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SUMMARY

We present an inversion methodology aimed at updating an atmospheric model to
be consistent with a set of infrasound-derived observations. Compared to previous
approaches, we sought to apply a more flexible parameterization. This permits to
incorporate physical and numerical constraints without the need to reformulate the
inversion. On the other hand, the optimization conveys an explicit search over the
solution space, making the solver computationally expensive. Nevertheless, through
a parallel implementation and the use of tight constraints we demonstrate that the
methodology is computationally tractable. Constraints to the solution space are
derived from the spread (variance) of ERA5 ensemble reanalysis members, which
summarize the best current knowledge of the atmosphere from assimilated mea-
surements and physical models. Similarly, the initial model temperature and winds
for the inversion are chosen to be the average of these parameters in the ensemble
members. The performance of the inversion is demonstrated with the application to
infrasound observations from an explosion generated by the destruction of ammu-
nition at Hukkakero, Finland. The acoustic signals are recorded at an array station

located at 178 km range, which is within the classical shadow zone distance. The ob-
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served returns are assumed to come from stratospheric reflections. Therefore, in this
example, the altitude of reflection is also an unknown that is inverted for, together

with the updated atmospheric model.

Key words: Infrasound — classical shadow zone — ensemble reanalysis model —

model inversion

1 INTRODUCTION

This work considers the problem of estimating an updated atmospheric model to become
consistent with a set of infrasound observations, and the associated problem of identifying the
member(s) from an atmospheric reanalysis model ensemble that lie closer to the infrasound-
consistent, updated model.

Atmospheric reanalysis models are the result of the assimilation of direct and indirect
measurements of different properties of the atmosphere (e.g., Uppala et al. 2005; Kazutoshi
et al. 2007; Parker 2016). For example, direct measurements of atmospheric winds and tem-
perature are provided by radiosondes up to altitudes of around 30 km. Satellites, on the other
hand, provide measurements from which estimations of temperature can be obtained up to
altitudes of ~50 km (Lee et al. 2019).

A better representation of the upper stratosphere in models, especially for winds, can
contribute to an enhanced numerical weather prediction on weekly to monthly timescales,
especially during winter (see e.g., Domeisen et al. 2020a,b, and the references therein). To
this end, efforts are made to adapt and expand atmospheric probing infrastructures and
technologies to provide additional measurements on the dynamics of the stratosphere (e.g.,
Tan et al. 2008; Blanc et al. 2018, 2019; Khaykin et al. 2020).

Over the last decade, there have been significant improvements in global data assimilation
capabilities of the lower, middle, and upper atmosphere (Drob 2019). General circulation mod-
els (GCMs) have been progressively extended to cover the whole stratosphere to better capture
stratospheric-tropospheric interactions and improve forecast skill scores (Charlton-Perez et al.
2013; Siskind & Drob 2014). However, the mean state and the variability described by Numer-
ical Weather Prediction (NWP) models, such as those distributed by the European Centre

for Medium-Range Weather Forecasts (ECMWF), are subject to inaccuracies in both cur-
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rent operational analyses and reanalyses in the altitude range where assimilated observations

become sparser (i.e., above 30 km altitude).

Within the Copernicus Climate Change Service (C3S), ECMWF is producing the ERA5
reanalysis, which embodies a detailed record of the global atmosphere. This new reanalysis,
based on the Integrated Forecasting System (IFS) Cy41r2, benefits from a decade of devel-
opments in model physics, core dynamics and data assimilation. A gain in forecast skills
has been shown (Hersbach et al. 2020), allowing an enhanced description of the evolution of
weather systems in the troposphere. ERA5 also provides analyses with better global-mean
temperatures in the uppermost troposphere and stratosphere, although it still suffers from

temperature uncertainty and bias (Simmons et al. 2020).

There is a current interest from the NWP community to validate model specifications at
stratospheric altitudes using independent observations. This includes satellite radiance and ad-
ditional high-resolution measurements (gravity waves and momentum flux) that are currently
not resolved in gravity wave model parameterization schemes (e.g., Charlton-Perez et al. 2013).
Given the importance of model validation in the middle and upper atmosphere regions, recent
studies focused on comparisons between ECMWEF products with independent observations
such as long-duration balloon flights (e.g., Podglajen et al. 2014). Wind radiometer and lidar
instruments were also used to evaluate the accuracy of NWP models and data-constrained
assimilation systems (e.g., Le Pichon et al. 2015; Ehard et al. 2017). The development of inno-
vative high-resolution prototype sounding systems providing in near-real time wind and tem-
perature observations from the ground to the mesosphere and lower-thermosphere (MLT) has
stimulated the construction of multi-technology observational platforms detailing the dynam-
ics of the middle atmosphere and interactions between atmospheric layers with unprecedented

resolution (Blanc et al. 2018).

