REFERENCES
Adejuyigbe, C.O., Tian, G. & Adeoye, G.O. (2006). Microcosmic study of
soil microarthropod and earthworm interaction in litter decomposition
and nutrient turnover. Nutr Cycl Agroecosys , 75, 47-55.
Anderson, J.M. (1978). Inter- and intra-habitat relationships between
woodland cryptostigmata species diversity and the diversity of soil and
litter microhabitats. Oecologia , 32, 341-348.
Ashton, L.A., Griffiths, H.M., Parr, C.L., Evans, T.A., Didham, R.K.,
Hasan, F. et al. (2019). Termites mitigate the effects of drought
in tropical rainforest. Science , 363, 174-177.
Bastida, F., Eldridge, D.J., Abades, S., Alfaro, F.D., Gallardo, A.,
García-Velázquez, L. et al. (2020). Climatic vulnerabilities and
ecological preferences of soil invertebrates across biomes. Mol.
Ecol , 29, 752-761.
Berg, B. & McClaugherty, C. (2020). Plant litter: decomposition, humus
formation, carbon sequestration. Springer press , pp. 17-25.
Bignell, D.E. (2019). Termite Ecology in the First Two Decades of the
21st Century: A Review of Reviews. Insects , 10, 60.
Bignell, D.E. & Eggleton, P. (2000). Termites in Ecosystems. In:Termites: Evolution, Sociality, Symbioses, Ecology (eds. Abe, T,
Bignell, DE & Higashi, M). Springer Netherlands Dordrecht, pp. 363-387.
Birhanu, I., Muktar, M. & Kibebew, K. (2016). Impact of deforestation
and subsequent cultivation on soil fertility in Komto, Western Ethiopia.J. Soil Sci. Environ , 7, 212-221.
Bishop, T.R., Griffiths, H.M., Ashton, L.A., Eggleton, P., Woon, J.S. &
Parr, C.L. (2021). Clarifying terrestrial recycling pathways.Trends Ecol. Evol , 36, 9-11.
Bracken, M.B. & Sinclair, J.C., . (1992). Statistical methods for
analysis of effects of treatment in overviews of randomized trials.
Effective care of the newborn infant. Oxford University Press, Oxford.
Bradford, M.A., Warren Ii, R.J., Baldrian, P., Crowther, T.W., Maynard,
D.S., Oldfield, E.E. et al. (2014). Climate fails to predict wood
decomposition at regional scales. Nat Clim Chang , 4, 625-630.
Bretz, F., Hothorn, T., Westfall, P., Heiberger, R.M., Schuetzenmeister,
A. & Scheibe, S. (2010). Simultaneous inference in general parametric
models. In: Multiple Comparisons Using R . CRC Press, p. 44.
Brussaard, L., Aanen, D., Briones, M., Decaëns, T., Deyn, G.B., Fayle,
T. et al. (2012). Biogeography and phylogenetic community
structure of soil invertebrate ecosystem engineers: global to local
patterns, implications for ecosystem functioning and services and global
environmental change impacts. In: Soil Ecology and Ecosystem
Services . Oxford University Press, pp. 201-231.
Buitenwerf, R., Stevens, N., Gosling, C.M., Anderson, T.M. & Olff, H.
(2011). Interactions between large herbivores and litter removal by
termites across a rainfall gradient in a South African savanna. J
Trop Ecol , 27, 375-382.
Burda, B.U., O’Connor, E.A., Webber, E.M., Redmond, N. & Perdue, L.A.
(2017). Estimating data from figures with a Web-based program:
considerations for a systematic review. Res. Synth. Methods , 8,
258-262.
Castanho, C.T., Lorenzo, L. & de Oliveira, A.A. (2012). The importance
of mesofauna and decomposition environment on leaf decomposition in
three forests in southeastern Brazil. Plant Ecol , 213, 1303-1313.
Cebrian, J. (1999). Patterns in the fate of production in plant
communities. Am. Nat , 154, 449-468.
Chang, W.H. & Lai, A.G. (2018). Mixed evolutionary origins of
endogenous biomass-depolymerizing enzymes in animals. BMC
Genomics , 19.
Cifuentes-Croquevielle, C., Stanton, D.E. & Armesto, J.J. (2020). Soil
invertebrate diversity loss and functional changes in temperate forest
soils replaced by exotic pine plantations. Sci Rep-Uk , 10, 7762.
Cotrufo, M.F., Ngao, J., Marzaioli, F. & Piermatteo, D. (2010).
Inter-comparison of methods for quantifying above-ground leaf litter
decomposition rates. Plant Soil , 334, 365-376.
Crowther, T.W., Van Den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D.,
Mo, L. et al. (2019). The global soil community and its influence
on biogeochemistry. Science , 365, eaav0550.
