catchment, this109

relies on some strategy of information transfer. A typical application of a model-dependent110

method implements a well-calibrated local hydrological process-based model and appro-111

priate connections among catchments. In the review paper by (Guo et al., 2021), model-112

dependent methods can be classified into three categories: similarity based methods, re-113

gression based methods, and hydrological signature-based methods or some hybrid of each.114

The model-independent approaches are data driven and do not rely on physical pro-115

cesses to simulate streamflow. Data driven methods learn how to predict streamflow from116

weather drivers and catchment physical descriptors directly without involving any hy-117

drological process descriptions. Depending on either one or multiple catchments of data118

used, the data driven model will learn localized or regionalized hydrologic behaviors re-119

spectively. A local model is referred to as the model using hydrologic data from only one120

catchment. By contrast, when the hydrology data from multiple catchments are used and121

those catchments cover a wide range of all avialable hydrologic behaviors, the model is122

called a global model.123

For data driven methods, one family is the neural network (Besaw et al., 2010; Hsu124

et al., 1995). Besaw built an artificial neural network on one catchment and transferred125

to another similar catchment without adaptation. It yielded unsatisfactory predictive126

performance (Besaw et al., 2010). In recent years, the Long Short-Term Memory (LSTM)127

networks (Hochreiter & Urgen Schmidhuber, 1997), one sub-family of neural networks,128

have shown burgeoning applicability in streamflow prediction tasks (Kratzert et al., 2018).129

LSTM based methods predict streamflow from antecedent weather drivers. In gauged130

scenarios, Kratzert et al. (2019a) have shown that using physical descriptors will train131

a universal global LSTM based model that outperforms process-based individual mod-132

els given the same forcing data. One of the two versions of LSTM deveoped by Kratzert133

et al. provides additional physical interpretation, that is, basin similarities are preserved134

in the well trained machine learning (ML) model. Feng (Feng et al., 2020) embedded a135

global LSTM within a data integration framework (using predicted discharge from pre-136

vious day) and found that it could marginally reduce prediction bias in regions with high137

flow autocorrelation. Frame showed that global LSTM outperforms the National Wa-138

ter Model (NWM) (Frame et al., 2020). In the poorly gauged scenarios, Ma (Ma et al.,139

2021) showed that fine tuning a global LSTM learned from data rich basins improved140

predictive performance in poorly gauged basins in contrast to local models learned solely141

from limited data.142

It bears emphasis that regionalization approaches, either model-dependent and model-143

independent, rely heavily on physical descriptors. However, to obtain a satisfactory re-144

gionalization performance, physical descriptors need to be sufficient such that process145

complexities and associated scaling issues (Blöschl & Sivapalan, 1995) are encompassed.146

Otherwise, catchment scale prediction will be handicapped by the lack of sufficient in-147

formation. For instance, modeling hydrological behaviors at the small scale can be ac-148

complished by incorporating local processes with a few parameters. However, the incor-149

porated processes and parameterization need to be adjusted, either made simpler or more150
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complex, to model hydrologic behaviors at a larger scale. The same adjustment also oc-151

curs when modeling hydrological behaviors between global scale and local scale, upstream152

and downstream. Accounting for these complexities and heterogeneities, sufficient phys-153

ical descriptors must be involved. For example, Drost and Mudersbach found that merely154

incorporating landuse data with no additional physical descriptors provided little improve-155

ment to streamflow prediction and therefore may not benefit regionalization (Drost &156

Mudersbach, 2021). However, due to uniqueness of each catchment, such a complete char-157

acterization to resolve hydrologic complexity is difficult and challenging (Beven, 2020).158

This issue will be even more pronounced in applying models to data sparse regions where159

physical descriptors are limited, or even unavailable.160

3 Methods161

3.1 Long Short-Term Memory Network162

Long short-term memory network (LSTM) (Hochreiter & Urgen Schmidhuber, 1997)163

is a special type of recurrent neural network designed especially for modeling time se-164

ries predictions. Indeed, LSTM is the state-of-the-art deep learning model to predict stream-165

flow (Kratzert et al., 2018, 2019a; Frame et al., 2020; Feng et al., 2020; Ma et al., 2021).166

In contrast to traditional recurrent neural network, LSTM avoids gradient vanishing or167

explosion (Bengio et al., 1994) and therefore preserves long term temporal dependen-168

cies for time series forecasting. This is achieved by using the gating architecture, which169

explicitly controls information flow and updates system hidden features. This memoriz-170

ing mechanism and long term dependency allows LSTM to be well suited to model stream-171

flow on a catchment scale. In particular, weather inputs feed and alter catchment response172

in various temporal scales. Although flooding season yields quick surface water response,173

the streamflow in winter periods under northern climate tends to have much longer re-174

sponse time because of involved snow and snowmelt processes. With the capability of175

the LSTM to account for long term dependency, it automatically learns these stream-176

flow behaviors from data. Furthermore, it has been shown that some of the hidden fea-177

tures learned by the LSTM resemble snow processes (Kratzert et al., 2018).178

An LSTM maps a sequence of time series input into the response variable. In this
paper, we consider an LSTM based architecture that uses input features (x) spanning
T days to predict the observed discharge on the last day of the T-day window. The in-
volved equations of an LSTM models are given below.

i [t] = σ(Wix [t] + Uih [t − 1] + bi) (1)

f [t] = σ(Wfx [t] + Ufh [t − 1] + bf ) (2)

g [t] = tanh(Wgx [t] + Ugh [t − 1] + bg) (3)

o [t] = σ(Wox [t] + Uoh [t − 1] + bo) (4)

c [t] = f [t] � c [t− 1] + i [t] � g [t] (5)

h [t] = o [t] � tanh(c [t]) (6)

where σ(·) is sigmoid function, tanh(·) is the hyperbolic tangent function, and
⊙

means179

element wise multiplication. W, U, b are model parameters, which will be learned dur-180

ing optimization. Other variables in equations represent basic computation units involved181

in the calculation. As gating variables, i[t], f [t], and o[t] are input gate, forget gate, and182

output gate, respectively. They filter the information from the current and the previ-183

ous time stamp, then combine them to update cell state c[t]. c[t] underlines the intuition184

that motivates the LSTM design. c[t] is maintained serially and embeds the temporal185

contextual information, which is characterized in g[t], to then update the hidden repre-186

sentation h[t]. The stacked input x enters the LSTM sequentially and alters the infor-187

mation inherited from the previous timestamp. The previous information is stored in cell188

states c[t] and hidden states h[t], both of which characterizes the system memory. Cell189
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states c[t] and hidden states h[t] are initialized as zero vectors and then gradually mod-190

ified until the final date in T -day time windows is reached. After a linear transforma-191

tion, x[t] infuses with previous hidden state h[t−1] and then is non-linearly transformed192

in i[t], f [t], g[t], and o[t] via a corresponding activation function. The previous times-193

tamp’s cell state c[t−1] is updated with f(t) and then merges with an element-wise prod-194

uct of i[t] and g[t], which injects new information, to form a new cell state c[t]. After an-195

other hyperbolic tangent activation, this new cell state c[t] merges with o[t] and there-196

fore updates the current hidden state h[t]. After the consecutive alteration of T time stamps,197

the final hidden state h[T ] is then transformed into the target variable, which in our case198

is streamflow.199

In the context of regionalization based streamflow prediction, both dynamic weather
variables and static catchment physical descriptors as formulated in equation 7:

Qt = f(xd, xs) (7)

where Qt is streamflow, xd is weather input vector, and xs is a d-dimensional vector of200

physical descriptors. It bears emphasis that for a given catchment, xs is assumed to be201

temporally static, while xd is temporally dynamic. We assume catchment physical de-202

scriptors do not vary with the time. There are a number of ways in which physical de-203

scriptors can be incorporated in the LSTM architecture. In this paper, we consider three204

different models as illustrated in Figure 1. These models differ in terms of where xs is205

added into the network. Specifically, in CT-LSTM physical descriptors are added before206

LSTM cell, whereas in EA-LSTM, they are used within the cell. Finally in FM-LSTM207

they are used in the last to modulate hidden states of the LSTM cell. Next, we describe208

these models in detail.209

3.1.1 CT-LSTM210

In CT-LSTM,at each timestamp, the dynamic weather input xd is concatenated
with the physical descriptors xs to form the model input x[t]:

x [t] =
[
xs, xd [t]

]
(8)

This model input enters the LSTM (equation 1 to 6), gets updated via the calculation211

of gates, and yields the final output - streamflow prediction. Through the calculation,212

physical descriptors are not placed within the LSTM cells or gates.213

3.1.2 EA-LSTM214

First proposed in (Kratzert et al., 2019a), EA-LSTM (Entity Aware LSTM) uses
a modified version of LSTM where input gate takes physical descriptors as input instead
of input features as previously shown in Equation 1. The key idea here is to explicitly
empower the LSTM to customize its learning ability for catchment-wise adaptation.

