REFERENCES
1. Rostrup-Nielsen JR, Rostrup-Nielsen T. Large-scale hydrogen
production. Cattech. 2002;6(4):150-159.
2. Van Miltenburg A, Zhu W, Kapteijn F, Moulijn JA. Adsorptive
separation of light olefin/paraffin mixtures. Chem Eng Res Des.
2006;84:350-354.
3. Lin JYS. Molecular sieves for gas separation. Science.
2016;353(6295):121-122.
4. Kim HW, Yoon HW, Yoon SM, et al. Selective gas transport through
few-layered graphene and graphene oxide membranes. Science.
2013;342(6154): 91-95.
5. Li YS, Liang FY, Bux H, Feldhoff A, Yang WS, Caro J. Molecular sieve
membrane: supported metal-organic framework with high hydrogen
selectivity. Angew Chem Int Ed. 2010;122(3):558-561.
6. Shen J, Liu G, Huang K, Jin W, Lee KR, Xu N. Membranes with fast and
selective gas-transport channels of laminar graphene oxide for efficient
CO2 capture. Angew Chem Int Ed. 2015;127(2):588-592.
7. Wang XR, Chi CL, Tao JF, et al. Improving the hydrogen selectivity of
graphene oxide membranes by reducing nonselective pores with intergrown
ZIF-8 crystals. Chem Commun. 2016;52:8087-8090.
8. Yáñez M, Ortiz A, Gorri D, et al. Comparative performance of
commercial polymeric membranes in the recovery of industrial hydrogen
waste gas streams. Int J Hydrogen Energy. 2021;46(33):17507-17521.
9. Carta M, Malpass-Evans R, Croad M, et al. An efficient polymer
molecular sieve for membrane gas separations. Science.
2013;339(6117):303-307.
10. Massoumılari Ş, Doğancı M, Velioğlu S. Unveiling the potential of
MXenes for H2 purification and CO2capture as an emerging family of nanomaterials. AIChE J. 2022;68:e17837.
11. Yang T, Shi GM, Chung TS. Symmetric and asymmetric zeolitic
imidazolate frameworks (ZIFs)/polybenzimidazole (PBI) nanocomposite
membranes for hydrogen purification at high temperatures. Adv Energy
Mater. 2012;2(11):1358-1367.
12. Zhu L, Swihart MT, Lin H. Unprecedented size-sieving ability in
polybenzimidazole doped with polyprotic acids for membrane
H2/CO2 separation. Energy Environ Sci.
2018;11(1):94-100.
13. Shan MX, Liu XL, Wang XR, et al. Facile manufacture of porous
organic framework membranes for precombustion CO2capture. Sci Adv. 2018;4(9):1698.
14. Elyassi B, Sahimi M, Tsotsis TT. Silicon carbide membranes for gas
separation applications. J Membr Sci. 2007;288:290-297.
15. Wang H, Lin YS. Synthesis and modification of ZSM-5/silicalite
bilayer membrane with improved hydrogen separation performance. J Membr
Sci. 2012;396:128-137.
16. Helberg RML, Torstensen JØ, Dai Z, et al. Nanocomposite membranes
with high-charge and size-screened phosphorylated nanocellulose fibrils
for CO2 separation. Green Energy Environ.
2021;6(4):585-596
17. Zhou S, Zou X, Sun F, et al. Development of hydrogen-selective CAU-1
MOF membranes for hydrogen purification by ‘dual-metal-source’ approach.
Int J Hydrogen Energy. 2013;38(13):5338-5347.
18. Su P, Tang H, Jia M, et al. Vapor linker exchange of partially
amorphous metal-organic framework membranes for ultra‐selective gas
separation. AIChE J. 2022;68(5):e17576.
19. Zhang XF, Liu YG, Li SH, et al. New membrane architecture with high
performance: ZIF-8 membrane supported on vertically aligned ZnO nanorods
for gas permeation and separation. Chem Mater. 2014;26(5):1975-1981.
20. Gu Z, Yang Z, Sun Y, et al. Large‐area vacuum‐treated ZIF‐8
mixed‐matrix membrane for highly efficient methane/nitrogen separation.
AIChE J. 2022;68(9):e17749.
21. Hou J, Hong XL, Zhou S, et al. Solvent-free route for metal-organic
framework membranes growth aiming for efficient gas separation. AIChE J.
2019;65(2):712-722.
22. Huang AS, Bux H, Steinbach F, et al. Molecular-sieve membrane with
hydrogen permselectivity: ZIF-22 in LTA topology prepared with
3-aminopropyltriethoxysilane as covalent linker. Angew Chem Int Ed.