Infrasound waves provide complementary information to characterize the middle atmo-
sphere. This is particularly valuable above 30 km altitude where few other currently available
technologies provide direct measurements, especially for the dynamics (see e.g., Le Pichon
et al. 2019, for a review). As infrasonic waves propagate into the middle atmosphere, small-
scale features of the vertical structure of the atmosphere can also be inferred from the char-
acteristics of measured wave parameters (Chunchuzov & Kulichkov 2019; Assink et al. 2019).
Infrasound signals are generated by natural phenomena such as microbaroms, volcanoes and
meteorites, as well as by human-activities such as explosions in mines or nuclear tests. The
infrasound waves travel along waveguides in the atmosphere, which are formed by vertical

variations in wind and temperature. Therefore, similar to seismic waves traveling through
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the solid earth, the properties of the medium of propagation get encoded along the path of

propagation and amplitude of the infrasound waves.

Through the tool of inverse theory, it is thus feasible to estimate the characteristics of
the medium of propagation that explain a set of observations of infrasound data. Such is the
effort that has been made by different groups working with infrasound observations around
the world (see Assink et al. 2019, for a review). For example, Drob et al. (2010) proposed
the parameterization of the adiabatic sound speed and wind profiles in 1D atmospheric mod-
els in terms of basis functions extracted from the singular value decomposition (SVD) of a
population of historical profiles for the area of interest. In this way, the solution space was
reduced to the estimation of scalar coefficients that multiplied by the basis functions produced
the atmospheric profiles that explained the infrasound observations. Similar approaches were

then followed by Lalande et al. (2012) and Assink et al. (2013).

Model simplification is generally required when working with infrasound observables to
estimate atmospheric model updates. The reason is that the number of independent observa-
tions is normally much smaller than the number of model parameters to update, which makes
the inverse problem strongly ill-posed. Alternatively, the size of the solution space can be
reduced by imposing constraints (e.g., Vera Rodriguez et al. 2012; Vera Rodriguez & Kazemi
2016). In fact, the parameterization proposed by Drob et al. (2010) bounds the solution space
to those models that are a linear combination of the chosen basis functions. This type of
constraint preserves the most significant statistical properties of the atmosphere within the
time span of the population of profiles used in the SVD, although it can be limiting or of little

help in regions and/or time periods with dynamic atmospheric conditions.

Previous efforts to solve the inversion have resorted to parameterizations that follow the
classical least-squares formalism, either based on Fréchet derivatives (Lalande et al. 2012) or
with a Bayesian formulation (Assink et al. 2013). These attempts introduced additional model
simplifications, such as fixing some of the profiles during the inversion (e.g., adiabatic sound

speed), and/or inverting only for the upper atmospheric layers of the models.

In the current work, we consider a more general representation of the problem, in which
the inversion is achieved via a solver of the heuristic type. The objective is to minimize a cost
function, where the cost can be estimated either via least-squares or any other ad hoc metric.
This offers flexibility not only to select convenient metrics to assess the merit of a solution, but
also to easily incorporate different types of constraints without the need to reformulate the
optimization, for example, by recalculating partial derivatives. In fact, the cost function does

not need to be differentiable as required in classical methods using least-squares minimization.



Atmospheric model inversion 5

To alleviate the ill-posedness of the problem, we bound the temperature and wind profile
solution space to a region in the vicinity of the members of ERA5 ensemble reanalysis models
(from now on ERA5-ensembles, Hersbach & Dee 2016; Hersbach et al. 2019). Then, we solve
the optimization using a heuristic-learning algorithm previously developed to solve a similar
inversion problem in passive seismics (Vera Rodriguez 2019). In this way, we not only estimate
an updated model consistent with our infrasound observations, but also identify the members
of the ERA5-ensemble that lie closer to it. The performance of the method is demonstrated
using observations of infrasound waves produced by regular explosions at a site in Finland

(Gibbons et al. 2015, 2019).