i = σ(Wix
s + bi) (9)

f [t] = σ(Wfx
d [t] + Ufh [t − 1] + bf ) (10)

g [t] = tanh(Wgx
d [t] + Ugh [t − 1] + bg) (11)

o [t] = σ(Wox
d [t] + Uoh [t − 1] + bo) (12)

c [t] = f [t] � c [t− 1] + i [t] � g [t] (13)

h [t] = o [t] � tanh(c [t]) (14)

As illustrated in Figure 1b and also equations 9 to 14, xs enters the LSTM via in-215

put gates, learns customized embedding (equation 9) for each basin, and updates the cell216

states recurrently at each timestamp. It therefore explicitly controls what modules in217
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Figure 1: LSTM family illustration. Adapted from “Towards learning universal, regional,
and local hydrological behaviors via machine learning applied to large-sample datasets”
by Kratzert et al. (2019a), Hydrology and Earth System Sciences, 23, 5092 (Kratzert et
al., 2019a)

LSTM respond to different catchments. This learned embedding will merge with other218

gates (f [t], g[t], o[t]), whose alteration are contributed by only dynamic weather inputs219

xd. This separated role of xs and xd in EA-LSTM splits the contributions towards stream-220

flow prediction from xs in contrast to xd. Additionally, the learned embedding affords221

an opportunity to examine cross-catchment response in a global model, which was shown222

to be close to the cross-catchment analysis using true basin characteristics (Kratzert et223

al., 2019a).224

3.1.3 FM-LSTM225

FM-LSTM uses the feature modulation concept which is becoming increasing pop-226

ular in other areas such as meta-learning (add citations). The key idea here is to use a227

separate gate that takes static features as input and generates a modulation vector to228

modulate (adapt) the features learned by a traditional LSTM.229

As illustrated in Figure 1C, xs is mapped to an embedding layer customized for230

each basin (equation 20). This is then used to modulate the hidden states output (equa-231

tion 21). xs does not participate in the calculation in i[t], f [t], g[t], o[t], or c[t].232
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i [t] = σ(Wix
d [t] + Uih [t − 1] + bi) (15)

f [t] = σ(Wfx
d [t] + Ufh [t − 1] + bf ) (16)

g [t] = tanh(Wgx
d [t] + Ugh [t − 1] + bg) (17)

o [t] = σ(Wox
d [t] + Uoh [t − 1] + bo) (18)

c [t] = f [t] � c [t− 1] + i [t] � g [t] (19)

p = σ(Wpx
s + bp) (20)

h [t] = p� o [t] � tanh(c [t]) (21)

3.1.4 General Requirement233

Across these three models, we apply the same optimization algorithm (Adam op-234

timizer (Kingma & Ba, 2017)) for training purposes to determine model parameters. Model235

parameters are learned from data and are thus continuously updated during training.236

The machine learning implementation also needs to specify hyper-parameters, which are237

set before training without learning from data. During training, hyper-parameters will238

not be updated. A few essential hyper-parameters include the look back period T and239

the dimension of hidden states h[t]. Adopting the previous work’s specification (Kratzert240

et al., 2019a) of these hyper-parameters, we determine T to be 270 days and the dimen-241

sion of hidden states to be 256. For the details on other hyper-parameters (e.g., learn-242

ing rate, batch size), please read the Appendix B in Kratzert et al.’s paper (2019a).243

The objective function is needed for training the deep learning model. To account
for cross-catchment variance, which is not considered in the commonly used mean squared
error option, we use a smooth-joint NSE function (Kratzert et al., 2019a). The smooth-
joint NSE function is shown below.

NSE∗ =
1

B

B∑
b=1

N∑
t=1

(Qm
t −Qo

t )2

(s(b) + ε)2
(22)

where B is the number of catchments, N is the number of daily data (days) for one catch-244

ment, which is indexed by b. Qm
t is the predicted discharge at timestamp t(1 ≤ t ≤245

N), while Qm
t is the corresponding observed discharge. s(b) is the standard deviation246

of the Qo
t in basin b during training periods. ε is a constant term (ε = 0.1) to avoid po-247

tential loss function explosion issue, which happens for catchments with extremely low248

s(b).249

3.2 Data250

Our experiments use the continental hydrology dataset, CAMELS (Catchment At-251

tributes and Meteorology for Large Sample studies) (Addor et al., 2017). The CAMELS252

data set contains continuous meteorologic input, observed streamflow data, and catch-253

ment dependent spatially varying but temporally physical descriptors. CAMELS encom-254

passes a total of 671 watersheds across the contiguous US. Due to some watershed de-255

lineation errors (Addor et al., 2017), we followed the suggestion from Kratzert et al. (2019a)256

to select 531 basins whose watershed boundaries are confirmed to be correctly delineated257

without digital errors. Each watershed is supplied with observed discharge and climate258

forcing data from remote sensing products (Daymet, GLDAS, MAURER), climate mod-259

els, and data assimilation with daily temporal resolution. Additionally, a correspond-260

ing hydrological model (SAC-SMA. Sacramento Soil Moisture Accounting model) is well261

calibrated for each watershed and its physical simulation is also available. Adopting such262

a wide distribution of watersheds, CAMELS provides a comprehensive and detailed phys-263

ical description of watersheds. Selecting only a subset of those features as suggested by264
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Table 1: 27-d physical descriptors in CAMELS. The number in the brackets is the number
of descriptors in the corresponding category.

Category Physical descriptors

climate (9) p mean, pet mean, aridity, p seasonality, frac snow daily, high prec freq,
high prec dur, low prec freq, low prec dur

Geomorphology(8) elev mean, slope mean, area gages2, forest frac, lai max, lai diff,
gvf max, gvf diff

Geology(10) soil depth pelletier, soil depth statsgo, soil porosity, soil conductivity,
max water content, sand frac, silt frac, clay frac, carb rocks frac,
geol permeability

Kratzert et al. (2019a), we choose 27 physical descriptors from climatology, geomorphol-265

ogy and geology perspectives to characterize and discriminate across watersheds (Table266

1). For details and physical meanings on those physical attributes, please see Table A1267

in the Appendix.268

These 27-d catchment physical descriptors are static vectors (xs) characterizing each269

catchment. We selected meteorological data from an updated version of MAURER as270

model dynamic input (xd), which are daily precipitation, daily minimum air tempera-271

ture, daily maximum air temperature, average short-wave radiation, and vapor pressure.272

The observed discharge from USGS is our target variable (QO). Both daily meteorolog-273

ical weather inputs and discharge data cover a reasonably long record spanning from 1980274

to 2014. The data for each catchment was partitioned into training and testing periods.275

Some experiments involved using a subset of training years or a subset of basins, there-276

fore, we specify a standard test as training a global model using data from 531 basins277

with 20 years of data. Under this standard test, the training period starts from Octo-278

ber 1st 1999 and ends on September 30th 2008. For a consistent evaluation, through all279

experiments, the testing period ranges between October 1st 1989 and September 30th280

1999.281

3.3 State of the Art282

In terms of data-driven regionalization methods, CT-LSTM and EA-LSTM have283

been shown to perform very well for the streamflow prediction task (Kratzert et al., 2019a).284

In Figure 2, we show the testing NSE score for each catchment in the CAMELS dataset.285

Table 2: State of the art LSTM based model. Mean and median refer to the summary
statistics of the testing NSE scores across all 531 catchments in CAMELS.

Model Mean Median

Local LSTM 0.543 0.576

Global LSTM w/o static vectors 0.529 0.634

Global EA-lstm with 27-d descriptors 0.698 0.733

Local LSTM uses hydrologic data from only one catchment and does not need phys-286

ical descriptors (xs) to combine data from multiple catchments. Thus, for 531 catchments,287
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Figure 2: State of the art global regionalization performance using LSTM based deep
learning architecture.