2010;122(29):5078-5081.
23. Wang NY, Mundstock A, Liu Y, et al. Amine-modified
Mg-MOF-74/CPO-27-Mg membrane with enhanced
H2/CO2 separation. Chem Eng Sci.
2015;124:27-36.
24. Fan HW, Mundstock A, Feldhoff A, et al. Covalent organic
framework-covalent organic framework bilayer membranes for highly
selective gas separation. J Am Chem Soc. 2018;140(32):10094-10098.
25. Das S, Ben T. A [COF-300]-[UiO-66] composite membrane with
remarkably high permeability and H2/CO2separation selectivity. Dalton Trans. 2018;47(21):7206-7212.
26. Guo HL, Zhu GS, Hewitt IJ, et al. “Twin copper source” growth of
metal-organic framework membrane:
Cu3(BTC)2 with high permeability and
selectivity for recycling H2. J Am Chem Soc.
2009;131(5):1646-1647.
27. Fu JR, Das S, Xing GL, et al.
Fabrication of COF-MOF composite
membranes and their highly selective separation of
H2/CO2. J Am Chem Soc.
2016;138(24):7673-7680.
28. Zhang C, Kumar R, Koros WJ. Ultra‐thin skin carbon hollow fiber
membranes for sustainable molecular separations. AIChE J.
2019;65(8):e16611.
29. Venna SR, Lartey M, Li T, et al. Fabrication of MMMs with improved
gas separation properties using externally-functionalized MOF particles.
J Mater Chem A. 2015;3(9):5014-5022.
30. Zhao Z, Ma X, Kasik A, Li Z, Lin YS. Gas separation properties of
metal organic framework (MOF-5) membranes. Ind Eng Chem Res.
2013;52(3):1102-1108.
31. Dai L, Huang K, Xia Y, et al. Two-dimensional material separation
membranes for renewable energy purification, storage, and conversion.
Green Energy Environ. 2021;6(2):193-211.
32. Cohen-Tanugi D, Grossman JC. Water desalination across nanoporous
graphene. Nano Letters. 2012;12(7):3602–3608.
33. Wang WT, Eftekhari E, Zhu GS, et al. Graphene oxide membranes with
tunable permeability due to embedded carbon dots. Chem Commun.
2014;50(86):13089-13092.
34. Kang J, Zhang HY, Duan XG, et al. Magnetic Ni-Co alloy encapsulated
N-doped carbon nanotubes for catalytic membrane degradation of emerging
contaminants. Chem Eng J. 2019;362:251-261.
35. Shen J, Liu GP, Huang K, et al. Subnanometer two dimensional
graphene oxide channels for ultrafast gas sieving. ACS Nano.
2016;10(3):3398–3409.
36 Zhou YS, Zhang Y, Xue J, et al. Graphene oxide-modified
g-C3N4 nanosheet membranes for efficient
hydrogen purification. Chem Eng J. 2021;420:129574.
37. Huang AS, Liu Q, Wang NY, et al. Bicontinuous zeolitic imidazolate
framework ZIF-8@GO membrane with enhanced hydrogen selectivity. J Am
Chem Soc. 2014;136(42):14686-14689.
38 Ostwal M, Shinde DB, Wang X, et al. Graphene oxide-molybdenum
disulfide hybrid membranes for hydrogen separation. J Membr Sci.
2018;550:145-154.
39. Achari A, Sahana S, Eswaramoorthy M. High performance
MoS2 membranes: effects of thermally driven phase
transition on CO2 separation efficiency. Energy Environ
Sci. 2016;9(4):1224-1228.
40. Fan YY, Li JY, Wang SD, et al. Nickel (II) ion-intercalated MXene
membranes for enhanced H2/CO2separation. Front Chem Sci Eng. 2021;15(4):882-891.
41. Qu K, Dai LH, Xia YS, et al. Self-crosslinked MXene hollow fiber
membranes for H2/CO2 separation. J Membr
Sci. 2021;638:119669.
42. Ding L, Wei YY, Li LB, et al. MXene molecular sieving membranes for
highly efficient gas separation. Nat Commun. 2018;9(1):155.
43. Shen J, Liu GZ, Ji YF, et al. 2D MXene nanofilms with tunable gas
transport channels. Adv Funct Mater. 2018;28(31):1801511.
