References
  1. Kostarev VA, Kotkovskii GE, Chistyakov AA, Akmalov AE. Detection of explosives in vapor phase by field asymmetric ion mobility spectrometry with dopant-assisted laser ionization. Talanta2022; 245: 123414.
  2. Ross DH, Xu L. Determination of drugs and drug metabolites by ion mobility-mass spectrometry: A review. Anal. Chim. Acta 2021; 1154: 338270.
  3. Son CE, Choi S-S. Influence of smear matrix types on detection behaviors and efficiencies of polycyclic aromatic hydrocarbons using ion mobility spectrometry. Chemosphere 2019; 218: 368-375.
  4. Chen H, Chen C, Huang W, Li M, Xiao Y, Jiang D, Li H. Miniaturized ion mobility spectrometer with a dual-compression tristate ion shutter for on-site rapid screening of fentanyl drug mixtures. Anal. Chem.2019; 91: 9138-9146.
  5. Chiluwal U, Lee G, Rajapakse MY, Willy T, Lukow S, Schmidt SH, Eiceman GA. Tandem ion mobility spectrometry at ambient pressure and field decomposition of mobility selected ions of explosives and interferences. Analyst 2019; 144: 2052-2061.
  6. Son CE, Choi S-S. The influence of different types of reactant ions on the ionization behavior of polycyclic aromatic hydrocarbons in corona discharge ion mobility spectrometry. Rapid Commun. Mass Spectrom. 2020; 34: e8936.
  7. Hines KM, Ross DH, Davidson KL, Bush MF, Xu L. Large-scale structural characterization of drug and drug-like compounds by high-throughput ion mobility-mass spectrometry. Anal. Chem. 2017; 89: 9023-9030.
  8. Satoh T, Kishi S, Nagashima H, Tachikawa M, Kanamori-Kataoka M, Nakagawa T, Kitagawa N, Tokita K, Yamamoto S, Seto Y. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.Anal. Chim. Acta 2015; 865: 39-52.
  9. Zhou Q, Peng L, Jiang D, Wang X, Wang H, Li H. Detection of nitro-based and peroxide-based explosives by fast polarity-switchable ion mobility spectrometer with ion focusing in vicinity of faraday detector. Sci. Rep. 2015; 5: 10659.
  10. Lee J, Park S, Cho SG, Goh EM, Lee S, Koh S-S, Kim J. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry. Talanta 2014; 120: 64-70.
  11. Zalewska A, Pawłowski W, Tomaszewski W. Limits of detection of explosives as determined with IMS and field asymmetric IMS vapour detectors. Forensic Sci. Int. 2013; 226: 168-172.
  12. Najarro M, Morris MED, Staymates ME, Fletcher R, Gillen G. Optimized thermal desorption for improved sensitivity in trace explosives detection by ion mobility spectrometry. Analyst 2012; 137: 2614-2622.
  13. Armenta S, Alcala M, Blanco M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal. Chim. Acta 2011; 703: 114-123.
  14. Choi S-S, Kim O-B, Kim Y-K, An SG, Shin M-W, Maeng S-J, Choi GS. Negative ion formation of pentaerythritol tetranitrate in atmospheric pressure chemical ionization-mass spectrometry and in corona discharge ionization-ion mobility spectrometry. Bull. Korean Chem. Soc.2011; 32: 1055-1058.
  15. Choi S-S, Kim Y-K, Kim O-B, An SG, Shin M-W, Maeng S-J, Choi GS. Comparison of cocaine detections in corona discharge ionization-ion mobility spectrometry and in atmospheric pressure chemical ionization-mass spectrometry. Bull. Korean Chem. Soc. 2010; 31: 2383-2385.
  16. Makinen MA, Anttalainen OA, Sillanpaa ET. Ion mobility spectrometry and its applications in detection of chemical warfare agents.Anal. Chem. 2010; 82: 9594-9600.
  17. Tabrizchi M, Ilbeigi V. Detection of explosives by positive corona discharge ion mobility spectrometry. J. Hazard. Mater. 2010; 176: 692-696.
  18. Wrable-Rose M, Primera-Pedrozo OM, Pacheco-Londono LC, Hernandez-Rivera SP. Preparation of TNT, RDX and ammonium nitrate standards on gold-on-silicon surfaces by thermal inkjet technology.Sens. Imaging 2010; 11: 147-169.