there are 531 Local LSTM models. On the other hand, global LSTM refers to a global288

model learned from the training data of 531 catchments. While the Global LSTM merges289

data from multiple catchments but does not use physical descriptors to adapt the net-290

work for different basins, the Global EA-LSTM with 27-d descriptors is also a global model291

trained and tested using all 531 catchments but it takes advantage of 27-d physical de-292

scriptors (Table 1) to perform robust regionalization. As shown in Table 2, both the mean293

and median of its NSE score is the highest (0.698 and 0.733 respectively) among the three294

model options. In this gauged prediction scenario, cross-catchment information sharing295

benefits global model performance. Further, inclusion of catchment physical descriptors296

indeed elevates predictive performance. These results have been previously shown by Kratzert297

et al. (2019a).298

However, in practice, availability, uncertainty, and lack of completeness of those catch-299

ment physical descriptors might likely reduce the reliability of this global model perfor-300

mance. Concerns from these perspectives are our motivation and form this paper’s ob-301

jective as previously mentioned in section 1 and 2.302

3.4 Proposed Approach303

In this paper, our aim is to answer the question “How to perform regionalization304

when catchment physical descriptors are unavailable, uncertain, or of insufficient dimen-305

sion?” To address this issue, we propose to assign a vector of random values as a sur-306

rogate for missing physical descriptors. Since a set of random vectors don’t have any sim-307

ilarity structure (i.e. correlation between any two random vectors is zero), they are a suit-308

able baseline to incorporate the fact we don’t have any prior information on catchment309

similarity due to missing physical descriptors. By using these random vectors, we enable310

the deep learning network to account for heterogeneity in catchment responses while shar-311

ing data across multiple basins.312

Furthermore, the proposed concept of using random vectors as a baseline can also313

be used to evaluate the efficacy of known catchment characteristics. In other words, the314

performance difference between using random vectors and actual characteristics can tell315

us about the quality of catchment characteristics. In section 4 (Results), we provide an316

extensive analysis of this concept in the context of streamflow prediction. In this paper,317

we consider two different strategies to create random vectors (Figure 3) as described be-318

low319
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(a) Gaussian vectors (b) one-hot vectors

Figure 3: Random vector illustation

3.4.1 Gaussian Random Vectors320

Figure 3a is a visual representation of the Gaussian vector (d-dimension) for all catch-321

ments. Random colors represent random numbers drawn from Gaussian distribution. In322

this strategy we assign d-dimensional vectors to each catchment where the vector val-323

ues are drawn from a Gaussian distribution with zero mean and unit standard deviation.324

In other words, we randomly map each basin to a point in d-dimensional feature space.325

3.4.2 One-hot Vectors326

Figure 3b illustrates the one-hot vector representation. Each catchment is associ-327

ated with a binary vector that is 1 for one dimension and is zero elsewhere. The dimen-328

sion of the one-hot vectors equals the number of catchments. These one-hot vectors orig-329

inated from the binary vectors used to encode categorical variables in regression, where330

in our case, the variable is catchment ID. There is one such one-hot binary vector for each331

basin and these vectors are orthogonal to each other. It bears emphasis that there’s no332

freedom for the user to determine the dimension of the one-hot vector after the number333

of catchments in a global model is known. For k basins, the length of the one-hot vec-334

tor for each basin is k. Although the one-hot vector does not involve random numbers,335

the randomness in this random vector assignment is from basin order. Regardless of how336

basins are sorted, one-hot vector assignment assures each basin will be assigned uniquely.337

3.5 Experiments338

To evaluate the applicability of our proposed random vectors method in regional-339

ization, we first compared the predictive performance of a global model using random340

vectors (Gaussian or one-hot) against that using physically meaningful 27-d descriptors.341

In the CAMELS database, a global EA-LSTM was trained on 531 basins using 27-d phys-342

ical descriptors (Kratzert et al., 2019a) to show the state-of-the-art predictive performance.343

Our proposed random vectors substitute the 27-d physical descriptors with random vec-344

tors, another global EA-LSTM was trained for comparison.345

Machine learning models have uncertainties in model parameters after training. Ini-346

tialized randomly, model parameters will often be optimized to different values during347

training. In simplistic terms, different model initializations will yield different models348

after training. Accounting for uncertainty, it has been shown that ensemble results from349

multiple model runs will facilitate the overall model performance (Kratzert et al., 2019a).350

Therefore, the final streamflow prediction in any experiment setting is from an ensem-351

ble mean of five model realizations. For instance, the prediction of the EA-LSTM us-352

ing physical descriptors is an average of 5 model predictions, which are optimized from353

different initializations. Note that for the Gaussian vector experiment, the randomness354

originates from 2 sources, including model initializations and the Gaussian vector assign-355

ment. For each of the 5 runs, their Gaussian vectors are assigned with different values.356
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We then conduct an exhaustive analysis to investigate its applicability under other357

model settings, and different data richness scenarios (i.e., from short records to longer358

records, from fewer basins to many basins) with an intention to assess the generalizabil-359

ity of the random vector approach. We also explored practical implications of random360

vectors for understanding catchment modeling complexities for insufficient and uncer-361

tain catchment characteristics. Therefore, we compare the predictive performance be-362

tween models using random vectors and physical descriptors under the scenarios described363

in sections 3.5.1 to 3.5.5.364

For consistent model comparison, we’re using the NSE score instead of RMSE (root
mean squared error) to evaluate streamflow prediction. NSE is a metric suited partic-
ularly to evaluate hydrological predictions.

NSE = 1 − ΣT
t=1(Qm

t −Qo
t )2

ΣT
t=1(Qo

t − Q̄o)2
(23)

Qm is predicted discharge, Qo is observed discharge, Q̄o is the mean of observed discharge.365

A NSE score of 1 indicates a perfect time series prediction. Next, we describe different366

experiment settings used to analyze the random vector approach.367

3.5.1 Number of Basins368

An LSTM model is trained for a group of only k basins (k < 531), which forms369

an insufficient global hydrologic dataset having relatively fewer basins. This selection of370

k basins aims to answer the question “Given only k basins without physical descriptors,371

will the proposed random vector strategy be applicable for regionalization?”. We vary372

k from 10 to 50 to 100 and use the results from the aforementioned (Section 3.2) stan-373

dard training and testing data periods as comparison.374

To generate the data sets, we randomly select k basins as a group repetitively with-375

out replacement until all basins are selected. When the remaining basins cannot form376

a group with exactly the size k, those basins are either merged with the last group or377

form a stand-alone group as long as its order of magnitude approximates to k. For in-378

stance, when selecting 1a 0-basin group, we select 53 groups in total, and the last group379

contains 11 basins. Similarly, the last group (11th group) in the 50-basin group has 31380

basins. The last group (fifth group) in 100-basin group has 131 basins.381

3.5.2 Number of Training Years382

Another perspective on data inadequacy is the number of training years. An LSTM383

model is trained for all 531 basins with a limited number of years. Varying the training384

years from 1 to 2 to 5 years, we sought the answer to this question “Given only a few385

years of training data, will the proposed random vector strategy be applicable for region-386

alization? ” The LSTM using random vectors is tested against the 27-d physical vectors387

under three sparse data cases, which are 1 year of data (October 1st 2007 to Septem-388

ber 30th 2008), 2 years of data (October 1st 2006 to September 30th 2008) and 5 years389

of data (October 1st 2003 to September 30th 2008). Model testing performance is eval-390

uated during the same years (October 1st 1989 to September 1st 1999) as in the stan-391

dard case for a consistent model comparison.392

3.5.3 Alternative LSTM Architectures393

Catchment physical descriptors can be integrated into LSTM in different ways, yield-394

ing different LSTM architectures. We compare the predictive performance between ran-395

dom vectors and 27-d physical descriptors under various model architectures. As men-396

tioned in the section 3.1, we have three different LSTM based models: CT-LSTM, FM-397

LSTM, and EA-LSTM. Random vectors implementations are tested for all these three398
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models with an intention to answer this question“Under different model architectures,399

will the proposed random vector strategies be applicable for regionalization?”400

3.5.4 Incomplete Characterization of Physical System401

The aim of this experiment is to answer the question “Is the dimension of catch-402

ment physical descriptors sufficient for regionalization?” If catchments within the sys-403

tem are under-represented by the physical descriptors, how will the proposed random404

vector strategy benefit the model regionalization in this information deficient physical405

system? To test this deficiency, we define a physically underrepresented global system406

in CAMELS where only a subset of 27-d physical descriptors is used to distinguish basins.407

We compare the global LSTM using random vectors in contrast to the global model us-408

ing these insufficiently informative descriptors. One extreme case is a system without409

any static catchment descriptors, which has been shown in the section 3.3 (Figure 2).410

Ignoring the model selection differences, we select EA-LSTM for this experiment because411

it explicitly modulates LSTM via static vectors. The global EA-LSTM using some sub-412

set of 27-d physical descriptors is trained and compared. EA-LSTM using 9-d climate413

features, 10-d geology features, and 8-d geomorphology features are trained separately414

and compared to the EA-LSTM using random vectors.415

3.5.5 Uncertainties in Basin Characteristics416

This experiment is designed to answer the question “Can random vectors repre-417

sent uncertainties in the 27-d physical descriptors for catchments?” It was found that418

topological features and climate features are sensitive to added noise (Kratzert et al., 2019a).419