David, J.-F. & Handa, I.T. (2010). The ecology of saprophagous
macroarthropods (millipedes, woodlice) in the context of global change.Biol. Rev , 85, 881-895.
David, J.F. (2014). The role of litter-feeding macroarthropods in
decomposition processes: A reappraisal of common views. Soil Biol.
Biochem , 76, 109-118.
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D.,
Wikramanayake, E. et al. (2017). An Ecoregion-Based Approach to
Protecting Half the Terrestrial Realm. BioScience , 67, 534-545.
Eggleton, P. & Tayasu, I. (2001). Feeding groups, lifetypes and the
global ecology of termites. Ecol Res , 16, 941-960.
Filser, J., Faber, J.H., Tiunov, A.V., Brussaard, L., Frouz, J., De
Deyn, G. et al. (2016). Soil fauna: Key to new carbon models.SOIL-GERMANY , 2, 565-582.
García-Palacios, P., Maestre, F.T., Kattge, J. & Wall, D.H. (2013).
Climate and litter quality differently modulate the effects of soil
fauna on litter decomposition across biomes. Ecol , 16, 1045-1053.
Grandy, A.S., Wieder, W.R., Wickings, K. & Kyker-Snowman, E. (2016).
Beyond microbes: Are fauna the next frontier in soil biogeochemical
models? Soil Biol. Biochem , 102, 40-44.
Griffiths, H.M., Ashton, L.A., Evans, T.A., Parr, C.L. & Eggleton, P.
(2019). Termites can decompose more than half of deadwood in tropical
rainforest. Curr Biol , 29, R118-R119.
Griffiths, H.M., Ashton, L.A., Parr, C.L. & Eggleton, P. (2021a). The
impact of invertebrate decomposers on plants and soil. New
Phytol , 231, 2142-2149.
Griffiths, H.M., Ashton, L.A., Walker, A.E., Hasan, F., Evans, T.A.,
Eggleton, P. et al. (2018). Ants are the major agents of resource
removal from tropical rainforests. J Anim Ecol , 87, 293-300.
Griffiths, H.M., Eggleton, P., Hemming-Schroeder, N., Swinfield, T.,
Woon, J.S., Allison, S.D. et al. (2021b). Carbon flux and forest
dynamics: Increased deadwood decomposition in tropical rainforest
tree-fall canopy gaps. Glob Chang Biol , 27, 1601-1613.
Guénard, B., Perrichot, V. & Economo, E.P. (2015). Integration of
global fossil and modern biodiversity data reveals dynamism and stasis
in ant macroecological patterns. J. Biogeogr , 42, 2302-2312.
Handa, I.T., Aerts, R., Berendse, F., Berg, M.P., Bruder, A.,
Butenschoen, O. et al. (2014). Consequences of biodiversity loss
for litter decomposition across biomes. Nature , 509, 218-221.
Hättenschwiler, S., Tiunov, A.V. & Scheu, S. (2005). Biodiversity and
litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol
Syst , 36, 191-218.
Heděnec, P., Jiménez, J.J., Moradi, J., Domene, X., Hackenberger, D.,
Barot, S. et al. (2022). Global distribution of soil fauna
functional groups and their estimated litter consumption across biomes.Sci Rep-Uk , 12.
Hedges, L.V., Gurevitch, J. & Curtis, P.S. (1999). The meta-analysis of
response ratios in experimental ecology. Ecology , 80, 1150-1156.
Hoeffner, K., Santonja, M., Cluzeau, D. & Monard, C. (2019). Epi-anecic
rather than strict-anecic earthworms enhance soil enzymatic activities.Soil Biol. Biochem , 132, 93-100.
Hogan, M., Veivers, P.C., Slaytor, M. & Czolij, R.T. (1988). The site
of cellulose breakdown in higher termites (Nasutitermes walkeri and
Nasutitermes exitiosus). J. Insect Physiol , 34, 891-899.
Holt, B.G., Lessard, J.-P., Borregaard, M.K., Fritz, S.A., Araujo, M.B.,
Dimitrov, D. et al. (2013). An update of wallace’s zoogeographic
regions of the world. Science , 339, 74-78.
Huang, W., González, G. & Zou, X. (2020). Earthworm abundance and
functional group diversity regulate plant litter decay and soil organic
carbon level: A global meta-analysis. Appl. Soil Ecol , 150.
Johnson, D., Krsek, M., Wellington, E.M., Stott, A.W., Cole, L.,
Bardgett, R.D. et al. (2005). Soil invertebrates disrupt carbon
flow through fungal networks. Science , 309, 1047.
Joly, F.-X., Coq, S., Coulis, M., Jean-François, D., Hättenschwiler, S.,
Mueller, C.W. et al. (2020). Detritivore conversion of litter
into faeces accelerates organic matter turnover. Commun Biol , 3.
Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D.