Recently, Vanderbecken et al. (2020) also looked at the problem of identifying members
from ensemble models that were more likely representative of the atmospheric state based
on their consistency with infrasound observations. The approach was applied to infrasound
signals generated by the Mount Etna volcano. In this case, backazimuth and trace velocity
observations were input to a Bayesian algorithm, which assigned a likelihood to each of the
ensemble members. Different to the work presented here, the updates necessary to make any
particular ensemble member consistent with the infrasound observations were not part of the

estimations.

Also recently, Amezcua et al. (2020) performed an off-line data assimilation experiment
where an Ensemble Kalman filter was applied to update the representation of cross-wind
estimations into ERA5-ensembles. The cross-winds were estimated based on the measured
travel-time and backazimuth deviation of infrasound arrivals from 598 explosions and an
analytical formula (Blixt et al. 2019, see Section 2 in this article for further descriptions
and references regarding this explosion dataset.). In this case, a single value of cross-wind was
assimilated to update a particular model. This limits the constraint that is attainable with the
infrasound information. Therefore, in this work we opt to use the three primary observables

derived from the infrasound data (i.e., backazimuth, trace velocity and travel time).

In short, the contributions of this work can be summarized as: inverting for atmospheric
wind and temperature profiles without restricting the solution space to atmospheric states that
are linear combinations of previous states. Instead, we constrain the inversion by bounding
the solution space with uncertainties that summarize the current atmospheric knowledge from
direct and indirect measurements, and physical models. As a result of the inversion setting,
our results can be directly related to the ensemble models used to bound the solution space, so
that, the members of the ensemble that are more consistent with the infrasound observations

can be identified.
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We start the description in the following section by introducing the infrasound dataset
and atmospheric models used to test the inversion. Thereafter, the parameterization of the
problem is described together with the strategies followed to bound the solution space and
achieve the optimization. Finally, we present detailed results of the inversion applied to an
explosion from the real dataset, followed by our conclusions and future directions of work.

Additional example results are also provided as complementary information.

2 THE HUKKAKERO EXPLOSION DATASET AND THE ATMOSPHERIC
MODEL ENSEMBLES

The Hukkakero dataset consists of a series of explosions that happen regularly during August
and September at the site of Hukkakero in Finland (67.94° N, 25.84° E) (Gibbons et al.
2007; Liszka & Kvaerna 2008). Both seismic and infrasound waves generated by the blasts
are regularly detected at the array station ARCES (69.53° N, 25.51° E) located in northern
Norway. Gibbons et al. (2015, 2019) described details of the dataset, including the processing
conducted to extract the parameters arrival back azimuth (6,,) and trace velocity (v®P).
Apart from 60, and vPP, total propagation time (7") is also an observation. Therefore, any
one explosion provides with three points to fit during an inversion process (i.e., under the
knowledge of the source position).

Blixt et al. (2019) estimated the uncertainty of the backazimuths extracted from this
dataset to be in the range of 1.0° to 1.5°. Following a similar analysis for the apparent velocity
yields uncertainties in the order of 10 m/s. Taking into account that these uncertainties are
approximations obtained with an empirical analysis (see Blixt et al. 2019, Section 2C for
details), we consider more conservative values of 0.5° and 5 m/s for the inversion process.
For uncertainty in arrival time, we note that our array processing output is calculated over
10 s windows stepped with 1 s increments. Therefore, we consider reasonable to assume the
uncertainty in arrival time estimation to be 1 s.

As noted in Blixt et al. (2019), ARCES is located within the classical shadow-zone dis-
tance from Hukkakero, suggesting that the arrivals detected at the station correspond to
stratospheric reflections rather than refracted waves (e.g., Chunchuzov et al. 2015b,a). Using
ray tracing for a fan of shooting elevation angles through ERA-interim atmospheric reanalysis
models, Blixt et al. (2019) conducted a grid search to estimate the reflection-altitudes that
minimized the difference between modeled and observed propagation times for 598 Hukkakero
explosions. This exercise assumed that the atmospheric models represented reasonably well

the infrasound propagation.
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Since the objective of the inversion developed in the current work is to update the atmo-
spheric models, the reflection altitude that explains an observed propagation time must also
be updated in a self-consistent manner. This is achieved by including this altitude as part of
the inverted model parameters.

