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Abstract

This paper proposes a new cost criterion to enhance the precision of a zonotopic state
estimator for discrete-time descriptor linear systems. Originally, the algorithm solves
a minimum-trace problem involving zonotopes, whose evolution is given by an inter-
val observer structure containing extra design matrices, called degrees of freedom.
Although the minimization of trace yields explicit solutions, it does not necessarily
imply minimization of volume, and thereby, the precision of the output zonotope can-
not be improved effectively. The volume measure for zonotopes is computationally
expensive and, when used as cost criterion, implies nonlinear optimization problems.
Motivated by such issues, we here propose a minimum-radius criterion where the
smallest box enclosing the output zonotope is minimized. The resulting optimization
problem is nonlinear, but its convexity is exploited to yield an equivalent linear pro-
gram. The effectiveness of our approach is illustrated over two numerical examples.
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1 INTRODUCTION

Zonotopes are particular convex polytopes that confer appealing properties to set-based state estimation. A brief historical moti-
vation about zonotopic algorithms and their practical application is found in1, Table S1. Among those algorithms,2 has proposed
a zonotopic estimator for discrete-time descriptor linear systems, whose interval observer structure contains three time-varying
design matrices, namely: a Kalman-like gain matrix and two other matrices adding degrees of freedom to obtain tight solutions.
Aiming at explicit solutions, the authors take advantage from the Lagrange function to formulate a minimum-trace optimization
problem, and thereby, obtain the desired solutions using matrix inversions. Although this algorithm returns more precise sets
than the originally compared approaches, it does not imply volume minimization.

In the authors’ best knowledge, minimum-volume approaches for zonotopes have not been actually discussed yet in the interval
observers framework, since the exact volume brings up a series of challenges such as large computational burden and nonlinearity
when evaluating the design matrices. Conversely, H∞ formulations as in3,4 make use of the so-called bounded real lemma5 to
reach stable observers with a good performance at steady state.

Motivated by the aforementioned works, we here propose a new cost criterion to the zonotopic filter from2, whose idea is
to minimize the radius of the smallest box containing the output zonotope. Though the proposed minimum-radius criterion is
not equivalent to the exact volume approach, it directly influences the volume measure since the considered box is the so-called
interval hull of the zonotope. The resulting optimization problem is nonlinear, but we rewrite it as a linear program (LP) to
enable the use of linear solvers. This paper assumes that the possible state linear equality constraints are already embedded in
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the descriptor representation. Then, the linear inequality and equality constraints present in the derived LP are related to only
the reformulation of the original problem.

This paper is outlined as follows. Subsection 1 presents the necessary notations and definitions. The problem here investigated
is stated in Section 2. In section 3, the minimum-radius problem is expressed as an LP, and the corresponding state estimator
(called DRZF) is experimented in Section 4 by means of two case studies. Section 5 concludes the paper.

NOTATION AND DEFINITIONS

An (𝑛× 1)-dimensional vector and an (𝑛×𝑚)-dimensional matrix are, respectively, denoted as 𝑥 ∈ ℝ𝑛 and 𝐴 ∈ ℝ𝑛×𝑚. The cost
vector of an LP is denoted as 𝜓 . The matrix and the vector of linear inequality constraint of an LP are, respectively, denoted as
𝐷i and 𝑑 i. The matrix and the vector of linear equality constraint of an LP are, respectively, denoted as 𝐷e and 𝑑e. A diagonal
matrix obtained from a vector is denoted as diag(⋅). The rank and the transpose of a matrix are, respectively, denoted as rank(⋅)
and (⋅)⊤. A suboptimal solution is denoted as ̂(⋅). The optimal solution of an optimization problem is denoted as ̌(⋅). The absolute
value operator is denoted as | ⋅ |. An (𝑛 × 𝑚)-dimensional one matrix, an (𝑛 × 𝑚)-dimensional zero matrix, and an (𝑛 × 𝑛)-
dimensional identity matrix are, respectively, denoted as 1𝑛×𝑚, 0𝑛×𝑚, and I𝑛. The 𝑗th column of a matrix and the 𝑖th row of a
matrix are, respectively, denoted as (⋅)∶,𝑗 and (⋅)𝑖,∶. An (𝑛 × 1)-dimensional interval vector is defined as [𝑥] ≜