These sensitivities also indicate that they’re uncertain because by using average values420

to represent a catchment the features simplify the spatial heterogeneity of watershed sys-421

tems. By limiting the dimension of static vectors to 27-d, this simplification introduces422

uncertainty. We explore using random vectors to augment the 27-d physical descriptors423

for improving model performance and addressing feature uncertainty issues. These aug-424

mented static vectors are “mixed Gaussian vectors”. Uncertainties are gradually repre-425

sented by increasing the random vector dimension. To allow addressing uncertainties from426

each physical descriptor, we define a global system with 64-d, 128-d, 256-d, and 512-d427

vectors, all of which include the 27-d physical descriptors. For instance, for the 64-d fea-428

tures, besides the 27-d physical descriptors, 37-d (64-27=37) vectors are randomly drawn429

from the Gaussian distribution. At least one uncertainty dimension is reserved for each430

physical descriptor. For this experiment, the EA-LSTM was used solely as the model ar-431

chitecture because the CT-LSTM requires a larger number of parameters and thus in-432

creases computation burden and complicates model learning.433

4 Results434

The experiment section has outlined different model implementations. Each model435

implementation needs to specify the model architecture (either EA-LSTM, CT-LSTM,436

or FM-LSTM) and static vectors (xs). Options for xs include 27-d physical descriptors,437

random vectors, and mixing Gaussian vectors. For the simplicity of representing the re-438

sults, we’ll use acronyms to denote corresponding results of those experiments, that is,439

the combination of model architecture and xs. These acronyms are shown in the table440

3. Models for the incomplete physical systems are not given acronyms. This section is441

organized as follows. The first section (4.1) shows the comparison between EA-LSTM442

using random vectors (EG-d and EO) and EP. The following sections follow the exper-443

iment order listed in section 3.5. Section 4.2 presents the analysis on the impact of num-444

ber of basins to the EA-LSTM using random vectors. Section 4.3 summarizes the num-445

ber of years impact as another data inadequacy scenario. Section 4.4 presents the results446

of implementing random vectors for the model architectures outlined in Figure 1. This447
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Table 3: This acronym table denotes the acronyms of model implementations. Combina-
tions of model architecture and xs specifications are shown in their acronyms. The “d” in
these notations represent the dimension of xs, which is only needed to specify the mod-
els using Gaussian vectors. For instance, EG-512 means EA-LSTM model using 512-d
Gaussian vectors. ‘*’ means the corresponding models were not implemented.

xs EA-LSTM CT-LSTM FM-LSTM

27-d physical descriptors EP CP FP

Random
vectors

Gaussian d-dimension EG-d CG-d FG-d
One-hot EO CO FO

Mixed Gaussian d-dimension vectors EM-d * *

section also presents the analysis of data inadequacy impacts on CT-LSTM performance448

and comparison of random vectors across EA-LSTM and CT-LSTM. Section 4.5 presents449

the analysis of the regionalization performance improvement of random vectors in con-450

trast to physically under-represented catchment systems, which attains the understand-451

ing towards the applicability of random vectors. Section 4.6 presents the applicability452

of random vectors to address physical descriptors uncertainties.453

4.1 Effectiveness of Random vectors454

We select EA-LSTM as a baseline model architecture. Note that the implemen-455

tation of Gaussian vectors requires a specification of d, which is determined empirically.456

The cumulative density function plot of the NSE score, shown in Figure 4 suggests us-457

ing 512 (black solid line) as the Gaussian vector dimension because its testing perfor-458

mance is optimal compared to others.

Figure 4: Cumulative density functions of the NSE score across different d Gaussian vec-
tors for the EG-d. The X-axis is NSE score, which is truncated between 0.4 and 1 for a
better illustration. The black dashed line represents the testing score corresponding to the
EP. The black solid line corresponds to the EG-512, which yields the best performance in
the EG-d.

459
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(a) EG-512 versus EP (b) EO versus EP (c) cdf of EG-512 versus

EP

(d) cdf of EO versus

EP

Figure 5: Performance comparison cross the EP, EG-512 and EO. Model architecture
is EA-LSTM. Scatter plots are shown in a and b. Respectively, their cumulative density
functions of the NSE are shown in c and d.

The scatter plot (Figure 5) shows the testing NSE of the EG-512 and the EO ver-460

sus the EP respectively across all 531 basins. Among these results, testing NSE scores461

less than -0.1 are forced to be -0.1 for illustration purposes. For each scatter plot, a cu-462

mulative density function (cdf) plot of NSE is also given. The EG-512 scatter plot is slightly463

upper skewed, the cdf of the EG-512 is also slightly right skewed compared to the EP.464

Figure 5a and Figure 5c shows that EG-512 prediction performance is comparable and465

even slightly better than the EP. In Table 4, the mean and median of the EG-512 is 0.711466

and 0.746, both of which yields more satisfactory results than EP. The same compar-

Table 4: Performance comparison of the EA-LSTM using random vectors against physical
descriptors. Statistical summaries across all 531 basins are in column ’mean’ and ’median’

Catchment static vectors Mean Median

27-d physical vectors (EP) 0.698 0.733

512-d random vectors (EG-512) 0.711 0.746

one-hot vectors (EO) 0.707 0.745

467

ison between the EO and the EP also yields quite similar trend. The mean and median468

of NSE score for the EO is 0.707 and 0.745. EO reaches comparable and slightly bet-469

ter prediction performance than the EP.470

As we can see, using random vectors we get performance comparable to using known471

physical descriptors. Furthermore, random vector approach leads to significantly bet-472

ter results when compared to other strategies that do not use known physical descrip-473

tors (i.e. Figure 2, building local models or trivial merging of data from multiple basins).474

Hence, the random vector approach is a viable solution when catchment characteristics475

are not available. This performance is evaluated using the standard setting (section 3.2,476

10 years training data from 531 basins). Although such abundant training data shows477

slightly elevated testing performance, the proposed random vector method might still478

be inapplicable in data poor situations. To assess the impact of data sparsity, we con-479

ducted an exhaustive analysis on the different data inadequacy scenarios outlined in sec-480

tion 3.5.1 and 3.5.2.481
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4.2 Effect of number of basins482

For this situation we’re creating a data poor scenario where the training data con-483

sists of a limited set of basins. For the 53 groups of 10-basin groups, we compare the pre-484

dictive performance using random vectors relative to the performance of the model us-485

ing 27-d physical descriptor case given in the CAMELS dataset. This comparison is il-486

lustrated in Figure 6. The X-axis denotes one-hot vector idea and Gaussian vector (vary-487

ing d). Each category shows a box plot of performance comparison across basins. Me-488

dian (blue dots), 25th percentile and 75 percentiles (upper and lower box line) are shown489

for each box. Black hollow circles outside the upper and lower box lines are outliers out-490

side the specified quantile range. The Y-axis is the NSE score improvement compared491

to the 27-d physical descriptors. The red line indicates the threshold for improved per-492

formance. A box plot whose NSE distribution is skewed to positive NSE score improve-493

ment indicates a general performance improvement in that random vector category. The494

512-d Gaussian vectors show a visible performance improvement in contrast to the case495

of the 27-d descriptors. The one-hot vector is less productive by comparison.

Figure 6: Random vectors implementation for 10-basin group EA-LSTM. Categories
along the X-axis represent random vectors, including one-hot vectors (length of 10) and
Gaussian vectors (dimension d varies from 2 to 1024). The Y-axis shows the NSE score
improvement of the random vector in contrast to its corresponding EP, which is trained
using the same basins. A zero NSE improvement indicates an improvement threshold
marked by the red line. Within each category, 531 NSE improvement scores are dis-
tributed in the box plot where outliers exceeding 25th and 75th quantile are marked by
black hollow circles.

496

For the 50-basin group and 100-basin group, the plot of NSE improvement is shown497

in Figure 7 except that we plot only the median of each case to provide succinct visu-498

alization. The red line also marks the performance improvement threshold. Table 5 sum-499

marizes the NSE score improvement for all cases. It shows a consistent performance im-500

provement comparison. Regardless of how limited the number of basins, the Gaussian501

vector strategy (with an optimal dimension of either 256 or 512) outperforms the 27-d502

physical vectors. In particular, the performance improvement from the Gaussian vectors503

becomes saturated when d reaches 256 or 512. When the dimension of the Gaussian vec-504

tor becomes a higher 1024-d, the performance improvement begins to degrade. In sum-505

mary, we show that random vector approach shows robust performance even with fewer506

number of catchments in the dataset and hence can be used in situations where only few507

catchments are available.508
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Figure 7: Random vectors implementation for k-basin group EA-LSTM. k varies from 10
to 50 to 100. The median in Figure 6 are blue lines. Within each random vector category
as shown in X-axis, the median of NSE improvement score in contrast to EP for k basins
is plotted. Orange dots are the 50-basin group while green color represents 100-basin
group

Table 5: The performance improvement of EG-d and EO to EP

k-basin group 10 50 100 10 50 100
d mean median

Gaussian
vector
(EG-d)