The atmospheric models to update with the inversion are extracted from the ERA5 en-
semble product. The ERA5-ensembles are the latest type of reanalysis models generated by
the ECMWF. This product has global coverage and assimilates observations from satellites,
land stations, buoys, radiosondes, aircrafts and ships. The ensemble models are available at
3-hour intervals with a 63 km horizontal resolution in 137 vertical levels from surface up to an
altitude of 0.01 hPa, i.e., around 80 km (Hersbach & Dee 2016). The ERA5 product also in-
cludes single high-resolution realizations at temporal and horizontal resolutions of 1 hour and
31 km, respectively. In this work, however, we only use the ensembles so that we can derive
uncertainties from the members. The ECMWEF has made publicly available ERA5-ensembles
from 1979 up to now with a delay of within 5 days from real time (Copernicus Climate Change
Service (C3S) 2017).

In the context of infrasound studies using ensemble reanalysis models, Smets et al. (2015)
studied probabilistic infrasound propagation by performing wave-propagation simulations us-
ing the ensemble members of the ECMWF Ensemble Data Assimilation (EDA) system analysis
product. Averbuch et al. (2020) also applied the EDA ensemble model product in atmospheric
infrasound propagation modelling when analyzing how to estimate depth and strength of sub-

merged explosion sources from infrasound data.

3 PARAMETERIZATION OF THE PROBLEM

The cost function C' to optimize is represented as
C =0(m,d), (1)

where m and d are vectors that contain all the model parameters and observations, respec-
tively, and O is an operator. The representation in 1 is general on purpose, as this gives
flexibility to incorporate different types of variable manipulations and operations within O.

The operator O consists of:

(i) Using the model parameters to produce a forecast of the observations.
(ii) Evaluating the cost of the model parameters by comparing the forecast with the obser-

vations using a metric of choice.
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The elements of vector m in our problem are the altitude of reflection of the infrasound arrival,
and the profiles of temperature, zonal (W-E) and meridional (S-N) winds of an atmospheric
model (vertical wind is neglected). The vector d, on the other hand, contains the observations
of 0,ps, v™P and T of a corresponding Hukkakero explosion. As the source and receiver positions
are fixed, this information is hard-coded inside O. Consequently, the first step in our operator
O consists of using ray tracing with m to produce a forecast of the elements of d.

We compute eigenray trajectories, in this case reflection from a specified altitude joining
Hukkakero with ARCES, using GeoAc (Keys 1981; Blom & Waxler 2012). More specifically,
we use the ray tracer GeoAc3D, which considers wave propagation in a cartesian frame where
the medium is moving and without resorting to the effective sound speed approximation.
Then, we use the geometry from the eigenrays together with the model parameters m to
estimate the forecast of the observations (i.e., 9((){;), v®P(f) and T, where the superscript (f)
refers to a forecast of the variable). Eigenrays are computed setting an error tolerance of 0.5°
in azimuthal direction. This tolerance is within the uncertainty in the infrasound observations
and results in rays landing within 0.6 km from the center of the ARCES array, which has
an approximate radius of 1.5 km (Gibbons et al. 2015). Notice that the actual ray tracing
operates over adiabatic sound speed rather than temperature. In this work, all the model
perturbations are performed over the temperature profiles and then fed into GeoAc3D, which
internally converts them into adiabatic sound speed.

For the second step, we use the following cost metric:

5= KWlE(H) + Wy pr;aﬁpp(m + W3 |T_;,:C<f)| (2)
a Wi+ Wy 4+ Wy ’
where
( . ()2 ()2
sin 0,ps — sin Hobs) + (cos 0,ps — COS Gobs)
E(9) = : (3)

2

Equation 2 is a weighted average, which facilitates a ranking-by-priority for the fitting
of the observations during the inversion. For example, observations with larger uncertainties
can have smaller weights. Similarly, observations that reflect lower sensitivity to changes in
the model parameters can also have lower weights. In this work, we use the weights W; =1,
Wy = W3 = 3. The smaller weight on the backazimuth is used because we observed lower
sensitivity in this variable with respect to changes in the model parameters. The same behavior
was reported by Vanderbecken et al. (2020) in their Bayesian inversion. Traveltime and trace

velocity, on the other hand, display a comparable level of sensitivity. We observed that if their
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weights are not equal, the algorithm often converges to solutions that fit the variable with
larger weight within its uncertainty but not the other one.