[

𝑥L, 𝑥U
]

⊂ ℝ𝑛,
where 𝑥L ∈ ℝ𝑛 and 𝑥U ∈ ℝ𝑛 are its known lower and upper bounds, respectively. The diameter of the box [𝑥] ⊂ ℝ𝑛 is defined
as diam([𝑥]) ≜

(

𝑥U − 𝑥L
)

. The unitary box of order 𝑚 is defined as 𝑚 ≜ [−1, 1]𝑚. The generator matrix and the center
of a set are, respectively, denoted as 𝐺x ∈ ℝ𝑛×𝑛𝑔 and 𝑥̄ ∈ ℝ𝑛. A zonotope of order 𝑛𝑔 ≥ 𝑛 is defined as  ≜ {𝐺x, 𝑥̄} =
{𝐺x𝜉 + 𝑥̄ ∶ 𝜉 ∈ 𝑛𝑔} ⊂ ℝ𝑛 6, with 𝐺x ∈ ℝ𝑛×𝑛𝑔 and 𝑥̄ ∈ ℝ𝑛. The linear mapping of the zonotope  = {𝐺x, 𝑥̄} ⊂ ℝ𝑛 is defined
as 𝐿 ≜ {𝐿𝐺x, 𝐿𝑥̄}6, where 𝐿 ∈ ℝ𝑚×𝑛. The Minkowski sum of the zonotopes  = {𝐺x, 𝑥̄} ⊂ ℝ𝑛 and  = {𝐺w, 𝑤̄} ⊂ ℝ𝑛

is defined as  ⊕  ≜
{[

𝐺x 𝐺w] , 𝑥̄ + 𝑤̄
}6. The interval hull of the zonotope  = {𝐺x, 𝑥̄} ⊂ ℝ𝑛 is defined as □ ≜

[𝑥̄ − 𝜁, 𝑥̄ + 𝜁 ]6, where 𝜁 = |𝐺x
| 1𝑛𝑔×1 is the radius.

2 PROBLEM FORMULATION

Consider the discrete-time descriptor linear time-varying dynamical system

𝐸𝑘𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘−1𝑢𝑘−1 +𝑤𝑘−1, (1)
𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝑣𝑘, (2)

where 𝐸𝑘 ∈ ℝ𝑛×𝑛, 𝐴𝑘−1 ∈ ℝ𝑛×𝑛, 𝐵𝑘−1 ∈ ℝ𝑛×𝑝, and 𝐶𝑘 ∈ ℝ𝑚×𝑛 are the known system matrices, 𝑢𝑘−1 ∈ ℝ𝑝 is the deterministic
input vector, 𝑦𝑘 ∈ ℝ𝑚 is the measured output vector, and 𝑥𝑘 ∈ ℝ𝑛 is the state vector to be estimated. Since rank(𝐸𝑘) ≤ 𝑛, the
descriptor representation (1) already embeds the state linear equality constraints to 𝑥𝑘.

The noise terms 𝑤𝑘−1 ∈ ℝ𝑛 and 𝑣𝑘 ∈ ℝ𝑚, as well as the initial state 𝑥0, are here represented by the known zonotopes
𝑘−1 =

{

𝐺w
𝑘−1, 0𝑛×1

}

, 𝑘 =
{

𝐺v
𝑘, 0𝑚×1

}

, and ̂0 =
{

𝐺̂x
0, 𝑥̂0

}

, respectively. No rank assumption is required for the generator
matrices.

By assuming that rank
([

𝐸𝑘
𝐶𝑘

])

= 𝑛, there exists a full-rank matrix
[

𝑇𝑘 𝑁𝑘
]

, where 𝑇𝑘 ∈ ℝ𝑛×𝑛 and 𝑁𝑘 ∈ ℝ𝑛×𝑚, such that

𝑇𝑘𝐸𝑘 +𝑁𝑘𝐶𝑘 = I𝑛. (3)

Post-multiplying (3) by 𝑥𝑘 and using (1)-(2), we obtain

𝑥𝑘 = 𝑇𝑘𝐴𝑘−1𝑥𝑘−1 + 𝑇𝑘𝐵𝑘−1𝑢𝑘−1 + 𝑇𝑘𝑤𝑘−1 +𝑁𝑘𝑦𝑘 −𝑁𝑘𝑣𝑘.

