Reference
1. Shih CF, Zhang T, Li J, Bai C. Powering the future with liquid sunshine. Joule . 2018;2(10):1925-1949.
2. Goeppert A, Czaun M, Prakash GS, Olah GA. Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energy Environ Sci . 2012;5(7):7833-7853.
3. Dinh C-T, Burdyny T, Kibria MG, et al. CO2electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science . 2018;360(6390):783-787.
4. García de Arquer FP, Dinh C-T, Ozden A, et al. CO2electrolysis to multicarbon products at activities greater than 1 A cm-2. Science . 2020;367(6478):661-666.
5. Li F, Li YC, Wang Z, et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat Catal . 2020;3(1):75-82.
6. Wang X, Wang Z, García de Arquer FP, et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation.Nat Energy . 2020;5(6):478-486.
7. Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev . 2019;119(12):7610-7672.
8. Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc . 1989;85(8):2309-2326.
9. Morales-Guio CG, Cave ER, Nitopi SA, et al. Improved CO2 reduction activity towards C2+alcohols on a tandem gold on copper electrocatalyst. Nat Catal . 2018;1(10):764-771.
10. Scholten F, Sinev I, Bernal M, Roldan Cuenya B. Plasma-modified dendritic Cu catalyst for CO2 electroreduction.ACS Catal . 2019;9(6):5496-5502.
11. Liu J, Fu J, Zhou Y, Zhu W, Jiang L-P, Lin Y. Controlled synthesis of EDTA-modified porous hollow copper microspheres for high-efficiency conversion of CO2 to multicarbon products. Nano Lett . 2020;20(7):4823-4828.
12. Grosse P, Gao D, Scholten F, Sinev I, Mistry H, Roldan Cuenya B. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects. Angew Chem Int Ed . 2018;57(21):6192-6197.
13. Franco F, Rettenmaier C, Jeon HS, Cuenya BR. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials. Chem Soc Rev . 2020;49(19):6884-6946.
14. Zou L, Zhong G, Nie Y, et al. Porous Carbon Nanosheets Derived from ZIF‐8 Treated with KCl as Highly Efficient Electrocatalysts for the Oxygen Reduction Reaction. Energy Technol . 2021;9(4):2100035.
15. Zhao Q, Wang Y, Li M, et al. Organic frameworks confined Cu single atoms and nanoclusters for tandem electrocatalytic CO2reduction to methane. SmartMat . 2022;3(1):183-193.
16. Li Y, Sun Q. Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv Energy Mater . 2016;6(17):1600463.
17. Eilert A, Cavalca F, Roberts FS, et al. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction.J Phys Chem Lett . 2017;8(1):285-290.
18. Dutta A, Rahaman M, Luedi NC, Mohos M, Broekmann P. Morphology matters: tuning the product distribution of CO2electroreduction on oxide-derived Cu foam catalysts. ACS Catal . 2016;6(6):3804-3814.
19. Lyu Z, Zhu S, Xie M, et al. Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction.Angew Chem Int Ed . 2021;60(4):1909-1915.
20. Gao D, Zegkinoglou I, Divins NJ, et al. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS nano . 2017;11(5):4825-4831.
21. Piqué O, Vines F, Illas F, Calle-Vallejo F. Elucidating the structure of ethanol-producing active sites at oxide-derived Cu electrocatalysts. ACS Catal . 2020;10(18):10488-10494.
22. Dattila F, Garcı́a-Muelas R, López Nr. Active and selective ensembles in oxide-derived copper catalysts for CO2 reduction.ACS Energy Lett . 2020;5(10):3176-3184.
23. Sun S, Kong C, You H, Song X, Ding B, Yang Z. Facet-selective growth of Cu–Cu2O heterogeneous architectures.CrystEngComm . 2012;14(1):40-43.
24. Choi C, Kwon S, Cheng T, et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat Catal . 2020;3(10):804-812.
25. Kim T, Palmore GTR. A scalable method for preparing Cu electrocatalysts that convert CO2 into C2+ products. Nat Commun . 2020;11(1):1-11.
26. Raciti D, Livi KJ, Wang C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett . 2015;15(10):6829-6835.
27. Jiang K, Huang Y, Zeng G, Toma FM, Goddard III WA, Bell AT. Effects of surface roughness on the electrochemical reduction of CO2 over Cu. ACS Energy Lett . 2020;5(4):1206-1214.
28. Lei Q, Zhu H, Song K, et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J Am Chem Soc . 2020;142(9):4213-4222.
29. Zhang B, Zhang J, Hua M, et al. Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets.J Am Chem Soc . 2020;142(31):13606-13613.
30. Li X, Chen W-X, Zhao J, Xing W, Xu Z-D. Microwave polyol synthesis of Pt/CNTs catalysts: effects of pH on particle size and electrocatalytic activity for methanol electrooxidization.Carbon . 2005;43(10):2168-2174.