The purpose of the normalizations in the fractions in the numerator of equation 2 are to
remove scale differences, homogenise units, and to help ensure bounds in the cost function
in the approximate range of [0, ~1). Function E(f) is defined taking the same requirements
into consideration and also to avoid ambiguities when comparing angles. In particular, setting
[0, ~1) bounds in the cost function is critical for the performance of the heuristic solver used
for the optimization (Vera Rodriguez 2019).

As we discuss in the following section, the algorithm is initialized with average profiles
obtained from the members of ERA5-ensemble models. The cost of these initial atmospheric
models is already small. Therefore, we prefer absolute values over the more commonly used
squared differences to increase the cost of the initial models. For the same objective, we
introduce the hyperparameter K. Using a value of K = 60 we ensure an initial cost closer to

1 in every inversion run.

3.1 Constraining of the solution space

The inversion problem that we attempt to solve is strongly ill-posed. This is because the num-
ber of model parameters is much larger than the number of independent observations. With-
out access to additional observations, this limitation can be alleviated by either incorporating
constraints (e.g., regularization) and/or by reducing the number of model parameters. For
the first alternative, we use average profiles calculated with the members of ERA5-ensemble
models as starting point. In addition, we bound the solution space to the region delimited
by profiles that are a multiple of standard deviations obtained from the same ensembles.
The standard deviations obtained in this way display variability with altitude, reflecting the
better availability of information to constrain these models at lower altitudes. Similarly, the
standard deviations for temperature are small compared to those of winds, reflecting also the
more accessible measurements of this property in the atmosphere.

Reducing the number of standard deviations to set the limits of the solution space has the
risk of excluding solutions that explain best the infrasound data. On the other hand, extending
the dimensions of the solution space increases the number and diversity of atmospheric models
that can explain the observations. We find a reasonable trade-off by testing different multiples
of the standard deviations to set the size of the solution space. We consider that the size of
the solution space is reasonable when after running the algorithm multiple times the final

solutions resemble each other and all explain the observations within their uncertainties.
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Even after delimiting the boundaries of the solution space, the number of model parameters
is still much larger compared to the number of observations. Thus, in order to further improve
the constraint in the inversion, we simplify the ERA5-ensemble models to 1D layered versions
and assume time-invariance during the propagation of the infrasound waves. Previous work
suggests that these assumptions are reasonable within the distance range between Hukkakero
and ARCES (e.g., Lalande et al. 2012; Assink et al. 2013).

For the altitude of reflection we try two different initial values. First, we run three inver-
sions using 39 km as initialization point. This is about the average reflection altitude estimated
by Blixt et al. (2019) for the extended dataset of explosions. After that, we run another three
inversions moving the initialization point to 38 km. The purpose of trying different initial
altitudes is to verify that the final solution converges toward similar values independently of
the initialization point. In both cases, the solution space is bound at +1 km from the initial

reflection altitude.

4 INVERSION ALGORITHM

The optimization of equation 1 requires a non-linear solver. The algorithm selected here is
a simplified version of the heuristic solver described in Vera Rodriguez (2019). This algo-
rithm was designed to solve a similar problem in passive seismics, although in that case, the
source locations were also an unknown and the observations to fit were waveforms (see also
Vera Rodriguez 2018; Vera Rodriguez & Le Calvez 2018). With the simplifications, the solver
approaches more the logic behind particle swarm optimization (PSO) (Shi & Eberhart 1998),
albeit with modified updating rules and contingencies to breakout from local minima.

The search for the optimization point consists in guiding a group of particles (swarm) as
they explore the solution space. The coordinates of each swarm particle at any iteration are
given by tentative solutions that they explore. The next exploratory move of a swarm particle
is influenced by two poles of attraction: one is the best solution ever explored by that particular
swarm particle and the second is the best solution ever explored by any of the particles in the
swarm. This intends to simulate the behavior of birds in their search for food sources, which
is the original purpose of the PSO algorithm (Shi & Eberhart 1998). The evaluation of what
is a better solution is quantified by the cost function. This means in our application that ray
tracing must be conducted at every iteration for every particle of the swarm, which makes the
solver computationally expensive. The updating rules used in Vera Rodriguez (2019) improve
the rate of convergence by simulating more closely the process of iterative design (Nielsen

1993) rather than bird swarms. Additionally, we implement the solver in parallel using a
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workstation with 24 cores and a swarm of 96 particles. This means that, in every iteration,
every core only needs to do ray tracing four times. Given the tight constraints imposed over
the solution space, this was considered sufficient to identify significant and consistent minima.
Unconstrained inversions in contrast require larger swarms with their particles well-spread

over the solution space.