Therefore, we define the following center estimate:

𝑥̂𝑘 =𝑀𝑘−1𝑥̂𝑘−1 + 𝑇𝑘𝐵𝑘−1𝑢𝑘−1 +𝐾𝑘−1𝑦𝑘−1 +𝑁𝑘𝑦𝑘, (4)

where 𝑀𝑘−1 =
(

𝑇𝑘𝐴𝑘−1 −𝐾𝑘−1𝐶𝑘−1
)

, and 𝐾𝑘−1 ∈ ℝ𝑛×𝑚 is the observer gain. The gain matrix 𝐾 is here stated at 𝑘−1 because
the predictor/corrector structure is based on 𝑦𝑘−1.

By defining the estimation error as 𝑒𝑘 ≜ 𝑥𝑘 − 𝑥̂𝑘, we obtain

𝑒𝑘 =𝑀𝑘−1
(

𝑥𝑘−1 − 𝑥̂𝑘−1
)

+ 𝑇𝑘𝑤𝑘−1 −𝐾𝑘−1𝑣𝑘−1 −𝑁𝑘𝑣𝑘.
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Make explicit 𝑥𝑘 =
(

𝑥z𝑘 + 𝑥̄𝑘
)

∈ 𝑘 =
{

𝐺x
𝑘, 𝑥̄𝑘

}

, where 𝑥z𝑘 ∈ z
𝑘 =

{

𝐺x
𝑘, 0𝑛×1

}

is the error estimate around 𝑥̄𝑘, and assume
that the center deviation (𝑥̄𝑘 − 𝑥̂𝑘) in 𝑒𝑘 is shifted to 𝑥z𝑘, yielding a new variable 𝑥̂z𝑘 ∈ ̂z

𝑘 =
{

𝐺̂x
𝑘, 0𝑛×1

}

⊇ z
𝑘. Then, 𝑥𝑘 =

(

𝑥̂z𝑘 + 𝑥̂𝑘
)

∈ ̂𝑘 =
{

𝐺̂x
𝑘, 𝑥̂𝑘

}

, and 𝑒𝑘 = 𝑥̂z𝑘 is such that

𝑥̂z𝑘 =𝑀𝑘−1𝑥̂
z
𝑘−1 + 𝑇𝑘𝑤𝑘−1 −𝐾𝑘−1𝑣𝑘−1 −𝑁𝑘𝑣𝑘

∈𝑀𝑘−1̂z
𝑘−1 ⊕ 𝑇𝑘𝑘−1 ⊕

(

−𝐾𝑘−1
)

𝑘−1 ⊕
(

−𝑁𝑘
)

𝑘
= ̂z

𝑘,

where
𝐺̂x
𝑘 =

[

𝑀𝑘−1𝐺̂x
𝑘−1 𝑇𝑘𝐺

w
𝑘−1 −𝐾𝑘−1𝐺v

𝑘−1 −𝑁𝑘𝐺v
𝑘

]

, (5)
𝐺w
𝑘−1 ∈ ℝ𝑛×𝑛w𝑔 , 𝐺v

𝑘−1 ∈ ℝ𝑛×𝑛v𝑔,𝑘−1 , and 𝐺v
𝑘 ∈ ℝ𝑛×𝑛v𝑔,𝑘 .

Our goal is to determine the design matrices 𝑇𝑘, 𝑁𝑘, and 𝐾𝑘−1, for 𝑘 ∈ ℤ+, by minimizing the radius of the interval hull of
̂𝑘 given by □̂𝑘.