(2011). Influence of termites on ecosystem functioning. Ecosystem
services provided by termites. Eur J Soil Biol , 47, 215-222.
Kampichler, C. & Bruckner, A. (2009). The role of microarthropods in
terrestrial decomposition: a meta-analysis of 40 years of litterbag
studies. Biol. Rev , 84, 375-389.
Kass, J.M., Guénard, B., Dudley, K.L., Jenkins, C.N., Azuma, F., Fisher,
B.L. et al. (2022). The global distribution of known and
undiscovered ant biodiversity. Sci. Adv , 8, eabp9908.
Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley,
P. et al. (2020). TRY plant trait database – enhanced coverage
and open access. Glob Chang Biol , 26, 119-188.
Korboulewsky, N., Perez, G. & Chauvat, M. (2016). How tree diversity
affects soil fauna diversity: A review. Soil Biol. Biochem , 94,
94-106.
Kurokawa, H. & Nakashizuka, T. (2008). Leaf herbivory and
decomposability in a Malaysian tropical rain forest. Ecology , 89,
2645-2656.
Kurokawa, H., Peltzer, D.A. & Wardle, D.A. (2010). Plant traits, leaf
palatability and litter decomposability for co-occurring woody species
differing in invasion status and nitrogen fixation ability. Funct.
Ecol , 24, 513-523.
Lan, L., Yang, F., Zhang, L., Yang, W., Wu, F., Xu, Z. et al.(2019). Non-target effects of naphthalene on the soil microbial biomass
and bacterial communities in the subalpine forests of western China.Sci Rep-Uk , 9, 9811-9818.
Lan, L.Y., Zhang, L., Shen, Y., Zhang, J., Yang, W.Q., Xu, Z.F. et
al. (2020). Naphthalene exerts non-target effects on the abundance of
active fungi by stimulating basidiomycete abundance. J Mt
Sci-Engl , 17, 2001-2010.
Lavelle, P., Chauvel, A. & Fragoso, C. (1995). Principles and
management: proceedings of the third international symposium on
plant-soil interactions at low pH. In: Faunal activity in acid
soils (eds. Date, RA, Grundon, NJ, Rayment, GE & Probert, ME).
Springer Netherlands Dordrecht, pp. 201-211.
Lavelle, P., Mathieu, J., Spain, A., Brown, G., Fragoso, C., Lapied, E.et al. (2022). Soil macroinvertebrate communities: A world-wide
assessment. Glob. Ecol. Biogeogr , 31, 1261-1276.
Lehmann, J. & Kleber, M. (2015). The contentious nature of soil organic
matter. Nature , 528, 60-68.
Liria, J., Szumik, C.A. & Goloboff, P.A. (2021). Analysis of endemism
of world arthropod distribution data supports biogeographic regions and
many established subdivisions. Cladistics , 37, 559-570.
Liu, Z.G. & Zou, X.M. (2002). Exotic earthworms accelerate plant litter
decomposition in a Puerto Rican pasture and a wet forest. Ecol
Appl , 12, 1406-1417.
McCary, M.A. & Schmitz, O.J. (2021). Invertebrate functional traits and
terrestrial nutrient cycling: Insights from a global meta-analysis.J Anim Ecol , 90, 1714-1726.
Mucina, L. (2019). Biome: evolution of a crucial ecological and
biogeographical concept. New Phytol , 222, 97-114.
Ni’matuzahroh, Affandi, M., Fatimah, Trikurniadewi, N., Khiftiyah, A.M.,
Sari, S.K. et al. (2022). Comparative study of gut microbiota
from decomposer fauna in household composter using metataxonomic
approach. Arch Microbiol , 204, 210.
Olson, J. (1963). Energy storage and balance of producers and
decomposers in a young scots pine stand in central Sweden. Oikos ,
34, 322-331.
Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A.et al. (2011). A large and persistent carbon sink in the world’s
forests. Science , 333, 988-993.
Pan, Y., Birdsey, R.A., Phillips, O.L. & Jackson, R.B. (2013). The
structure, distribution, and biomass of the world’s forests. Annu
Rev Ecol Evol Syst , 44, 593-622.
Pauchet, Y., Wilkinson, P., Chauhan, R. & Ffrench-Constant, R.H.
(2010). Diversity of beetle genes encoding novel plant cell wall
degrading enzymes. Plos One , 5, e15635-e15635.
Pausas, J.G. & Bond, W.J. (2020). On the three major recycling pathways
in terrestrial ecosystems. Trends Ecol Evol , 35, 767-775.
Phillips, H.R.P., Bach, E.M., Bartz, M.L.C., Bennett, J.M., Beugnon, R.,
Briones, M.J.I. et al. (2021). Global data on earthworm
abundance, biomass, diversity and corresponding environmental
properties. Sci. Data , 8.
Shelomi, M., Wipfler, B., Zhou, X. & Pauchet, Y. (2019).