An important advantage of the heuristic solver is its flexibility, as it can optimize objec-
tive functions that are not differentiable, and permits to easily incorporate various types of
constraints. The main disadvantage, on the other hand, is its computational cost, since the
algorithm consists of an explicit exploration of the solution space, where success depends on

a careful management of trade-offs.

Apart from simplifying the solver to handle a smaller type-set of model parameters, two
other modifications were introduced. The first of them is a smoothness constraint. This con-
straint is applied over the temperature and wind profiles. The smoothing filter is a 79-point
moving average, which is applied to the signals in two directions taking care of boundary effects
by padding at the ends with the end members of the profiles. Before smoothing, the profiles
are resampled to a homogeneous rate computed as half of the smallest distance between lay-
ers. After smoothing, the profiles are interpolated back to the original altitude points. This
constraint is applied to every new solution to be explored by the swarm. It helps in stabilizing
the ray tracing and also reduces the solution space, thus, adding robustness to the inversion

process.

The second modification refers to the rule to accept or reject a new update for the solutions
to be explored by the swarm. In PSO and the solver proposed by Vera Rodriguez (2019),
an update (Am) is rejected and modified if it is larger than pre-specified, to some extent

empirical, values v™**. In our modified version, v"%*

is given by the standard deviations
extracted from the ERAb5-ensemble and the altitude bound. The update is then rejected
and modified if the updated solution (mg_1 + Amy, where k is the iteration number) after
smoothing is outside the limits given by the initial model and v™** (i.e., mg + v™%*). This is

how we establish hard boundaries to the solution space.

For all the other hyperparameters required to run the solver, we use the values reported
in Vera Rodriguez (2019). The solutions obtained with this inversion setup are temperature
and wind profiles that honour the variability with altitude of the uncertainties in the ERAb5-
ensemble. The solutions, including reflection altitude, are also consistent with the infrasound

observations and their uncertainties.
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Figure 1. Example of inversion initialization. The initial model consists of temperature and wind
profiles, and reflection altitude (black lines). The solution space is bounded with a multiple of the
standard deviations of the initial model parameters (50 in this example) and a limit manually specified
in the case of the reflection altitude (red shaded areas). The search is conducted with a swarm of 96
particles whose initial position is determined by solutions (smoothed profiles) selected at random within

the limits of the solution space (grey lines).

5 APPLICATION TO A HUKKAKERO EXPLOSION

We demonstrate the performance of the inversion using data from a blast on 24 August 2007 at
around 11 am in Hukkakero. This example was selected at random within the catalogue of 598
explosions. Nevertheless, we observe that the inversion results are consistent with those from
other explosions that we have also already analyzed (see complementary material). Figure 1
presents an example of initialization of the inversion for the selected example. The ERA5-
ensemble for the time of the explosion is obtained via linear interpolation of the closest
ensembles in time. The limits of the solution space for temperature and winds in this example
are set as bo, where o is a vector that contains the standard deviations extracted from the
ERAS5-ensemble. In the figure, it is visible how the uncertainty bounds increase with altitude
and are also wider for winds than for temperature.

Figure 2 shows two examples of inversion results setting the limits of the solution space to
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50. Each of the lines in the convergence plots (left panels in Figure 2) reflects the trajectory
of a swarm particle as it finds better solutions during its exploration of the solution space.
When the algorithm detects that the swarm is stuck in a local minimum (i.e., when all
the convergence curves come together and do not decrease after a number of iterations) a
perturbation is introduced to spread the swarm again (see Vera Rodriguez 2019, for details).
This is expressed in the convergence curves as spikes. If the breakout from the local minimum
is successful the swarm continues moving. After two failures, the algorithm gives up. Therefore,
the end of the convergence curves is often preceded by at least two spikes. An exception is if the
algorithm finds a solution with a lower cost than a pre-specified value without getting stuck,
for example, as would be the case in a convex solution space. Given the tight constraints, the
variations in ray trajectories between permissible models are allowed to be only significant

enough as to explain the infrasound observations (Figure 3).