3 MINIMUM-RADIUS CRITERION

In this section, our proposal of minimizing the radius of the box □̂𝑘 is presented, where ̂𝑘 is the zonotope estimate that
encloses the unknown state vector 𝑥𝑘. Let 𝐹 ≜ 𝐴𝑘−1𝐺̂x

𝑘−1 and 𝐻 ≜ 𝐶𝑘−1𝐺̂x
𝑘−1. According to (5), the 𝑖th radius of □̂𝑘, for

𝑖 = 1,… , 𝑛, is given by

𝜁𝑖,𝑘 ≜
|

|

|

𝐺̂x
(𝑖,∶),𝑘

|

|

|

1(
𝑛𝑔+𝑛w𝑔 +𝑛

v
𝑔,𝑘−1+𝑛

v
𝑔,𝑘

)

×1

=
𝑛𝑔
∑

𝑗=1

|

|

|

𝑇(𝑖,∶),𝑘𝐹∶,𝑗 −𝐾(𝑖,∶),𝑘−1𝐻∶,𝑗
|

|

|

+
𝑛w𝑔
∑

𝑗=1

|

|

|

𝑇(𝑖,∶),𝑘𝐺
w
∶,𝑗
|

|

|

+
𝑛v𝑔,𝑘−1
∑

𝑗=1

|

|

|

−𝐾(𝑖,∶),𝑘−1𝐺
v
(∶,𝑗),𝑘−1

|

|

|

+
𝑛v𝑔,𝑘
∑

𝑗=1

|

|

|

−𝑁(𝑖,∶),𝑘𝐺
v
(∶,𝑗),𝑘

|

|

|

, (6)

with 𝑇(𝑖,∶),𝑘𝐸𝑘+𝑁(𝑖,∶),𝑘𝐶𝑘 =
(

I𝑛
)

𝑖,∶ being the corresponding linear equality constraint (3). Thus, the minimization of 𝜁𝑘 consists
of 𝑛 constrained optimization problems, from which the matrices 𝑇𝑘, 𝑁𝑘, and 𝐾𝑘−1 are optimally specified. In principle, due to
the fact that 𝜁𝑖,𝑘 is nonlinear, the prior problem should be solved using nonlinear solvers. However, by employing some artifices
presented in7, Section 1.3, we transform the original optimization problem in an LP. In doing so, efficient solvers such as CPLEX
and Gurobi can be used. The derived LP is presented next in Proposition 1.

Proposition 1. The constrained optimization problem given by the minimization of (6) subject to 𝑇(𝑖,∶),𝑘𝐸𝑘+𝑁(𝑖,∶),𝑘𝐶𝑘 =
(

I𝑛
)

𝑖,∶
is equivalent to the LP

min
𝑧

𝜓⊤𝑧 s.t. 𝐷i𝑧 ≤ 𝑑 i, 𝐷e𝑧 = 𝑑e, (7)

where 𝑧 ∈ ℝ𝑛z is the variable vector such that

𝑧⊤1∶𝑛 ≜ 𝑇(𝑖,∶),𝑘 (8)
𝑧⊤𝑛+1∶𝑛+𝑚 ≜ 𝑁(𝑖,∶),𝑘, (9)

𝑧⊤𝑛+𝑚+1∶𝑛+2𝑚 ≜ 𝐾(𝑖,∶),𝑘−1, (10)

𝑛z =
(

𝑛 + 2𝑚 + 𝑛𝑔 + 𝑛w𝑔 + 𝑛v𝑔,𝑘−1 + 𝑛
v
𝑔,𝑘

)

, 𝜓 ∈ ℝ𝑛z is the cost vector, 𝐷i ∈ ℝ𝑛i×𝑛z and 𝑑 i ∈ ℝ𝑛i compose the inequality

constraints, 𝑛i = 2
(

𝑛𝑔 + 𝑛w𝑔 + 𝑛v𝑔,𝑘−1 + 𝑛
v
𝑔,𝑘

)

, and 𝐷e ∈ ℝ𝑛×𝑛z and 𝑑e ∈ ℝ𝑛 compose the equality constraints. These parameters
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are defined as

𝜓 ≜
[

01×(𝑛+2𝑚) 11×
(

𝑛𝑔+𝑛w𝑔 +𝑛
v
𝑔,𝑘−1+𝑛

v
𝑔,𝑘

)

]⊤
, (11)