Multifunctional cellulase enzymes are ancestral in Polyneoptera.Insect Mol. Biol , 29, 124-135.
Su, H., Feng, Y., Chen, J., Chen, J., Ma, S., Fang, J. et al.(2021). Determinants of trophic cascade strength in freshwater
ecosystems: a global analysis. Ecology , 102, e03370.
Swift, M.J., Heal, O.W. & Anderson, J.M. (1979). Decomposition in
terrestrial ecosystems . Blackwell Scientific Publications, Oxford.
Tan, B., Yin, R., Zhang, J., Xu, Z., Liu, Y., He, S. et al.(2020). Temperature and Moisture Modulate the Contribution of Soil Fauna
to Litter Decomposition via Different Pathways. Ecosystems , 24,
1142-1156.
Tao, J., Zuo, J., He, Z., Wang, Y., Liu, J., Liu, W. et al.(2019). Traits including leaf dry matter content and leaf pH dominate
over forest soil pH as drivers of litter decomposition among 60 species.Funct. Ecol , 33, 1798-1810.
Thakur, M.P., Reich, P.B., Hobbie, S.E., Stefanski, A., Rich, R., Rice,
K.E. et al. (2018). Reduced feeding activity of soil detritivores
under warmer and drier conditions. Nat Clim Change , 8, 75-+.
van den Hoogen, J., Geisen, S., Wall, D.H., Wardle, D.A., Traunspurger,
W., de Goede, R.G.M. et al. (2020). A global database of soil
nematode abundance and functional group composition. Sci Data , 7,
103.
Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metafor
package. J. Stat. Softw , 36, 1 - 48.
Wall, D.H., Bardgett, R.D. & Kelly, E. (2010). Biodiversity in the
dark. Nat. Geosci , 3, 297-298.
Wall, D.H., Bradford, M.A., St. John, M.G., Trofymow, J.A.,
Behan-Pelletier, V., Bignell, D.E. et al. (2008). Global
decomposition experiment shows soil animal impacts on decomposition are
climate-dependent. Glob Chang Biol , 14, 2661-2677.
Wieder, W.R., Grandy, A.S., Kallenbach, C.M., Taylor, P.G. & Bonan,
G.B. (2015). Representing life in the Earth system with soil microbial
functional traits in the MIMICS model. Geosci. Model Dev , 8,
1789-1808.
Wiens, J.J. & Donoghue, M.J. (2004). Historical biogeography, ecology
and species richness. Trends Ecol. Evol , 19, 639-644.
Xu, X., Sun, Y., Sun, J., Cao, P., Wang, Y., Chen, H.Y.H. et al.(2020). Cellulose dominantly affects soil fauna in the decomposition of
forest litter: A meta-analysis. Geoderma , 378.
Yi, C., Ricciuto, D., Li, R., Wolbeck, J., Xu, X., Nilsson, M. et
al. (2010). Climate control of terrestrial carbon exchange across
biomes and continents. Environ. Res. Lett , 5.
Zanne, A.E., Flores-Moreno, H., Powell, J.R., Cornwell, W.K., Dalling,
J.W., Austin, A.T. et al. (2022). Termite sensitivity to
temperature affects global wood decay rates. Science , 377,
1440-1444.
Zhang, Y.-Y., Wu, W. & Liu, H. (2019). Factors affecting variations of
soil pH in different horizons in hilly regions. Plos One , 14,
e0218563-e0218563.
Figure 1 Global distribution of forest leaf litter
decomposition experiment used in this study. The map indicates a total
of 476 observations at 93 sites across the world superimposed on the
background of biome patterns.
Figure 2 Soil invertebrate contributions to forest litter
decomposition across regions. (a) Relative contributions of
soil invertebrates (blue) and microorganisms (grey) to forest litter
decomposition against absolute latitude. (b) Effect sizes of
soil invertebrates on forest litter decomposition at global, regional,
and biome scales. The errors represent 95% confidence intervals. The
numbers of observations are in the brackets. Positive mean effect sizes
indicate soil invertebrates significantly contribute to forest litter
decomposition.
Figure 3 Soil invertebrate effect sizes on forest leaf litter
decomposition across zoogeographic realms. The numbers of observation
are in the brackets. Realms with ≥ 5 observations are included. Colors
are identical in forest plot and map, realms with observations less than
5 are indicated by the grey color. The errors represent 95% confidence
intervals.
Figure 4 Influence of(a) termite diversity, (b) litter C: N ratio,(c) litter lignin: N ratio, (d) mean annual
temperature (MAT), (e) mean annual precipitation (MAP), and(f) soil pH on invertebrate effect sizes determined using
mixed-effect meta regressions. Point sizes represent the relative
weights (log) of corresponding observations. Significant correlations (P
< 0.05) are shown with solid regression lines with 95%
confidence intervals.