From testing the inversion with different limits of the solution space, we observed that
using bo output models that reproduced the infrasound observations well within their uncer-
tainty limits (Table 1). An illustration of the negative effects of increasing the bounds of the
solution space is presented in Figure 4. In this Figure, inversion results setting the bounds
to 100 produced models that are more dissimilar between them and also with respect to the
reference ensemble. On the other hand, convergence was achieved much quicker (often within
10 iterations) because of the larger number of solutions that could explain the observations. In
contrast, reducing the bounds of the solution space increased the number of iterations because
the number of solutions that explain the observations becomes limited (see Table 1). In our
tests, o provided a good trade-off to obtain solutions that resemble each other and produced

forecasts within the uncertainty limits of the observations.

In these inversion results obtained with bounds at 5o, the reflection altitude remained
stable at around 38.5 km (see Table 1). Convergence toward this altitude was independent
of whether the initialization point was above or below. For example, the results presented in
Figure 2 correspond to initialization points at 39 km and 38 km, and to runs #1 and # 6,
respectively, in Table 1. Both cases converged at or near this altitude of 38.5 km. Backazimuth
and travel time were always better reproduced by the inverted models compared to trace ve-
locity. This is likely related to the higher uncertainty in the estimations of trace velocity from
the infrasound measurements in this dataset. Trace velocity in this example was underesti-
mated by the ERA5-ensemble (see captions of Table 1). Thus, the updates introduced by the
inversion produced ray trajectories with smaller inclination angles (see Figure 3). By favouring

landing trajectories with smaller inclination angles rather than simply increasing temperature
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Table 1. Inversion results for six runs of the algorithm
using 5o to set the boundaries of the solution space. The
infrasound observations are 0,,; = 175.7 + 0.5 deg, v*PP =
337 +5 m/s and T = 631 = 1 s, and correspond to an
explosion at Hukkakero from 24 August 2007 around 11 am.
The forecast of the observations obtained with the average
ensemble model (i.e., initial solution) is: 0((721, = 176.0 deg,

vPP(0) = 329.1 m/s and T(®) = 627.2 s.

Run Iterations Cost Altitude 6Y)  dfy, o) dpwr T 4T
(#) (#) (%) (km)  (deg) (deg) (F) (§) (5 (9
1 121 17 387 1756 0.1 3348 22 6310 0.0
2 160 16 382 1757 00 3351 19 6308 0.2
3 104 15 382 1757 0.0 3350 20 6310 0.0
4 120 18 387 1757 0.0 3346 24 6310 0.0
5 112 21 389 1757 0.0 3343 27 6310 0.0
6 235 16 385 1757 0.0 3349 21 6310 0.0

and winds at the bottom of the model, the updates maintained a trade off between increasing
trace velocity without negatively affecting total travel time and honouring the smoothness
constraint.

Looking at the cross differences between all the inverted profiles and all the ensemble
members (Figure 5), the average modifications to the ERA5-ensemble necessary to explain the
infrasound observations are more significant for the wind components than for temperature.
This is understandable, given the larger uncertainty bounds specified for the winds. Also, as
a result of the variation of uncertainty with altitude, it is visible that the average differences
from the ERAbB-ensemble are more significant above ~30 km (see Figure 5d). Below this
altitude the average deviations in inverted profiles from the ERA5-ensemble are within £1.2 K
and +2.6 m/s, while above they lie within +2.5 K and +5.8 m/s. Another difference in the
behavior of the average cross differences with respect to this altitude is their trend. In the
case of temperature and zonal wind, below ~30 km the deviations from the ERA5-ensemble
oscillate around zero. Above this altitude the deviations define trends: positive deviations
for zonal wind and negative deviations for temperature. The inversion results for meridional

winds suggests a positive bias in the ERA5-ensemble with an average around 1.9 m/s along
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most of the profiles (see Figure 5¢ and d). From ~30 km, however, this bias shows continuous
growth.

Despite that systematic comparisons between lidar soundings and ECMWEF products have
shown differences that are often larger than those displayed in our inversion results (Le Pichon
et al. 2015; Hupe et al. 2019), the ERA5-ensemble models produced reasonable initial rep-
resentations of infrasound propagation over different explosion-observations in this region of
north Scandinavia (see complementary material for additional inversion examples). This good
representation is partly expected because most of the region where infrasound propagates in
this data set falls within the part of the models where measurements are normally available
for assimilation. Thus, more significant corrections derived from the proposed inversion can

be expected when analyzing returns from higher atmospheric altitudes.