𝐷i
1∶𝑛𝑔 ,∶

≜
[

−𝐹 ⊤ 0𝑛𝑔×𝑚 𝐻⊤ −I𝑛𝑔 0
𝑛𝑔×

(

𝑛w𝑔 +𝑛
v
𝑔,𝑘−1+𝑛

v
𝑔,𝑘

)

]

, (12)

𝐷i
𝑛𝑔+1∶2𝑛𝑔 ,∶

≜
[

𝐹 ⊤ 0𝑛𝑔×𝑚 −𝐻⊤ −I𝑛𝑔 0
𝑛𝑔×

(

𝑛w𝑔 +𝑛
v
𝑔,𝑘−1+𝑛

v
𝑔,𝑘

)

]

, (13)

𝐷i
2𝑛𝑔+1∶2𝑛𝑔+𝑛w𝑔 ,∶

≜
[

−
(

𝐺w
𝑘−1

)⊤ 0𝑛w𝑔 ×(2𝑚+𝑛𝑔) −I𝑛w𝑔 0
𝑛w𝑔 ×

(

𝑛v𝑔,𝑘−1+𝑛
v
𝑔,𝑘

)

]

, (14)

𝐷i
2𝑛𝑔+𝑛w𝑔 +1∶2

(

𝑛𝑔+𝑛w𝑔
)

,∶
≜
[
(

𝐺w
𝑘−1

)⊤ 0𝑛w𝑔 ×(2𝑚+𝑛𝑔) −I𝑛w𝑔 0
𝑛w𝑔 ×

(

𝑛v𝑔,𝑘−1+𝑛
v
𝑔,𝑘

)

]

, (15)

𝐷i
2
(

𝑛𝑔+𝑛w𝑔
)

+1∶2
(

𝑛𝑔+𝑛w𝑔
)

+𝑛v𝑔,𝑘−1,∶
≜
[

0𝑛v𝑔,𝑘−1×(𝑛+𝑚)
(

𝐺v
𝑘−1

)⊤ 0
𝑛v𝑔,𝑘−1×

(

𝑛𝑔+𝑛w𝑔
) −I𝑛v𝑔,𝑘−1 0𝑛v𝑔,𝑘−1×𝑛v𝑔,𝑘

]

, (16)

𝐷i
2
(

𝑛𝑔+𝑛w𝑔
)

+𝑛v𝑔,𝑘−1+1∶2
(

𝑛𝑔+𝑛w𝑔 +𝑛
v
𝑔,𝑘−1

)

,∶
≜
[

0𝑛v𝑔,𝑘−1×(𝑛+𝑚) −
(

𝐺v
𝑘−1

)⊤ 0
𝑛v𝑔,𝑘−1×

(

𝑛𝑔+𝑛w𝑔
) −I𝑛v𝑔,𝑘−1 0𝑛v𝑔,𝑘−1×𝑛v𝑔,𝑘

]

, (17)

𝐷i
2
(

𝑛𝑔+𝑛w𝑔 +𝑛
v
𝑔,𝑘−1

)

+1∶2
(

𝑛𝑔+𝑛w𝑔 +𝑛
v
𝑔,𝑘−1

)

+𝑛v𝑔,𝑘,∶
≜
[

0𝑛v𝑔,𝑘×𝑛
(

𝐺v
𝑘

)⊤ 0
𝑛v𝑔,𝑘×

(

𝑚+𝑛𝑔+𝑛w𝑔 +𝑛
v
𝑔,𝑘−1

) −I𝑛v𝑔,𝑘
]

, (18)

𝐷i
2
(

𝑛𝑔+𝑛w𝑔 +𝑛
v
𝑔,𝑘−1

)

+𝑛v𝑔,𝑘+1∶2
(

𝑛𝑔+𝑛w𝑔 +𝑛
v
𝑔,𝑘−1+𝑛

v
𝑔,𝑘

)

,∶
≜
[

0𝑛v𝑔,𝑘×𝑛 −
(

𝐺v
𝑘

)⊤ 0
𝑛v𝑔,𝑘×

(

𝑚+𝑛𝑔+𝑛w𝑔 +𝑛
v
𝑔,𝑘−1

) −I𝑛v𝑔,𝑘
]

, (19)

𝑑 i ≜ 0𝑛i×1, (20)