2 -0.073 -0.085 -0.09 -0.054 -0.076 -0.077
8 -0.051 -0.061 -0.058 -0.033 -0.053 -0.046
16 -0.032 -0.031 -0.03 -0.019 -0.029 -0.025
32 -0.015 -0.01 -0.008 -0.01 -0.007 -0.004
64 0.014 0.018 0.025 0.01 0.016 0.021
128 0.047 0.045 0.039 0.035 0.036 0.031
256 0.082 0.062 0.053 0.066 0.054 0.044
512 0.082 0.055 0.053 0.066 0.048 0.046
1024 0.06 0.038 0.039 0.04 0.036 0.034

one-hot (EO) -0.066 -0.035 -0.03 -0.043 -0.029 -0.022

4.3 Effect of number of training years509

Here we limit the standard 10-year training data into periods of 1 year, 2 years and510

5 years. Our previous empirical analysis indicates an optimal specification of d (Gaus-511

sian vector dimension) to be 512, so the implementation of basin random vectors includes512

either 512-d Gaussian vectors or one-hot vectors. In Figure 8, the dots and box portions513

above the red line (no NSE score difference) indicate that our proposed random vector514

strategy is more satisfactory. It shows that both strategies lead to prediction performance515

similar to the case utilizing 27-d physical descriptors. In particular, the EG-512 yields516

a more satisfactory performance than the EO. As shown in Table 6, a NSE score improve-517

ment (both in mean and median) is observed when implementing 512-d Gaussian vec-518

tors, while the NSE score improvement is only observed when using 5 years of training519

data when the one-hot vector strategy is applied. The results show that even when train-520

ing data are limited, randomly assigned vectors are still able to learn as well as 27-d phys-521

ical features.522
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Table 6: The impact of the number of training years on the performance improvement of
random vectors for EA-LSTM. “Mean” and “Median” refer to statistics of the NSE score
improvement in relative to EP. Positive numbers mean that random vectors yield better
predictive performance.

Number of training years 1 2 5

Gaussian 512-d (EG-512)
mean 0.013 0.052 0.026

median 0.009 0.041 0.019

one-hot (EO)
mean -0.025 -0.003 0.015

median -0.023 -0.005 0.013

Figure 8: The impact of the number of training years on EA-LSTM. The Y-axis rep-
resents the NSE score difference between the corresponding category in X-axis and the
predictive performance using 27-d physical descriptors (EP). The red line indicates perfor-
mance improvement threshold.

4.4 Performance of alternative models523

In this section, we address the performance difference between random vectors and524

27-d physical descriptors for the CT-LSTM and FM-LSTM architectures (Figure 1). We525

compared the regionalization performance of random vectors across the EA-LSTM and526

the CT-LSTM to answer the question “Which random vector strategy is better suited527

for regionalization, Gaussian vectors or one-hot vectors?” We selected the CT-LSTM as528

another model architecture for an exhaustive analysis on the data inadequacy cases in529

terms of basin numbers.530

From previous sections (section 4.1, 4.2, and 4.3), we’ve shown the efficacy of the531

random vectors in EA-LSTM in both data rich and data poor scenarios. Will that ef-532

ficacy also be shown in other alternative models? We thus implemented random vectors533

in both CT-LSTM and FM-LSTM.534

For the CT-LSTM, the Gaussian vector implementation needs to specify the op-535

timal vector dimension d. Figure 9 shows that the CG-16 yields the most satisfactory536

performance among different Gaussian vector dimension options. Therefore, we empir-537

ically select 16 as the optimal Gaussian dimension to represent the CG-d performance538

(Figure 10c). Note that the optimal 16-d of the CG-d is less than the optimal 512-d of539

the EG-d. We’ll explain this in the section 5.1 in “Discussion” section. Using 27-d phys-540

ical descriptors, CP achieves performance comparable and slightly better than EP (Fig-541
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Figure 9: Cumulative density function plots of the NSE score across different d Gaussian
vectors for the CT-LSTM. The X-axis is truncated between 0.4 and 1 for a better illus-
tration. The black dashed line represents the testing score of the CP, the black solid line
corresponds to the optimal 16-d performance among the Gauusian vector groups (CG-16).

Table 7: Random vector comparison cross different models

models Mean Median

EP 0.698 0.733

CP 0.715 0.744
CO 0.720 0.754

CG-16 0.717 0.752

FP 0.653 0.698
FO 0.716 0.746

FG-512 0.695 0.738

(a) CP versus EP (b) CO versus CP (c) CG-16 versus CP

Figure 10: Predicted performance comparison of a random vector implementation in CT-
LSTM (CO and CG-16) in contrast to CT-LSTM using 27-d physical descriptors (CP)

ure 10a and Table 7). The median NSE score performance improves from 0.733 (CP) to542

0.744 (CO). Random vector options (CO and CG-16) slightly outperform 27-d physical543

descriptors (CP). The median of testing NSE performance improves from 0.744 to 0.754544

when using the one-hot vector strategy, while the CG-16 elevates the performance to 0.752.545
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(a) FP versus EP (b) FO versus FP (c) FG-512 versus FP

Figure 11: Predicted performance comparison of a random vector implementation in the
FM-LSTM (FO and FG-512) in contrast to the FM-LSTM using 27-d physical descriptors
(FP)

For the FM-LSTM, we specify the optimal Gaussian vector dimension as the same546

of the EA-LSTM because they share the similar model modulation strategy, that is, static547

vectors enter the LSTM separately from the dynamic weather inputs. Using 27-d phys-548

ical descriptors, Figure 11a illustrates that the FP yields worse prediction performance549

compared to the EP. Even so, the FM-LSTM also attains benefits performance improve-550

ment from random vectors. Both one-hot vector and Gaussian 512-d vectors lead to sig-551

nificantly better predictive performance. In terms of the median, in contrast to the FP,552

FO elevates the performance from 0.698 to 0.746, while FG-512 improves the performance553

to 0.738. The one-hot vector benefits are more pronounced than those of 512-d Gaus-554

sian vectors in FM-LSTM.555

Figure 12: The performance of EG-d in contrast to the CO for k-basin group. k varies
from 10 to 50 to 100. The Y-axis is the NSE difference score quantifying the performance
of the EG-d (categories in X-axis) relative to the CO. The red line marks no NSE differ-
ence. Plotted points are median of the NSE difference across all basins. For points below
the red line, they mean that the CO yields more satisfactory performance

Accordingly, under different modulations discussed so far (EA-LSTM, CT-LSTM,556

and FM-LSTM), the above experiments demonstrate that random vector strategies still557

prevail over 27-d physical vectors. The best random vector method for EA-LSTM and558

FM-LSTM is 512-d Gaussian vectors, while the best random vector strategy for CT-LSTM559

is one-hot vector. The preferable random vector strategy varies depending on modula-560

tion strategy. In a pursuit of model performance when utilizing random vectors, we need561
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to provide a practical solution to the question “When implementing random vectors to562

perform regionalization, shall I use Gaussian vectors or one-hot vectors?”. To answer this563

question, we next compared the optimal random vector performance between the CT-564

LSTM and EA-LSTM. FM-LSTM is not considered because its performance is wore than565

EA-LSTM. Figure 12 shows the testing NSE difference from the various EG-d against566

the CO. Based on the previous result showing that the EO is not as good as EG-d, ‘one-567

hot’ on X-axis (EA-LSTM random vector strategy) is omitted. Figure 12 shows the me-568

dian of the NSE difference for various selections of k basins. All points are below the per-569

formance threshold line, indicating that the CO slightly outperforms EG-d. When im-570

plementing the random vector strategy as a surrogate for missing physical descriptors,571

the best performance is obtained when applying CO.572

Data abundance has always been an important factor impacting the machine learn-573

ing model performance. To consolidate the argument that CT-LSTM with random vec-574

tors, especially one-hot vectors, yields better performance consistently under various data575

richness scenarios, we repeated the experiments outlined in section 3.5.1 for CT-LSTM.576

Training data are limited by the number of basins.577

Table 8: The random vectors’ improvement over 27-d physical features in the CT-LSTM.
“Mean” and “Median” refer to statistics of NSE score improvement in relative to the CP.
The most satisfactory performance is in bold font: 32-d Gaussian vector, 64-d Gaussian
vector, and one-hot vector

k-basin group 10 50 100 531 10 50 100 531
d mean median

Gaussian
vector
(CG-d)

2 -0.079 -0.073 -0.074 -0.119 -0.075 -0.063 -0.063 -0.061
8 -0.055 -0.031 -0.024 -0.026 -0.050 -0.028 -0.023 -0.016
16 -0.037 -0.015 -0.007 -0.004 -0.037 -0.018 -0.010 -0.004
32 -0.022 -0.006 0.004 -0.009 -0.023 -0.008 0.001 -0.006
64 -0.023 -0.004 0.002 -0.010 -0.021 -0.006 0.000 -0.008
128 -0.041 -0.019 -0.019 -0.005 -0.039 -0.016 -0.003 -0.015
256 -0.074 -0.059 -0.033 -0.032 -0.072 -0.048 -0.026 -0.025
512 -0.103 -0.125 -0.094 -0.074 -0.097 -0.114 -0.083 -0.057
1024 -0.134 -0.188 -0.174 -0.143 -0.129 -0.191 -0.171 -0.124

one-hot (CO) -0.046 -0.007 0.005 -0.005 -0.042 -0.005 0.001 -0.004

Figure 13 exhibits a box plot showing the NSE improvement for the 10-basin group578

using the CT-LSTM architecture. Any point above the red line (NSE score improvement579

threshold) indicates a performance improvement in contrast to 27-d physical descriptors.580