6 CONCLUSIONS

We have presented an inversion scheme where complete 1D atmospheric models (i.e., temper-
ature and wind components) can be updated with the use of infrasound observations from
known sources. Furthermore, for the Hukkakero dataset that we used to demonstrate the
performance of the inversion, the altitude of reflection of the infrasound waves was also an
unknown that was part of the inverted model parameters.

The inverse problem is strongly ill-posed for which we had to simplify the atmospheric
models to 1D, time-invariant versions. Furthermore, tight constraints were also necessary
to reduce the dimensions of the solution space. We achieved this by bounding the solution
space to the region around average atmospheric models obtained from ERA5-ensembles and
by imposing smoothness in the solutions. Hence, the inverted/updated models explain the
infrasound observations within their uncertainties and also lie in the vicinity of the ERA5-
ensembles.

The inverted models displayed larger variations with respect to the reference ERAS5-
ensembles at stratospheric altitudes. This is consistent with a limited amount of direct mea-
surements available to constrain the ERA5-ensembles in this region of the atmosphere. In this
regard, the infrasound data becomes a valuable source of information to, at the least, point
out which ensemble members should be preferred for further modelling tasks.

There are several lines to pursue in future work. For example, one possibility to modify
the inversion is to weight the solutions explored by the swarm based on their proximity to a
member of the ensemble. In this way, the distance between a solution and the ensemble could

also be minimized. Another possibility is to incorporate additional physical constraints into
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the model updates. This could be attained by explicitly honoring the relationship between
wind and temperature within the algorithm.

In addition, a statistical assessment of the inversion method in the context of the corre-
sponding model ensembles could be performed based on the full multi-year dataset of hundreds
of Hukkakero explosions. Ideally, we would also prefer to confirm the inversion results using
data from independent measurement technologies.

Moreover, extended data assimilation experiments might be initiated, building on the ap-
proaches developed by Amezcua et al. (2020): we could exploit that the current inversion
provides altitude-dependent, both wind components — and not only cross-winds as were as-
similated in Amezcua et al. (2020).

Such efforts are targeting as a long-term objective to let infrasound datasets contribute to
numerical weather prediction models and an enhanced medium-range forecasting that takes
further advantage of the predictive skills provided by a more reliable representation of strato-
spheric dynamics in models.

Finally, another line of future work consists of extending the data input to the inversion
process by including travel-time, backazimuth, and apparent velocity estimates related to
the full stratospheric arrival wavetrain, and not only a single data point associated with
maximum array coherence. For higher-top models, we could also include mesospheric or lower
thermospheric arrivals, hence both allowing layers at higher altitudes to be updated and also

simultaneously improving the model constraints for lower altitudes.
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Figure 2. Examples of inversion results. Each line on the left panels tracks the convergence path
of a swarm particle. The red dashed line marks the lowest misfit of any solution explored by the
swarm. A spike along the convergence lines signals an attempt to breakout from a local minimum. The
right panels are the corresponding zonal wind profiles and reflection altitudes at each of the iterations
represented in the left panels. Lighter grey colors correspond to earlier iterations. The plots also show
the initial solution (red solid lines), final solutions in each case (red dashed lines), and the bounds of

the solution space (red shaded areas). These examples correspond to runs (a)#1 and (b)#6 in Table
1.
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Figure 3. (a) Top and (b) side views of (half)ray trajectories traced during an inversion run. Red
dashed lines are rays traced with the ten ERA-ensemble members. From lighter to darker colors, the
solid lines are rays traced with models at iterations 1, 41, 81 and 121 during run #1 (see Table 1) for

one swarm particle.
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Figure 4. Comparison of ten inverted reflection altitudes together with (a) zonal and (b) meridional
wind profiles obtained when setting the limits of the solution space to 5o (blue) and 100 (grey). Also

plotted are the ten members of the ERA5-ensemble used to initialize the inversion in all cases (red).
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Figure 5. Inverted models for the inversion runs presented in Table 1. Lighter gray colors are models
with larger cost. The model with the lowest cost has a thicker black line. Red dashed-lines are the
members of the ERA5-ensemble used to initialize the inversion in all cases. Similarly, the horizontal,
red dashed-lines represent the initial reflection altitudes (39 km and 38 km for inversion runs #1-—#3
and #4-#6, respectively). The thicker, solid red line is the ensemble member that lies closest to the
best inversion result. Panels (a), (b) and (c) display the model parameters. Panel (d) shows the average
of the cross differences between all inversion results and all ensemble members for temperature (blue),

zonal wind (orange) and meridional wind (yellow).