44. Tsapatsis M. 2-Dimensional zeolites. AIChE J. 2014;60(7):23742381.
45. Agrawal KV, Topuz B, Pham TC, et al.Oriented MFI membranes by
gel-less secondary growth of sub-100 nm MFI-Nanosheet seed layers. Adv
Mater. 2015;27(21):3243-3249.
46. Peng Y, Li YS, Ban YJ, Jin H, Jiao WM, Liu XL, Yang WS.
Metal-organic framework nanosheets as building blocks for molecular
sieving membranes. Science. 2014;346(6215):1356-1359.
47. Wang XR, Chi CL, Zhang K, et al. Reversed thermo-switchable
molecular sieving membranes composed of two-dimensional metal-organic
nanosheets for gas separation. Nat Commun. 2017;8(1):14460.
48. Fan HW, Peng MH, Strauss I, et al. High-flux vertically aligned 2D
covalent organic framework membrane with enhanced hydrogen separation. J
Am Chem Soc. 2020;142(15):6872-6877.
49. Naguib M, Kurtoglu M, Presser V, et al. Two‐dimensional nanocrystals
produced by exfoliation of Ti3AlC2. Adv.
Mater. 2011;23(37):4248-4253.
50. Shahzad F, Alhabeb M, Hatter CB, et al. Electromagnetic interference
shielding with 2D transition metal carbides (MXenes). Science.
2016;353(6304):1137-1140.
51. Lukatskaya MR, Kota S, Lin Z, et al. Ultra-high-rate
pseudocapacitive energy storage in two-dimensional transition metal
carbides. Nat Energy. 2017;2(8):1-6.
52. Li RY, Zhang LB, Shi L, et al. MXene
Ti3C2: an effective 2D light-to-heat
conversion material. ACS Nano. 2017;11(4):3752-3759.
53 Xu BZ, Zhu MS, Zhang WC, et al. Ultrathin MXene‐micropattern‐based
field‐effect transistor for probing neural activity. Adv. Mater.
2016;28(17):3333-3339.
54. Zhou FL, Dong QB, Chen JT, et al. Printed graphene oxide-based
membranes for gas separation and carbon capture. Chem Eng J.
2022;430:132942.
55. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides
(MXenes) for energy storage. Nat Rev Mater. 2017;2(2):16098.
56. Lukatskaya MR, Mashtalir O, Ren CE, et al. Cation intercalation and
high volumetric capacitance of two-dimensional titanium carbide.
Science. 2013;341(6153):1502-1505.
57. Zhao L, Dong BL, Li SZ, et al. Interdiffusion reaction-assisted
hybridization of two-dimensional metal-organic frameworks and
Ti3C2TX nanosheets for
electrocatalytic oxygen evolution. ACS nano, 2017;11(6):5800-5807.
58. Duman O, Tunç S. Electrokinetic and rheological properties of
Na-bentonite in some electrolyte solutions. Micropor Mesopor Mater.
2009;117:331-338.
59. Hong XL, Lu, Z. Zhao YL, et al. Fast fabrication of freestanding
MXene-ZIF-8 dual-layered membranes for
H2/CO2 separation. J Membr Sci.
2022;642:119982.
60. Deng J, Lu Z, Ding L, et al. Fast electrophoretic preparation of
large-area two-dimensional titanium carbide membranes for ion sieving.
Chem Eng J. 2021;408:127806.
61. Zhang CJ, Pinilla S, McEvoy N, et al. Oxidation stability of
colloidal two-dimensional titanium carbides (MXenes). Chem Mater.
2017;29(11):4848-4856.
62. Lipatov A, Alhabeb M, Lukatskaya MR, et al. Effect of synthesis on
quality, electronic properties and environmental stability of individual
monolayer Ti3C2 MXene flakes. Adv
Electron Mater. 2016;2(12):1600255.
63. Halim J, Cook KM, Naguib M, et al. X-ray photoelectron spectroscopy
of select multi-layered transition metal carbides (MXenes). Appl Surf
Sci. 2016;362:406-417.
64. Wang LB, Zhang H, Wang B, et al. Synthesis and electrochemical
performance of Ti3C2TXwith hydrothermal process. Electron Mater Lett. 2016;12(5):702-710.
65. Han MK, Yin XW, Wu H, et al. Ti3C2MXenes with modified surface for high-performance electromagnetic
absorption and shielding in the X-band. ACS Appl Mater Interfaces.
2016;8(32):21011-21019.
66. Wu R, Li YH, Huang AS. Synthesis of high-performance Co-based ZIF-67
membrane for H2 separation by using cobalt ions chelated
PIM-1 as interface layer. J Membr Sci. 2021;620:118841.