  19. Guerra P, Lai H, Almirall JR. Analysis of the volatile chemical markers of explosives using novel solid phase microextraction coupled to ion mobility spectrometry. J. Sep. Sci. 2008; 31: 2891-2898.
  20. Kanu AB, Gribb MM, Hill Jr. HH. Predicting optimal resolving power for ambient pressure ion mobility spectrometry. Anal. Chem. 2008; 80: 6610-6619.
  21. Zimmermann S, Barth S, Baether WKM, Ringer J. Miniaturized low-cost ion mobility spectrometer for fast detection of chemical warfare agents. Anal. Chem. 2008; 80: 6671-6676.
  22. Kanu AB, Hill Jr. HH. Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas. Talanta2007; 73: 692-699.
  23. Lokhnauth JK, Snow NHJ. Stir-bar sorptive extraction and thermal desorption-ion mobility spectrometry for the determination of trinitrotoluene and l,3,5-trinitro-l,3,5-triazine in water samples.J. Chromatogr. A 2006; 1105: 33-38.
  24. Rearden P, Harrington PB. Rapid screening of precursor and degradation products of chemical warfare agents in soil by solid-phase microextraction ion mobility spectrometry (SPME–IMS). Anal. Chim. Acta 2005; 545: 13-20.
  25. Tam M, Hill Jr. HH. Secondary electrospray ionization-ion mobility spectrometry for explosive vapor detection. Anal. Chem. 2004; 76: 2741-2747.
  26. Matz LM, Tornatore PS, Hill Jr. HH. Evaluation of suspected interferents for TNT detection by ion mobility spectrometry.Talanta 2001; 54: 171-179.
  27. Ostmark H, Wallin S, Ang HG. Vapor pressure of explosives: A critical review. Propell. Explos. Pyrotech. 2012; 37: 12-23.
  28. Mullen M, Katilie C, Collins GE, Giordano BC. Empirical determination of explosive vapor transport efficiencies. Analyst 2021; 146: 5124-5134.
  29. Harwell JR, Glackin JME, Davis NJLK, Gillanders RN, Credgington D, Turnbull GA, Samuel IDW. Sensing of explosive vapor by hybrid perovskites: Effect of dimensionality. APL Mater. 2020; 8: 071106.
  30. Kostarev VA, Kotkovskii GE, Chistyakov AA, Akmalov AE. Enhancement of characteristics of field asymmetric ion mobility spectrometer with laser ionization for detection of explosives in vapor phase.Chemosensors 2020; 8: 91.
  31. Li Y, Zhou W, Zu B, Dou X. Qualitative detection toward military and improvised explosive vapors by a facile TiO2 nanosheet-based chemiresistive sensor array.Front. Chem. 2020; 8: 29.
  32. Wojtas J, Rutecka B, Popiel S, Nawala J, Wesolowski M, Mikolajczyk J, Cudzilo S, Bielecki Z. Explosive vapors-concentrating and optoelectronic detection. Metrol. Meas. Syst. 2014; 21: 177-190.
  33. Rodacy PJ, Ingersoll D. The collection, handling, transportation, and thermal desorption of explosive vapor using quartz collection tubes.US Government Technical Report 1992; Report Number SAND-90-1326.
  34. Costa C, van Es EM, Sears P, Bunch J, Palitsin V, Cooper H, Bailey MJ. Exploring a route to a selective and sensitive portable system for explosive detectione swab spray ionisation coupled to of high-field assisted waveform ion mobility spectrometry (FAIMS). Forensic Sci. Int.: Synergy 2019; 1: 214-220.
  35. Choi S-S, Son CE. Analytical method for estimation of transfer and detection efficiencies of solid state explosive using ion mobility spectrometry and smear matrix. Anal. Methods 2017; 9: 2505-2510.
  36. Choi S-S, Son CE, Shin M-W, Choi GS. Influence of smear matrix type on detection efficiencies of explosives in corona discharge-ion mobility spectrometer. Bull. Korean Chem. Soc. 2016; 37: 604-607.
  37. Oxley JC, Smith JL, Kirschenbaum LJ, Marimganti S, Vadlamannati S. Detection of explosives in hair using ion mobility spectrometry.J. Forensic Sci. 2008; 53: 690-693.
Table 1 Detection of explosive vapors collected in the collection matrices.