31. Zhu H-t, Zhang C-y, Yin Y-s. Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. J Cryst Growth . 2004;270(3-4):722-728.
32. Teichert J, Doert T, Ruck M. Mechanisms of the polyol reduction of copper (II) salts depending on the anion type and diol chain length.Dalton trans . 2018;47(39):14085-14093.
33. Yin M, Wu C-K, Lou Y, et al. Copper oxide nanocrystals. J Am Chem Soc . 2005;127(26):9506-9511.
34. Chusuei CC, Brookshier M, Goodman D. Correlation of relative X-ray photoelectron spectroscopy shake-up intensity with CuO particle size.Langmuir . 1999;15(8):2806-2808.
35. Kim J, Choi W, Park JW, Kim C, Kim M, Song H. Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction. J Am Chem Soc . 2019;141(17):6986-6994.
36. Park PW, Ledford JS. The influence of surface structure on the catalytic activity of alumina supported copper oxide catalysts. Oxidation of carbon monoxide and methane. Appl Catal B . 1998;15(3-4):221-231.
37. Andersson K, Ketteler G, Bluhm H, et al. Autocatalytic water dissociation on Cu (110) at near ambient conditions. J Am Chem Soc . 2008;130(9):2793-2797.
38. Han J, Chang J, Wei R, et al. Mechanistic investigation on tuning the conductivity type of cuprous oxide (Cu2O) thin films via deposition potential. Int J Hydrog Energy . 2018;43(30):13764-13777.
39. Gao Y, Yang F, Yu Q, et al. Three-dimensional porous Cu@ Cu2O aerogels for direct voltammetric sensing of glucose. Microchim Acta . 2019;186(3):1-9.
40. Li F, Thevenon A, Rosas-Hernández A, et al. Molecular tuning of CO2-to-ethylene conversion. Nature . 2020;577(7791):509-513.
41. Jin Z, Wang L, Zuidema E, et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol.Science . 2020;367(6474):193-197.
42. Velasco-Vélez J-J, Jones T, Gao D, et al. The role of the copper oxidation state in the electrocatalytic reduction of CO2into valuable hydrocarbons. ACS Sustain Chem Eng . 2018;7(1):1485-1492.
43. Liu X, Sun L, Deng W-Q. Theoretical investigation of CO2 adsorption and dissociation on low index surfaces of transition metals. J Phys Chem C . 2018;122(15):8306-8314.
44. Hori Y, Takahashi I, Koga O, Hoshi N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes.J Phys Chem B . 2002;106(1):15-17.
45. Calle‐Vallejo F, Koper MT. Theoretical considerations on the electroreduction of CO to C2 species on Cu (100) electrodes. Angew Chem . 2013;125(28):7423-7426.
46. Lei F, Liu W, Sun Y, et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction.Nat Commun . 2016;7(1):1-8.
47. Becerra JG, Salvarezza RC, Arvia AJ. The influence of slow Cu(OH)2 phase formation on the electrochemical behaviour of copper in alkaline solutions. Electrochim Acta . 1988;33(5):613-621.
48. Strehblow H-H, Maurice V, Marcus P. Initial and later stages of anodic oxide formation on Cu, chemical aspects, structure and electronic properties. Electrochim Acta . 2001;46(24-25):3755-3766.
49. Soon A, Todorova M, Delley B, Stampfl C. Oxygen adsorption and stability of surface oxides on Cu (111): A first-principles investigation. Phys Rev B . 2006;73(16):165424.
Figure 1. TEM images of (a-b) CuO NS, OD-Cu NSs (c) Cu-30, and (d) Cu-100 (the marks of white circles mean the nano-domains.), respectively. (e) XRD patterns of CuO NS, Cu-30, and Cu-100 (the label of star (*) and hashtag (#) represent metallic Cu and CuO phase, respectively)
Figure 2 . XPS spectra at (a) Cu 2p2/3 and (b) Cu LMM Auger region of commercial Cu NP, CuO NS, Cu-30, and Cu-100
Figure 3. Electrochemical CO2RR performance of commercial Cu NP, CuO NS, Cu-30, and Cu-100. (a) LSV curves of Cu-30 in the CO2- and Ar- saturated 0.1 M KHCO3electrolyte after 1hr electrolysis. (b) Overall Faradaic efficiencies at a potential of −1.1 V vs. RHE, partial faradaic efficiency (FE) for (c) C2H4 and (d) C2+products, (e) partial current density of total C2+products.
Figure 4. (a) Double layer charge capacitance in CO2-saturated 0.1 M KHCO3 electrolyte and (b) OHads peaks from LSV curves obtained in Ar-saturated 0.1 M KOH electrolyte of commercial Cu NP, pristine CuO NS, Cu-30, and Cu-100. The inset image shows a magnified section of the (111) shoulder peak between 0.42-0.53 VRHE.