𝐷e ≜
[

𝐸⊤
𝑘 𝐶⊤

𝑘 0
𝑛×

(

𝑚+𝑛𝑔+𝑛w𝑔 +𝑛
v
𝑔,𝑘−1+𝑛

v
𝑔,𝑘

)

]

, (21)

𝑑e ≜
(

I𝑛
)

∶,𝑖 . (22)

Proof. Since the objective function (6) is composed of piecewise linear convex functions, and the constraints (3) are linear, we
here employ the methodology discussed in7, Example 1.5 to replace each absolute value by a new variable and two additional linear
inequality constraints. To achieve that, we first define the variable vector 𝑧 ∈ ℝ𝑛z whose first (𝑛+ 2𝑚) elements correspond the
𝑖th row of matrices 𝑇𝑘,𝑁𝑘, and𝐾𝑘−1, respectively, whereas its

(

𝑛𝑔 + 𝑛w𝑔 + 𝑛v𝑔,𝑘−1 + 𝑛
v
𝑔,𝑘

)

remaining elements correspond to the
absolute values. Thereby, only the additional variables contribute to 𝜁𝑖,𝑘, yielding the cost vector 𝜓 in (11).

From (6), we define the following inequality constraints:
−𝑧⊤1∶𝑛𝐹∶,𝑗 + 𝑧⊤𝑛+𝑚+1∶𝑛+2𝑚𝐻∶,𝑗 − 𝑧𝑛+2𝑚+𝑗 ≤ 0
𝑧⊤1∶𝑛𝐹∶,𝑗 − 𝑧⊤𝑛+𝑚+1∶𝑛+2𝑚𝐻∶,𝑗 − 𝑧𝑛+2𝑚+𝑗 ≤ 0

}

, 𝑗 = 1,… , 𝑛𝑔 ,

−𝑧⊤1∶𝑛𝐺
w
(∶,𝑗),𝑘−1 − 𝑧𝑛+2𝑚+𝑛𝑔+𝑗 ≤ 0

𝑧⊤1∶𝑛𝐺
w
(∶,𝑗),𝑘−1 − 𝑧𝑛+2𝑚+𝑛𝑔+𝑗 ≤ 0

}

, 𝑗 = 1,… , 𝑛w𝑔 ,

𝑧⊤𝑛+𝑚+1∶𝑛+2𝑚𝐺
v
(∶,𝑗),𝑘−1 − 𝑧𝑛+2𝑚+𝑛𝑔+𝑛w𝑔 +𝑗 ≤ 0

−𝑧⊤𝑛+𝑚+1∶𝑛+2𝑚𝐺
v
(∶,𝑗),𝑘−1 − 𝑧𝑛+2𝑚+𝑛𝑔+𝑛w𝑔 +𝑗 ≤ 0

}

, 𝑗 = 1,… , 𝑛v𝑔,𝑘−1,

𝑧⊤𝑛+1∶𝑛+𝑚𝐺
v
(∶,𝑗),𝑘 − 𝑧𝑛+2𝑚+𝑛𝑔+𝑛w𝑔 +𝑛v𝑔,𝑘−1+𝑗 ≤ 0

−𝑧⊤𝑛+1∶𝑛+𝑚𝐺
v
(∶,𝑗),𝑘 − 𝑧𝑛+2𝑚+𝑛𝑔+𝑛w𝑔 +𝑛v𝑔,𝑘−1+𝑗 ≤ 0

}

, 𝑗 = 1,… , 𝑛v𝑔,𝑘.

After transposing the prior inequalities, we extract the matrix 𝐷i in (12)-(19) and the vector 𝑑 i in (20). Finally, by transposing
the equality constraint 𝑧⊤1∶𝑛𝐸𝑘 + 𝑧

⊤
𝑛+1∶𝑛+𝑚𝐶𝑘 =

(

I𝑛
)

𝑖,∶, we obtain the matrix 𝐷e in (21) and the vector 𝑑e in (22). ■

3.1 State-Estimation Algorithm
Next, we present in Algorithm 1 the steps to execute a loop of state estimation. As usual in zonotopic filtering, we add an order-
reduction step to fix the number of generators 𝑛𝑔 of 𝐺̂x