In the 10-basin group category, the optimal Gaussian d for the CG-d is lower than that581

of the EG-d. The optimal Gaussian vectors performance is comparable to that of one-582

hot vectors. To obtain a general insight, we varied k from 10 to 50 to 100 and therefore583

produced the following result in Figure 14 and Table 8.584

Figure 14 shows the median of the NSE improvement using random vectors in CT-585

LSTM in contrast to the CP. Dots below the red line mean the prediction performance586

of the corresponding categories is worse than the CP. As the number of catchments avail-587

able fro training increases, the one-hot vector strategy and optimal Gaussian vectors in588

CT-LSTM yields performance comparable to the CP. The optimal d for the CG-d is ei-589

ther 32 or 64, which is lower than the optimal 512-d in the EG-d. As also recognized in590

Figure 10, this discrepancy of optimal Gaussian d between the CT-LSTM and EA-LSTM591

can be explained by the number of parameters involved in these model architectures and592

we’ll expand this discussion in section 5.1. We point out that these random vector strate-593
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Figure 13: Impacts of random vectors on CT-LSTM for a 10-basin group. Categories
on the X-axis represent random vectors, including one-hot vectors (length of 10) and
Gaussian vectors (dimension d varies from 2 to 1024). The Y-axis show the NSE score
improvement of the random vectors in contrast to the CP. A zero NSE improvement
indicates no performance improvement marked by the red line.

Figure 14: A random vector implementation for a k-basin group CT-LSTM. k varies from
10 to 50 to 100. Within each random vector category as shown in X-axis, the median
of NSE improvement score in contrast to the CP for k basins is plotted. Blue dots are
10-basin group, orange dots are 50-basin group, while green color represents 100-basin
group

gies are approximate to but do not marginally exceed the CP performance. In partic-594

ular, the relative significant performance improvement occurs when using the one-hot595

vector in the 100-basin group but to a much lesser extent. Varying k from 10 to 50 to596

100, as more catchments are involved until 531 basins are included, the one-hot vector597

is a preferable random vector strategy for CT-LSTM than Gaussian vectors.598

4.5 Incompleteness of physical characteristics599

So far we considered the scenario where physical descriptors are not available and600

assessed the performance of random vector approach. In this section, we consider a more601

common regionalization challenge where physical descriptors are incomplete. Those in-602

complete physical descriptors can only help regionalization in a limited degree. We might603

ask ourselves: “Are 27-d physical descriptors sufficient? What about 100 or 500-d de-604

scriptors?”605

Catchment hydrologic models are formulated to resolve complexity and associated606

scaling issues in hydrological processes. Both issues will not be dealt without a compre-607

hensive physical understanding. From a practical perspective, static physical descriptors608

(for instance, Table 1) can only characterize complex catchments to a limited dimension609
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because a sufficient catchment complexity characterization is challenging across scales.610

In the field scale, a hydrological model might characterize local hydrological processes611

completely, but the applicability of this locally built model to a larger basin might fail612

if the model is not adjusted, either simplified (reduce the number of parameters) or made613

complex (enrich physical parameters). Therefore, for the regionalization involving catch-614

ments at various scales, the question becomes “Are any given physical descriptors suf-615

ficient for modeling the complexity of catchments?” This question also implies another616

question “how many physical dimensions do we need for characterizing the complexities617

of streamflow generation processes” To answer these questions, we compared our ran-

Figure 15: The performance of the EG-512 in contrast to EA-LSTM under a physically
incomplete catchment system. Scatter plots show testing NSE scores comparison between
the Y-axis and the X-axis. The y label is EG-512 and is fixed in the above 4 figures. The
X-axis changes from a no physical feature system, a climate feature system, a geology fea-
ture system, to a geo-morphology feature system. The below cumulative density function
plot collects NSE scores together for each category aforementioned. The black line is EG-
512. We also plotted the benchmark performance with sufficient 27-d physical descriptors
(grey solid line, EP) to remind the reader of the performance under a physically sufficient
catchment system.

618

dom vector results to models utilizing incomplete sets of physical vectors. In Table 1,619

27-d physical descriptors are categorized into three groups: climate, geology and geo-morphology.620

Among these, the descriptors of any single group are an under-representative descrip-621

tion for basins. For instance, 9-d climate descriptors presumably characterize basins less622

informatively than 27-d physical descriptors. For this experiment, we choose the EA-LSTM623

as the model structure and use 512-d Gaussian vector as its optimal random vector strat-624

egy. Each one of the three descriptor subset groups leads to an EA-LSTM under a phys-625

ically uninformative system since complexities are simplified and the system incurs in-626
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Table 9: Physical system completeness identification

catchment static vectors Mean Median

(0-d) Without static features 0.529 0.634
512-d Gaussian vectors (EG-512) 0.707 0.745

9-d climate features 0.611 0.665
10-d geology features 0.638 0.679

8-d geomorphology features 0.630 0.680
27-d physical descriptors (EP) 0.698 0.733

formation loss. For the extreme case where there are no physical descriptors present, the627

global model is a simple global LSTM without basin characteristics, results of which were628

shown early in section 3.3 (Figure 2).629

In Figure 15, a distribution of scatters above the diagonal line (exactly equal per-630

formance from the methods indicated by axes) indicates that Gaussian 512-d vectors out-631

perform all these physically incomplete conditions. This fact is better illustrated in the632

cumulative density function plot as the distribution of NSE scores is skewed to upper633

tail. Both its mean and median NSE scores are higher than any physically incomplete634

characterization (Table 9). Note that as shown earlier, the EG-512 case reaches compa-635

rable and slightly better performance than EP. This observation also implies that 27-636

d physical vectors are lacking additional physical characterizations.637

4.6 Uncertainties in Basin Characteristics638

Static vectors are deterministic representations of heterogeneous and complex phys-639

ical systems. Multiple sources might contribute to uncertainties in static vectors. For640

example, one of them is the spatial simplification. Spatial dependent features are deter-641

ministic representations of catchments, such as, soil porosity, silt fraction, etc. Instead642

of quantifying these uncertainties, we explored another applicability of proposed random643

vectors utility and answer this question “Can we recognize these uncertainties in static644

vectors?” The mixed Gaussian vector is a combination of 27-d physical vectors and Gaus-

Table 10: NSE performance difference of the mixed Gaussian vectors (EM-d) and Gaus-
sian vectors (EG-d) in contrast to 27-d physical vectors (EP). Positive scores mean that
the EP yielded worse predictive performance

static vector dimension (d) 64 128 256 512 1024

Gaussian vectors (EG-d)
mean -0.007 0.010 0.010 0.009 0.002

median -0.006 0.002 0.004 0.007 0.000

Mixed Gaussian vectors (EM-d)
mean 0.009 0.013 0.014 0.018 0.009

median 0.004 0.006 0.007 0.011 0.008

645

sian vectors. Uncertainties are captured by those augmented Gaussian vectors. As shown646

in Figure 16, compared to the baseline performance, which is the EP, the mixed Gaus-647

sian vector (EM-d) yields better performance and achieves the maximal performance im-648

provement at EM-512. On average, the NSE improvement is 0.018. From 64-d, to 1024-649

d, all of the EM-d results yield better performance (positive NSE score improvement statis-650

tics in Table 10). Augmenting the physical descriptors with the Gaussian vectors cap-651
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Figure 16: Comparison of the performance between Gaussian vectors (EG-d, blue box)
and mixed Gaussian vectors (EM-d, flaxen box). The X-axis is the dimension of the static
vector (from 64 to 1024), while the Y-axis shows the NSE difference in contrast to the EP.
The red line specifies the performance improvement threshold. Box portions above the red
line indicate performance improvement.