𝑘−1 in 𝜑𝑔 . The resulting algorithm is here called minimum-radius zonotopic
filter for descriptor systems (DRZF).
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Algorithm 1 ̂𝑘 = DRZF
(

̂𝑘−1, 𝐸𝑘, 𝐴𝑘−1, 𝐵𝑘−1, 𝐶𝑘−1, 𝐶𝑘,𝑘−1,𝑘−1,𝑘, 𝑢𝑘−1, 𝑦𝑘−1, 𝑦𝑘, 𝜑𝑔
)

Initialization: 𝑇̌𝑘 ∈ ℝ𝑛×𝑛, 𝑁̌𝑘 ∈ ℝ𝑛×𝑚, 𝐾̌𝑘−1 ∈ ℝ𝑛×𝑚

1: Apply1, Algorithm S8 to 𝐺̂x
𝑘−1 to fix its order in 𝜑𝑔

2: Define 𝐹 = 𝐴𝑘−1𝐺̂x
𝑘−1, 𝐻 = 𝐶𝑘−1𝐺̂x

𝑘−1, 𝜓 in (11), 𝐷i in (12)-(19), 𝑑 i in (20), and 𝐷e in (21)
3: For 𝑖 = 1,… , 𝑛, do
4: Define 𝑑e in (22) and solve the LP (7) to obtain the optimal vector 𝑧̌
5: Do 𝑇̌(𝑖,∶),𝑘 = 𝑧̌⊤1∶𝑛, 𝑁̌(𝑖,∶),𝑘 = 𝑧̌⊤𝑛+1∶𝑛+𝑚, and 𝐾̌(𝑖,∶),𝑘−1 = 𝑧̌⊤𝑛+𝑚+1∶𝑛+2𝑚
6: end
7: Calculate the generator matrix 𝐺̂x

𝑘 in (5) and the center 𝑥̂𝑘 in (4) to obtain the estimated zonotope ̂𝑘 =
{

𝐺̂x
𝑘, 𝑥̂𝑘

}

4 NUMERICAL RESULTS

In this section, we experiment the DRZF algorithm in two three-state numerical examples. In order to fairly compare it with
literature results, we implement two algorithms that use a similar observer structure to DRZF. The first one is the minimum

H∞ norm zonotopic filter for LTI state-space systems proposed in3, which is here modified with the matrix Θ =
[

𝐸
𝐶

]

to

enable the treatment for descriptor systems; the resulting algorithm is called DH∞ZF. The second one is the minimum-trace
zonotopic filter for LTV descriptor systems proposed in2, here called DTZF. These algorithms are executed in different examples.
For comparison purposes, we compute two performance indexes, namely: (i) the average area ratio of box (𝐴□), given by

𝐴□ ≜ 1
𝑚𝑠

1
𝑘𝑓

𝑚𝑠
∑

𝑗=1

𝑘𝑓
∑

𝑘=1

𝑛
∏

𝑖=1
diam

(

[𝑥]𝑖,𝑘,𝑗
)

, where 𝑘𝑓 = 80 is the time horizon and 𝑚𝑠 = 1000 is the number of Monte Carlo

simulations; and (ii) the average largest radius ratio of box (𝑟□), given by 𝑟□ ≜ 1
𝑚𝑠

1
𝑘𝑓

𝑚𝑠
∑

𝑗=1

𝑘𝑓
∑

𝑘=1
max
𝑖

rad
(

□̂𝑘,𝑗
)

. The reduction

order 𝜑𝑔 = 4 is set to become the state estimation more challenging.
The following computer configuration was used: 8 GB RAM 1333 MHz, Windows 10 Pro, and AMD FX-6300 CPU 3.50

GHz. All implementations were executed in MATLAB 9.11 with Gurobi 9.1 and MPT38.