turing uncertainties, the incremental performance improvement verifies the presence of652

uncertainties in physical vectors. When the uncertainties of catchment physical systems653

are explained by these random vectors, the predictive performance also improves. In con-654

trast to a pure random Gaussian system, given the same d Gaussian dimension (blue and655

flaxen box in the same X-axis category), the EM-d also marginally improves the NSE656

score. In Table 10, the NSE improvement in ‘Mixed Gaussian vectors’ are consistently657

more pronounced than ‘Gaussian vectors’ across varying static vector dimension d. The658

mixed Gaussian vector leads to marginally better global model performance compared659

to either pure random Gaussian system or pure physical system. As such, it suggests that660

when physical descriptors are augmented with randomized uncertainties, it supports and661

benefits regionalization.662

5 Discussion663

The recently developed LSTM based models have pioneered and advanced the sci-664

entific frontier of model-independent (data-driven) regionalization methods. LSTM based665

models leverage both meteorological data xd and catchment static vectors xs to learn666

a universal global hydrologic model and achieve state-of-the-art performance (Feng et667

al., 2019; Kratzert et al., 2019a). In particular, catchment physical descriptors are of great668

value for extrapolating hydrologic information across basins, so the derived deep learn-669

ing model using these descriptors learn cross-basin similarities internally as feature em-670

beddings (Kratzert et al., 2019a). This is the focus in section 3.3. However, dependence671

on physical descriptors for regionalization might be potentially problematic because those672

descriptors are mostly uncertain, sometimes incomplete, or even unavailable in certain673

regions. These issues hamper the applicability of LSTM based models. Our proposed674

random vector approach provides a viable solution.675
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5.1 Unavailable catchment characteristics676

Results in section 4.1 show that the proposed random vector method achieves com-677

parable and slightly better performance than the state-of-the-art model (Figure 5, Ta-678

ble 4). In other words, without any knowledge of physical descriptors, the global LSTM679

based model using random vectors successfully learns universal hydrologic behavior and680

sustains benchmark streamflow prediction performance. These random vectors retain prac-681

tical feasibility without having to obtain any physical descriptions of basins. This is ar-682

guably the significant scientific contribution of this paper.683

The exhaustive analysis from section 4.2, 4.3, and part of 4.4 verifies the applica-684

bility of employing random vectors in data scarce regions. For a limited number of basins685

(Figure 6, 7, 13, 14, Table 5, 8) and a few years of training data (Figure 8), two situa-686

tions which restrict hydrologic extrapolation across catchments, random vectors are still687

viable for hydrologic regionalization.688

Functionalizing random vectors as static vectors (xs) that represent each basin, the689

LSTM family models actually modulate each basin from this characterization. For each690

catchment, the LSTM model will modulate its internal computation and mapping across691

neurons. That is, for a given weather input xd, the global model is aware of which basin692

the xd data originates from and thus modulates how streamflow shall be predicted in a693

different way in contrast to other basins. Yet this modulation extent varies in different694

model selections. CT-LSTM concatenates static vectors with weather drivers at each times-695

tamp and thus performs the strongest modulation because this catchment awareness is696

passed through all gates in the LSTM. Merely feeding static vectors into the input gate,697

the EA-LSTM does not modulate the network as well as the CT-LSTM but it ensures698

xs is involved in the temporal context update (memorizing and forgetting). In contrast,699

the FM-LSTM performs the weakest modulation since the xs is only involved for updat-700

ing the hidden representation, which is the last step in an LSTM update cycle before pro-701

ceeding to next timestamp. Across those three different LSTM model selections with var-702

ious catchment modulation degree, random vectors consistently perform as well as, if not703

better than, physical descriptors for learning across basins (Figure 11, Table 7). Indeed,704

regardless of the impact of xs on catchment modulation, random vectors enhance the705

LSTM’s ability to learn across basins to a similar or even better extent than what the706

27-d catchment physical descriptors are capable of performing.This insight and discov-707

ery actually has a broad and significant implication for hydrologists to examine the value708

of xs (either physical descriptors or random vectors) that were brought in for modeling709

catchment complexities.710

Typically, using either model-dependent or model-independent methods, hydrol-711

ogists will consider only physical descriptors as static vectors in addition to dynamic in-712

put and streamflow observation for building hydrologic models. This is a scientifically713

intuitive and classic approach because physical descriptors accompany the development714

of hydrological models to explain rainfall-runoff behaviors. Catchment physical descrip-715

tors are essential for not only underlining physical hydrologic processes in individual basins716

but also transferring hydrologic knowledge for regional modeling. However, these char-717

acteristics are somewhat problematic in terms of the uncertainties in them and poten-718

tially missing physical rules. Thus, a more relevant hydrologic question to ask is:“Are719

catchment physical descriptors sufficient to model streamflow generation complexities?720

If not, how many dimensions do we need?”721

By definition, the needed dimension for characterizing catchment complexity is the722

dimension of the static vectors. Selected from the CAMELS dataset with prior catch-723

ment understanding (Kratzert et al., 2019a), physical descriptors are 27-d static vectors724

(Table 1). Without any catchment information, the implementation of the Gaussian ran-725

dom vector needs to specify its dimension d, which is empirically obtained. The opti-726

mal d is different between EA-LSTM and CT-LSTM. For EA-LSTM, the optimal d is727
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either 256 or 512 (Figure 4, 7, 6), while for CT-LSTM, it is in the range of 16 to 64 (Fig-728

ure 9, 13, 14). EA-LSTM needs a higher dimension of static vectors to perform region-729

alization than the CT-LSTM. We explain this difference by the amount of trainable ma-730

chine learning parameters. The increasing number of trainable model parameters of CT-731

LSTM hinders the training processes. For CT-LSTM, an increased static input will ex-732

pand the concatenated input x[t] dimension (Equation 8), which in turn enlarges the di-733

mension of the transformation matrices Wi, Wf , Wg, Wo. By contrast, the static in-734

put (xs) dimension only impacts EA-LSTM’s input gate dimension (Wi). Consequently,735

given the same xs dimension augmentation, the parameter increment of CT-LSTM is736

four times the increase of the number of parameters in EA-LSTM. A higher d-dimension737

Gaussian vector CT-LSTM becomes more difficult to optimize than that for EA-LSTM738

considering the number of machine learning parameters involved.739

Although the optimal d differs between the CT-LSTM and the EA-LSTM, the per-740

formance saturation trend is identical. As illustrated by the results between section 4.1741

and 4.4, when expanding static vector dimension, the predictive performance saturates742

at a certain point and then deteriorates. This pattern indicates a presence of the opti-743

mal d, which cannot be too large or too small. In particular, the optimal d is universal744

regardless of the number of basins involved (Figure 6, 7, 13, 14). Thus, it suggests im-745

plications for addressing catchment modeling complexities, which are often entangled with746

associated scaling issues between catchments as one of the Two Clouds in hydrology (Beven,747

1987). Hydrological models need to either be simplified or made more complex to ac-748

count for scaling transformations between catchments that have different complexities.749

This can be done by reducing or increasing the number of parameters, which can also750

be reasonably interpreted as the dimensionality of static vectors. A recognized optimal751

d illustrates that the level of an appropriate scale for regionalization exists and the in-752

volved complexities exceed what the physical descriptors can provide.753

Random vectors comparable regionalization predictive performance also implies the754

uniqueness of catchment systems and randomness in modeling systems. Both the Gaus-755

sian vectors or the one-hot vectors map catchments into a high dimension space and pre-756

serves their uniqueness. The Gaussian vector characterizes catchments as statistically757

independent from each other. In the space characterized by the one-hot vector, catch-758

ments become orthogonal to each other. Although these random vectors do not quan-759

tify catchment similarities, they assure catchments are different from each other in a con-760

sistent way. This suggests that preserving the uniqueness of catchments improves regional761

modeling in a deep learning framework, which reflect a recently raised hydrologic con-762

cern – When essential catchment characteristics are not well understood or defined and763

thus not even included in catchment physical descriptors, how could a derived deep learn-764

ing model perform satisfactory regionalization performance (Beven, 2020). Although not765

explicitly defining catchment characteristics, our proposed random vector can be inter-766

preted as non-physical descriptors characterizing the uniqueness of catchments. Catch-767

ment systems are composed of linked components representing the functional relation-768

ships between weather inputs and streamflow. The uniqueness of catchments further sug-769

gests the uniqueness of those individual functions. Additionally, random vectors also sup-770

port the randomness of catchment system. The stochasticity represented by the random771

vectors is indicative of the randomness in hydrologic processes. Arguably, catchment sys-772

tem involves organized complexities where complexity exists in a similar way as random-773

ness (Nearing et al., 2020; Dooge, 1986; Weinberg, 2001). The deep learning framework774

leverages this random complexity for streamflow prediction.775

Additionally, modeling hydrologic complexities suggests a necessity for understand-776

ing catchment similarities in the context of regionalization. An underlying assumption777

behind the regionalization method is that physical descriptors define basin similarities/differences,778

which characterize similar/different catchment hydrologic processes. This assumption779

leads to a selection of 27-d physical descriptors in LSTM methods, but the optimal per-780
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formance in random vectors indicates that the similarities across catchments are only781

partially represented by 27-d physical descriptors. In other words, the similarities en-782

coded in catchment physical descriptors represent insufficient similarities in hydrologic783

processes. To depict catchment similarities, these current 27-d physical descriptors need784

to be enriched such that they provide a characterization sufficient enough to denote cross-785

catchment hydrologic behavior similarities.786

Our results are delivered in a deep learning framework. The random vector approach787