4.1 LTI System
Consider an LTI descriptor system9 of the form (1)-(2), where

𝐸 = diag
(

[

1 1 0
]⊤
)

, 𝐴 =
⎡

⎢

⎢

⎣

0.5 0 0
0.8 0.95 0
−1 0.5 1

⎤

⎥

⎥

⎦

, 𝐵 =
⎡

⎢

⎢

⎣

1 0
0 1
0 0

⎤

⎥

⎥

⎦

, 𝐶 =
[

1 0 1
1 −1 0

]

,

𝐺w = diag
(

[

0.1 1.5 0.6
]⊤
)

, and 𝐺v = diag
(

[

0.5 1.5
]⊤
)

. The elements 𝑤𝑘−1 and 𝑣𝑘 are taken from uniform distributions,

while 𝑢𝑘 = cos (0.15𝑘) 12×1. The simulations are executed with 𝑥0 =
[

0.5 0.5 0.25
]⊤ ∈ ̂0 =

{

I3, 03×1
}

.
In Figure 1, we illustrate the guaranteed state estimation using the DH∞ZF and DRZF algorithms in one separate simulation;

interval hulls are sketched by computational simplicity. As expected, DRZF returns the smallest sets, mainly during the transient,
since the design matrices 𝑇𝑘, 𝑁𝑘, 𝐾𝑘−1 are computed online and since the minimum-radius criterion aims at reducing □̂𝑘.
Then, as shown in Table 1, DRZF returns better precision (smaller values of 𝐴□ and 𝑟□).

4.2 LTV System
Consider an LTV descriptor system2 of the form (1)-(2), where

𝐸𝑘 =
⎡

⎢

⎢

⎣

1 + 0.2 sin(0.1𝑘) 0 0
0 1 0
0 0 0

⎤

⎥

⎥

⎦

, 𝐴𝑘 =
⎡

⎢

⎢

⎣

0.6 − 0.1 sin(0.1𝑘) 0 0.3
−0.2 sin(0.2𝑘) 0.4 0

0 1 1

⎤

⎥

⎥

⎦

, 𝐵𝑘 =
⎡

⎢

⎢

⎣

1
sin(0.1𝑘)

0

⎤

⎥

⎥

⎦

,
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FIGURE 1 Time evolution of states (black —) and interval hulls computed by DH∞ZF (red box) and DRZF (cyan box). Green
box is the common initial box.
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FIGURE 2 Time evolution of states (black —) and interval hulls computed by DTZF (blue box) and DRZF (cyan box). Green
box is the common initial box.

𝐶𝑘 =
[

0 1 + 0.2 sin(0.2𝑘) 0.5
]

, 𝐺w = 0.04I3 and 𝐺v = 0.01. The elements 𝑤𝑘−1 and 𝑣𝑘 are taken from uniform distributions,
while 𝑢𝑘 = 0.75 sin (0.15𝑘). The simulations are executed with 𝑥0 =

[

0.1 0 0
]⊤ ∈ ̂0 =

{

0.2I3, 03×1
}

.
In Figure 2, we illustrate both the application of DRZF in an LTV case and the increase of precision with respect to DTZF.

Both algorithms compute online design matrices, but the trace minimization (DTZF) is not as efficient as the radius minimization
(DRZF) to reduce the uncertainty of zonotopes, implying more conservative results as shown in Table 2.

5 CONCLUSIONS

This paper proposed a new cost criterion to the zonotopic filter from2, where the minimization of trace is replaced by the mini-
mization of radius. Thereby, we gave a minimum-volume interpretation to the resulting algorithm, called DRZF. The proposed
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criterion leads to a nonlinear optimization problem, whose piecewise linear convex nature is here exploited to yield an equiv-
alent LP. Over two numerical examples, we illustrate the effectiveness of DRZF in reducing the size of the output sets with
respect to the algorithms proposed in2,3. Differently from these state estimators, DRZF needs linear solvers, resulting in a slight
increase of computational cost.
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TABLE 1 Results of 𝐴□ and 𝑟□ for the system of Subsection 4.1.

Algorithms 𝐴□ 𝑟□

DH∞ZF 4.27 2.67
DRZF 2.12 (↓50.4%) 1.70 (↓36.3%)

TABLE 2 Results of 𝐴□ and 𝑟□ for the system of Subsection 4.2.

Algorithms 𝐴□ 𝑟□

DTZF 0.304 0.431
DRZF 0.0453 (↓85.1%) 0.257 (↓40.4%)
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