exhibits the strong modeling capacity of deep learning and shows a potential solution788

to involving complexity into a deep learning model without explicitly incorporating hy-789

drologic processes. This approach does not add physical process understanding into the790

model architecture; instead, it is developed purely from a data driven perspective. We791

hypothesize that an appropriate dimension that accommodates catchment complexities792

exists and allows deep learning models to automatically distinguish cross basin similar-793

ities and therefore benefits regional modeling.794

5.2 Incomplete and uncertain catchment characteristics795

Results from section 4.5 and 4.6 provide preliminary solutions for performing re-796

gionalization when physical descriptors are incomplete, or uncertain respectively. Incom-797

plete catchment physical descriptors constrain modeling complexities and thus downgrade798

regional modeling. Compared to the performance with incomplete features (climate fea-799

tures, geology features, or geomorphology features) and to the performance without any800

physical descriptors, the predictive performance of the random Gaussian vectors method801

significantly outperforms in those scenarios. Random Gaussian vectors enable deep learn-802

ing models to learn complexities more sufficiently than those physically limited descrip-803

tors. This insight has practical utility for determining the sufficiency of physical descrip-804

tors in the real world, which is challenging considering the uncertainties and complex-805

ities in hydrologic processes. When LSTM models using a specified set of physical de-806

scriptors are outperformed by random vectors, it demonstrates that those given phys-807

ical descriptors are not able to resolve catchment complexities and thus suggests a need808

to complement them with missing features for regional modeling. For instance, as a di-809

rect illustration, Figure 4 and Table 4 suggests that 27-d physical descriptors partially810

address hydrologic complexities and need a certain degree of feature augmentation.811

Kratzert et al. (2019a) pointed out that these 27-d physical features are intrinsi-812

cally uncertain since spatial heterogeneities are simplified as spatial averages and there-813

fore lose certain regional information. To address the uncertainties introduced by the global814

system enclosed by 27-d physical descriptors rather than individual features, we propose815

to concatenate physical descriptors with additional Gaussian vectors as a preliminary816

solution. The added Gaussian vectors do not specify which features are uncertain, but817

instead, they represent the uncertainties for the whole system. A mixed static feature818

consists of 27-d physical vectors and Gaussian vectors. Results (Figure 16, Table 10) show819

that the mixed static features can account for some degree of uncertainties in the phys-820

ical descriptors. This peak performance is realized by 512-d, which implies the presence821

of a large degree number of uncertainties (485 dimensions of Gaussian vectors (485 =822

512-27)) in the physical hydrology system. Another indication from the results in sec-823

tion 4.6 is that mixed static vectors always outperform pure Gaussian vectors. Given the824

same dimension of static vectors, the information contained in 27-d physical features im-825

prove regional modeling. In contrast to a pure random system formed by all dimensions826

of Gaussian vectors, we hypothesize that mixed static vectors introduce ordered infor-827

mation and physically similarities, and thus benefit regionalization.828
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5.3 Limitations and future direction829

Although the predictive performance of random vectors proves to be comparable830

to 27-d physical descriptors, we want to emphasize that this result is limited to gauged831

prediction. The deep learning model has to have training data of the basin to predict,832

so the scope of this research cannot not be expanded to PUB. Therefore, recognizing this833

limitation, it merits future research to leverage the complexity modeling capacity found834

in random vectors into PUB.835

Our ability to model catchment complexities depends on the dimension of the ran-836

dom vector. Although we show the presence of an optimal d, which recognizes the ex-837

istence of physical processes that are not characterized, we do not provide further quan-838

titative interpretations of the optimal d. How to utilize the observation that the optimal-839

d of EA-LSTM is 512? In future studies it will be important to identify physical pro-840

cesses that are not captured by physical charactersitics (e.g., variable recession charac-841

teristics (Beven, 2020)) and adapt machine learning models to resolve them.842

The results focus on 531 basins in the United States. Their catchment area exhibits843

a wide range between 4 to 1980 square kilometers, which indicates strong spatial het-844

erogeneities across catchments. An interesting hypothesis to test is that a heterogeneous845

catchment prefers high dimension Gaussian vectors to account for model complexities.846

To test this hypothesis it will be necessary to obtain the data from catchments express-847

ing different levels of heterogeneities. Because catchments are naturally heterogeneous,848

this test will require the use of synthetic data generated by physically based hydrolog-849

ical models. It is hypothesized that a collection of homogeneous catchment will require850

fewer static vectors while a collection of more complex catchment will require many static851

vectors. The synthetic data set will represent a system of catchments with a controlled852

level of heterogeneities, which will allow an opportunity to investigate how heterogeneous853

and homogeneous catchment systems differentiate hydrologic regionalization and mod-854

eling complexities.855

Random vectors characterize a system of basins as unique positions in high dimen-856

sional space. The only physically distinctive information involved becomes weather in-857

puts and associated catchment responses. This insight suggests the possibility of learn-858

ing catchment similarities from weather inputs and is thus closely related to the inverse859

modeling problem, a field where machine learning is also advancing (Ongie et al., 2020).860

It therefore merits future research for an improvement in unveiling catchment charac-861

terization mysteries in a physically consistent way, likely inferred from weather inputs862

and catchment responses.863

Our discovery has strong generalizable implications for other applications in wa-864

ter related or science problems. Regionalization can be conceptualized in a broader con-865

cept, that is, each local entity contributes to learn a regional or global model where cross866

entity information sharing benefits the predictive performance. In the context of stream-867

flow prediction, an entity is a catchment. For water science, an entity can also be a reser-868

voir, lake, stream, etc. The target variable might vary depending on specific problems869

to solve where each problem may require a different set of entity descriptors. Mathemat-870

ically, entities can be approximate functions in identical formulations with varying pa-871

rameters. The benefit of random vectors in modeling regional complexities merits fur-872

ther research to demonstrate their practical applicability. We expect further research can873

test our proposed random vector approach to solve general regionalization problems across874

disciplines.875

6 Conclusion876

In this work we showed that random vectors can be used for hydrologic regional-877

ization when catchment physical descriptors are not available. Random vector based hy-878
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drologic regionalization shows robust performance even under data sparsity and differ-879

ent model strategies. This method can also identify if any given physical descriptors are880

sufficient to account for rainfall runoff complexities. In summary, the scientific contri-881

butions of this paper are:882

• The random vector method was proposed and used for regionaliation in the ab-883

sence of explicit physical descriptors.884

• Random vectors show robust performance even under different data sparsity sce-885

narios and different LSTM based model selection.886

• Random vectors can improve streamflow prediction when basin characteristics are887

insufficient and uncertain. Thus, random vectors have a practical usage in deter-888

mining if any given physical features are sufficient.889

We also investigated scientific implications of the dimension of random vectors. This pro-890

vides useful insights for the development of hydrologic models to address the model com-891

plexity and associated scaling issues.892
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Appendix A physical descriptor description (CAMELS)893

Table A1: 27-d physical descriptors in CAMELS. Descriptions are from (Addor et al.,
2017)

Category Physical descrip-
tors

Description

climate (9)

p mean Mean daily precipitation
pet mean Mean daily potential evapotranspiration.
aridity Ratio of mean PET to mean precipitation.
p seasonality Seasonality and timing of precipitation. Estimated by

representing annual precipitation and temperature as
sine waves. Positive (negative) values indicate precip-
itation peaks during the summer (winter). Values of
approx. 0 indicate uniform precipitation throughout
the year.

frac snow daily Fraction of precipitation falling on days with temper-
atures below 0 .

high prec freq Frequency of high-precipitation days (≥ 5 times mean
daily precipitation).

high prec dur Average duration of high-precipitation events (num-
ber of consecutive days with ≥ 5 times mean daily
precipitation).

low prec freq Frequency of dry days (< 1 mm d−1).
low prec dur Average duration of dry periods (number of consecu-

tive days with precipitation < 1 mm d−1.

Geomorphology(8)

elev mean Catchment mean elevation.
slope mean Catchment mean slope.
area gages2 Catchment area.
forest frac Forest fraction.
lai max Maximum monthly mean of leaf area index.
lai diff Difference between the max. and min. mean of the

leaf area index.
gvf max Maximum monthly mean of green vegetation fraction.
gvf diff Difference between the maximum and minimum

monthly mean of the green vegetation fraction.

Geology(10)

soil depth pelletier Depth to bedrock (maximum 50 m).
soil depth statsgo Soil depth (maximum 1.5 m).
soil porosity Volumetric porosity.
soil conductivity Saturated hydraulic conductivity.
max water content Maximum water content of the soil.
sand frac Fraction of sand in the soil.
silt frac Fraction of silt in the soil.
clay frac Fraction of clay in the soil.
carb rocks frac Fraction of the catchment area characterized as “Car-

bonate sedimentary rocks”.
geol permeability Surface permeability (log10).
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